ECE 2400 Computer Systems Programming
Fall 2017

T01 Reading C Programs

School of Electrical and Computer Engineering
Cornell University

revision: 2017-09-06-20-23
Statements, Syntax, Semantics, State

Variables, Operators, Expressions

2.1. Variables
22. Operators
23. Expressions

24. SimpleCPrograms
Name Binding

Functions
4.1. Function Definition
42. FunctionCall

43. Theprintf Function

Conditional Statements
51. BooleanOperators

5.2. if/else Conditional Statements

10
10
11
14

5.3.

switch/case Conditional Statements

6 Iteration Statements

6.1. whileLoops

6.2. forLoops

7 Syntatic Sugar

1. Statements, Syntax, Semantics, State

Before you can learn to write, you must learn to read!
This is true for foreign languages and programming languages.

1. Statements, Syntax, Semantics, State

Program
Execution I
Arrow g5 State
Statement —
Statement
Syntax Statement

Semantics

Program Sequence of Itis raining outside.

statements Should I use an umbrella?

Statement Sentence It is raining outside.

Syntax Sentence punctuation; “I” is a pronoun;
grammar “is” uses present tense

Semantics Sentence rain is water condensed from the
meaning atmosphere, outside means in the

outdoors

State Memory remember that it is raining outside
of prior when considering umbrella
statements

2. Variables, Operators, Expressions 2.2. Variables

An example “English” program

1

2.

Create box named x.

Put value 3 into box named x.
Create box named y.

Put value 2 into box named y.
Create box named z.

Put x + y into box named z.

stmt X y z

1

2
3
4
5
6

Variables, Operators, Expressions

A variable is a box (in the computer’s memory) which stores a value;
variables are used for “state”

An operator is a symbol with special semantics to “operate” on
variables and values

An expression is a combination of variables, values, and operators
which evaluates to a new value

2. Variables, Operators, Expressions

2.1. Variables

2.1. Variables

* A variable is a box (in the computer’s 1
memory) which stores a value 2

¢ An identifier is used to name a variable

* A type specifies the kind of values that
can be stored in a variable

e A variable declaration statement
creates a new variable

2.2. Operators

int
int
int
int
int

my_variable;
MY_VARIABLE;
variable_O;
O_variable;
variable$1;

¢ The assignment operator (=) “assigns” a new value to a variable

* An assignment statement combines the assignment operator with a

left-hand side (LHS) and a right-hand side (RHS)
¢ The LHS specifies the variable to change
e The RHS specifies the new value

1 int my_variable;
: my_variable = 42;

¢ A variable declaration statement and an assignment statement can

be combined into a single initialization statement

1 int my_variable = 42;

* Other operators are provided for arithmetic functions such as
addition (+), subtraction (-), multiplication (x), division (/), and

modulus (%)

2. Variables, Operators, Expressions

2.3. Expressions

2.3. Expressions

* An expression is a combination of variables, values, and operators
which evaluates to a new value

1 3+ 4
2 3+4 x2+7
35 34/ 2 %6

* Operator precedence is a set of rules describing in what order we
should apply a sequence of operators in an expression

Category Operator Associativity
Multiplicative * / % left to right
Additive + - left to right
Assignment = right to left

Be explicit — use parenthesis!

2. Variables, Operators, Expressions 2.4. Simple C Programs

2.4. Simple C Programs

We can compose assignment and initialization statements which use
variables, operators, and expressions to create a simple C program.

Translating our “English” program
into a C program

1 int x;
2 X = 3;
3 int y;
1y = 2;
5 int z;

6 Z =X+ ¥;

Use ? to indicate undefined value in
stack frame diagram

Draw stack frame diagram corresponding
to the execution of this program

1 int x = 3;
2 int y = 2
3 int z = x +y * b5;
$ yExty*xxty;

3. Name Binding

3. Name Binding

* So far we have only had one variable with a given name

1 int x = 1;
2 int x = 2;
3 int y = x;

* Scope of a variable is the region of code where it is accessible

C allows using blocks to create new local scopes

Can declare new variables that are only in scope (locally) in the block

Can declare new variables in the local scope with same name as a
variable declared in the parent scope

Curly braces are used to open and close a block ({})

Blocks are critical for defining functions, conditional statements, and
iteration statements

1 int x = 1;
2 o

3 int x = 2;
4 int y = x;
s}

¢ int y = x;

¢ Key Question: When we use a variable name, what variable
declaration is it referring to?

e Name binding is a set of rules to answer this question by associating
a specific variable name to a specific in-scope variable declaration

¢ C uses static (lexical) scoping meaning the name binding happens
statically at compile time

3. Name Binding

Steps for name binding

1. Draw circle in source code around use of a variable name

2. Determine which variables with that name are in scope

3. Draw line to variable declaration in the inner most enclosing block
4. Draw circle in source code around variable declaration

1 int x = 1;

2 o

3 int x = 2;
4 int y = x;
5}

6 int y = x;

1 int x = 1;

2 o

3 X = 2;

4 {

5 int y = x;
6 int x = 3;
7 X = 4;

8 }

9 X=5,
0}

n int y = x;

4. Functions 4.1. Function Definition

4. Functions

A function gives a name to a parameterized sequence of statements

A function definition describes how a function behaves

A function call is a new kind of expression to execute a function

All code in this course will be inside functions

4.1. Function Definition

1 rtype function_name(ptypeO pnameO, ptypel pnamel, ...)
» {

3 function_body;

s ¥

A function name is a unique identifier for the function

The function body is the parameterized sequence of statements
® The parameter list is a list of parameter types and names
The return type is the type of the value returned by the function

1 int avg(int x, int y)

2 {
3 int sum = X + y;
4 return sum / 2;
5t

10

4. Functions 4.2. Function Call

1 int main()

> {

3 int a = 10;

4 int b = 20;

5 int c=(Ca+b) / 2;
6 return 0O;

7}

* Main is special: it is always the first function executed in a program
Main returns its “value” to the “system”

The return value is called the exit status for the program
* Returning zero means success, greater than zero means failure

4.2. Function Call

1 function_name(pvalueO, pvaluel, ...)

* To call a function we simply use its name and pass in one value for
each parameter in the parameter list surrounded by parenthesis

¢ If parameters are expressions, then we must evaluate them before
calling the function

* A function call is itself an expression which evaluates to the value
returned by the function

¢ Function parameters and “local” variables declared within a
function are effectively in a new block which is called the function’s
stack frame

11

4. Functions 4.2. Function Call

Steps for calling a function

XN Do

10

12

13

Allocate variable for return value on caller’s stack frame

Draw called function’s stack frame w/ parameter boxes

Initialize parameters by evaluating expressions in function call
Record location of function call

Move execution arrow to first statement in called function

Evaluate statements inside the called function

At return statement, evaluate its argument, update variable in caller
Return execution arrow back to where the function was called
Erase the called function’s frame

Use function’s return value as value of function call

int avg(int x, int y)
{
int sum = x + y;
return sum / 2;

}

int main()

{
int a = 10;
int b = 20;

int ¢ = avg(a, b);
return 0;

12

4. Functions 4.2. Function Call

Draw stack frame diagram corresponding
to the execution of this program

1 int avg(int x, int y)

2 {

3 int sum = x + y;
4 return sum / 2;
5)

7 int main()

s {

9 int y = 10;

10 int x = 20;

1 x = avg(avg(y,x), avg(30,40));
12 return O;

13 }

13

4. Functions 4.3. The printf Function

4.3. The printf Function

The printf function is provided by the C standard library and can be
used to print values to the screen. Here is pseudocode for the printf
function definition.

1 printf(format_string, valueO, valuel, ...)
> {

3 substitute value0 into format_string

4+ substitute valuel into format_string

6 display final format_string on the screen

7}

Here is an example of calling printf.

1 #include <stdio.h>

s int avg(int x, int y)

s q

5 int sum = x + y;

6 return sum / 2;

7}

8

9 int main()

10 {

1 int a = 10;

12 int b = 20;

13 int ¢ = avg(a, b);

14 printf("average of Jd and %d is %d\n", a, b, c);
15 return O;

14

5. Conditional Statements 5.1. Boolean Operators

¢ Execute this code via http://cpp.sh
e Examine the machine instructions via https://godbolt.org

5. Conditional Statements

¢ Conditional statements enable programs to make decisions
based on the values of their variables

¢ Conditional statements enable non-linear forward control flow

5.1. Boolean Operators

* Boolean operators are used in expressions which evaluate to a
“boolean” value (i.e., true or false)

* In C, a “boolean” value is just an integer, where we interpret a value
of zero to mean false and any non-zero value to mean true

exprl == expr2 testsif exprl is equal to expr2

exprl !- expr2 testsif exprl is not equal to expr2

exprl < expr2 testsif exprl is less than to expr2

exprl <= expr2 testsif exprl is less than or equal to expr2
exprl > expr2 testsif exprl is greater than to expr2

exprl >= expr2 testsif exprl is greater than or equal to expr2
lexpr computes the logical NOT of expr

exprl && expr2 computes the logical AND of exprl and expr2
exprl || expr2 computes the logical OR of expri and expr2

Using these operators in an expression evaluates

to either zero (false) or one (true)

15

5. Conditional Statements 5.1. Boolean Operators

Category Operator Associativity
Unary ! right to left
Multiplicative * / % left to right
Additive + - left to right
Relational < <= > >= left toright
Equality == I= left to right
Logical AND && left to right
Logical OR [left to right
Assignment = right to left

Mixing boolean operators to create a complex expression

1 7T <6&3>1 1] 10

Experiment with http://cpp.sh:

#include <stdio.h>

1

> int main()

s {

4 int x =7<6&& 3>11] 10;
5 printf ("/d\n",x);

6

16

5. Conditional Statements 5.2. if /else Conditional Statements

5.2. iflelse Conditional Statements

1

2

4

5

if (conditional_expression) {
then_block;

}

else {
else_block;

}

* A conditional expression is an expression which returns a boolean
* The then block is executed if the conditional expression is true
¢ The else block is executed if the conditional expression is false

1

2

3

4

5

6

7

8

if (conditional_expressionO) {
then_blockO;
}

else if (conditional_expressionl) {
then_blockl;

}

else {
else_block;

}

If the first cond expression is true, execute first then block

If the first cond expression is false, evaluate second cond expression
If second cond expression is true, execute second then block

If second cond expression is false, execute else block

17

5. Conditional Statements 5.2. if /else Conditional Statements

1 int min(int x, int y)

: {

3 int z;

4 if (x<y) Ao
5 Z = X;

6 }

7 else {

8 Z =Y,

9 }

10 return z;

1 }

13 int main()

u

5 min(5, 9);
16 min(7, 3);
17 return O;

8k

18

5. Conditional Statements

5.2. if /else Conditional Statements

10

1

12

13

10

11

12

13

14

15

16

17

int min(int x, int y)
{
if (x<y) A
return Xx;

}

return y;

}

int main()

{
min(5, 9);
return 0;

}

int min3(int x, int y, int z)
{
if (x<y) Ao
if (x<z)
return Xx;

b
else if (y <z) {
return y;

3

return z;

}

int main()

{
min3(3, 7, 2);
return O;

}

19

5. Conditional Statements 5.3. switch/case Conditional Statements

5.3.

1

10

12

13

14

15

16

17

18

switch/case Conditional Statements

switch (selection_expression) {

case case_labelO:
case_statementsO;
break;

case case_labell:
case_statementsl;
break;

case case_label2:
case_statements3;
break;

default:
default_statements;

* A selection expression is an expression which returns a value

* The value is matched against the case labels

e If there is a match, then corresponding case statements are executed
* A break statement means to jump to end of switch block

¢ If no case labels match then the default statements are executed

20

5. Conditional Statements

5.3. switch/case Conditional Statements

10

1

12

13

14

15

16

17

18

19

20

21

22

24

26

27

28

29

30

31

32

33

int days_in_month(int month)

{

int x;

switch (month)

{
case
case
case
case
case
case
case
case
case
case 10:
case 11:
case 12:
default:

© 00 N O WN -

LT T B T T R T R T I S

}

return X;

}

int main()

{

= 31;
= 28;
= 31;
= 30;
= 31;
= 30;
= 31;
= 31;
= 30;
= 31;
= 30;
= 31;
= -1;

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;

int result = days_in_month(7);

// Indicate
if (result
return 1;

// Indicate
return 0;

error to the system

= -1)

success to the system

21

5. Conditional Statements

5.3. switch/case Conditional Statements

10
1
12
13
14
15
16
17
18
19
20
21
22
23

24

26
27
28
29
30
31

32

int days_in_month(int month)

{

int x;
if (month == 2) {
x = 28;
}
else {
switch (month)
{
case
case
case
case
case
case 10:
case 12:
x = 31;
break;

0 N 01 W

case 4
case 6:
case 9:
case 11

3

break;

default:
x = -1;
}
}

return x;

22

5. Conditional Statements 5.3. switch/case Conditional Statements

Indentifying Primes

Write a C function that takes one integer input (x) that is between 0 and
9 (inclusive) and returns a boolean output. The function should return
true if the input is prime (i.e., 2,3,5,7) and return false if the input is not
prime. Use a case/switch conditional statement to explicitly check for
primes.

int is_prime(int x) {

23

6. Iteration Statements 6.1. while Loops

6. Iteration Statements

¢ Iteration statements enable programs to repeat code multiple times
based on a conditional expression

¢ Jteration statements enable backward flow control

* Two primary kinds of iteration statements: while and for loops

6.1. while Loops

1 while (conditional_expression) {
2 loop_body;
5}

¢ A conditional expression is an expression which returns a boolean
* The loop body is executed as long as conditional expression is true
* An infinite loop is when conditional expression is never false

24

6. Iteration Statements 6.1. while Loops

1 int ged(int x, int y)

: {

3 while (y 1= 0) {

4 if (x<y) {

5 int temp = x;

6 X =Y;

7 y = temp;

8 }

9 else {

10 X=X -7

11 }

12 }

13 return x;

14 }

15

16 int main()

7 {

18 ng(5,15);

19 return O;

20 }

stmt X y

4
4
4
4
4
4

25

6. Iteration Statements 6.2. for Loops

6.2. for Loops

1 for (initialization_stmt; cond_expr; increment_stmt) {
2 loop_body;
s

¢ The initialization statement is executed once before loop executes
¢ The loop body is executed as long as conditional expression is true
¢ The increment statement is executed at the end of each iteration

1 int mul(int x, int y)

2 {

3 int result = 0;

s for (int i=0; i<y; i=i+1) {
5 result = result + x;
6 }

7 return result;

s T

9

10 int main()

n {

12 mul(2,3);

13 return O;

14 }

26

6. Iteration Statements 6.2. for Loops

Output a sequence

Write a C function that takes one

.) . N output
integer input (N) that is
non-negative. The C function 0: 0
1. 0 O
should output a sequence of % 0 0 0
integers according to the pattern on 3: 00 0 3
the left. 4 0 0 0 3 4
5.0 0 0 3 4 5
6: 0 0 0 3 4 5 6

void print_seq(int N) {

27

7. Syntactic Sugar

7. Syntactic Sugar

¢ Syntactic sugar adds new syntax but not new semantics

¢ Syntactic sugar makes it easier to write certain programming
patterns

* Syntactic sugar does not introduce any fundamentally new behavior

for loops are syntactic sugar

1 for (int i =0; i <y; i =1i+1) {

2 result = result + x;

s F

1 {

2 int i = 0;

3 while (1 <y) {

4 result = result + x;

5 i=1i+1;

6 }

7}
Assignment Operators Postfix/Prefix Operators
Sugar Semantics Sugar Semantics
X+=y; X=Xx+7Y; x++; x=x+1;
X -=y; X=X-Y; ++x; X =x + 1;
X *=y; X =X %y, X--; x=x - 1;
x/=y; x=x/17Y; --X; X =x - 1;

Be careful, the value of ++x is x + 1, but the value of x++is x.

1 int 1 = 1;
2 int j ++i; // i ==2; j == 2

28

7. Syntactic Sugar

3 int k = i++; // 1 == 3; k == 2

29

7. Syntactic Sugar

Ternary operator is syntactic sugar

int min(int x, int y)
{
if (x<y) A
return x;
}
return y;

}

R T N O

1 int min(int x, int y)

2 {

3 return (x <y) ?7x :y;
«)

Category Operator Associativity
Postfix a+t+ a-- left to right
Unary ! ++a --a right to left
Multiplicative * / % left to right
Additive + - left to right
Relational < <= > >= left to right
Equality == I= left to right
Logical AND && left to right
Logical OR I left to right
Assignment = += -= x= /= a%b:c rightto left

