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Announcements
• Lab 5 deadline extended

• Return the FPGA board by Friday May 9th during 
a TA OH

• Fill out 2300 course evaluation (due Friday 5/9) 
– Comments not required but very welcome
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Final Exam
• Saturday May 10, 9:00-10:40AM (100 mins) at Phillips 101

– Arrive early by 8:50am
– Closed book, closed notes, closed Internet

– Coverage: Full course, with a particular emphasis on computer 
organization (Lectures 15~25)

• Programmable microprocessor, pipelining, caches, performance 
measurement, virtual memory, exceptions, I/O

• Other essential concepts (e.g., 2’s complement, timing analysis, and 
ISA) may still appear in questions related to computer organization

– Solution to the sample exam is posted on CMS
– HW 8 solution will be released soon

• Same OH schedule during study period (Ed post #21), 
except Slope Day

https://edstem.org/us/courses/72685/discussion/6044189
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• Program counter (PC): Save 

• Registers in RF: Save

• Page table register (PTR): Save

• TLB: Invalidate all entries

• Caches: Typically retained; not flushed during 
context switch as they hold physical addresses

Review: Context Switching
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Review: Accessing the TLB and the Cache

• Cache usually uses physical addresses since it holds a 
subset of what is in MM
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Byte
 offsetIndexTag

Cache

=

Virtual page number Page offsetvirtual 
address 

TLB

Physical page number Page offsetphysical 
address 
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Accessing the TLB and the Cache

6

• What about this situation with a different cache 
configuration?
– We can access the TLB and cache simultaneously because the 

index bits used for cache addressing don't require translation

Byte
 offsetIndexTag

Cache

=

Virtual page number Page offsetvirtual 
address 

TLB

Physical page number Page offsetphysical 
address 
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Iron law of Processor Performance

CPU Execution Time = I x CPI x CT
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number of instructions
in the program

average number of
cycles per instruction

clock cycle time 
(1/frequency)
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Parallelism as a Path to Lower CPI
• Processor architects improve performance 

through hardware that exploits the different 
types of parallelism within computer programs

• Instruction-Level Parallelism (ILP)
– (fine-grain) parallelism within a sequential program

• Thread-level parallelism (TLP)
– (coarse-grain) parallelism among different threads in 

a program
• Data-level parallelism (DLP)

– parallelism among the data within a program 

8
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Instruction-Level Parallelism (ILP)

• Refers to the parallelism found within a sequential 
program

• Consider the ILP in this program segment
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ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3
LW R2,R3,0

• Superscalar pipelines exploit ILP by duplicating the 
pipeline hardware
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Two-Way Superscalar Pipeline
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IF/ID ID/EX EX/MEM MEM/WB

IF ID EX MEM WB

IM Reg
A
L
U

DM

A
L
U

Reg
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IM Reg
A
L
U

DM

A
L
U

Reg

Instruction Sequence on 2W SS
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ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3
LW R2,R3,0
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IM Reg
A
L
U

DM

A
L
U

Reg

Instruction Sequence on 2W SS
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ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3

ADD R1,R2,R3
OR R4,R4,R3

LW R2,R3,0
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Instruction Sequence on 2W SS
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ADD R1,R2,R3
OR R4,R4,R3

SUB R5,R2,R3
AND R6,R6,R2

IM Reg
A
L
U

DM

A
L
U

Reg
ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3
LW R2,R3,0
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Instruction Sequence on 2W SS
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ADD R1,R2,R3
OR R4,R4,R3

SUB R5,R2,R3
AND R6,R6,R2

ADDI R7,R7,3
LW R2,R3,0

IM Reg
A
L
U

DM

A
L
U

Reg
ADD R1,R2,R3
OR R4,R4,R3
SUB R5,R2,R3
AND R6,R6,R2
ADDI R7,R7,3
LW R2,R3,0
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ARM Cortex-A8 Microprocessor
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Apple iPhone 4, iPod Touch (3rd & 4th gen), iPad; Motorola Droid, Droid X, Droid 2; Palm Pre, Pre 
2; Samsung Omnia HD, Wave 8500, i9000 Galaxy S, P1000 Galaxy Tab; HTC Desire; Google Nexus 
S; Nokia N900; Sony Ericsson Satio, Xperia X10, etc, etc
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Cortex-A8 Processor Pipeline
• 2-way superscalar

– With some dual issue restrictions: only one multiplier and one 
load/store unit

• Average CPI of 1.1

• 13 stages for integer instructions, 3 major sections
– Instruction Fetch, Instruction Decode, Execute

• Up to 1GHz clock frequency

• ~0.5W @ 1GHz (processor core only)

16
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Caches and TLBs
• Identical L1 instruction and data caches

– 16KB or 32KB
– 4-way set associative
– 64-byte block size
– Random replacement policy

• 32 entry, fully associative ITLB and DTLB

• L2 cache
– Up to 1MB, 8-way set associative, 64 byte block size, 

random replacement

17
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Data Dependency Limits SS Execution
• Consider this program sequence

• The ADD and the OR, and the SUB and AND, 
cannot execute at the same time
– Cortex-A8 limits dual issue in this case

• Addressed by out-of-order execution

18

ADD R1,R2,R3
OR R4,R1,R3
SUB R5,R2,R3
AND R6,R6,R5
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Out-of-Order Execution
• Processor can execute instructions out of the 

original program order

• One key component is an issue queue that 
tracks the availability of source operands
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ADD R1,R2,R3
OR R4,R1,R3
SUB R5,R2,R3
AND R6,R6,R5

ADD R1,R2,R3

OR R4,R1,R3
SUB R5,R2,R3

AND R6,R6,R5

IF ID EX

Reg
File

...
Issue Queue

MEM
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ARM Cortex-A9
• Successor to the Cortex-A8
• Superscalar pipeline with out-of-order execution

– Issues up to 4 instruction each clock cycle
• ITLB and DTLB + L2 TLB
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Apple iPhone 4S, iPad2; Motorola Droid Bionic, Altrix 4G, Xoom; Blackberry Playbook; 
Samsung Galaxy S II, Galaxy S III; HTC Sensation, EVO 3D; LG Optimus 2X, Optimus 
3D; Lenovo IdeaPad K2, ASUS Eee Pad Transformer; Acer ICONIA TAB A-series, etc, etc
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A More Troublesome Piece of Code
• Now consider this program sequence

• Superscalar pipeline would send instructions 
one by one through EX, MEM, and WB
– 1 ALU, 1 memory port, and 1 RF port would sit idle, 

perhaps through 10000+ loop iterations!

• How to improve the hardware utilization?
21

Loop1: ADD R1,R2,R3
OR R4,R1,R3
SUB R5,R4,R3
AND R1,R6,R5
BEQ R2,R1,Loop1
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Thread-Level Parallelism (TLP)
• Refers to the parallelism among different threads 

(usually identified by the programmer)
– A thread is a path of execution within a program
– Each uses its own registers but they share the memory

• Consider two threads that we want to run

• We can run them on separate cores, or create a 
superscalar pipeline that can run them both at the 
same time
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Loop1: ADD R1,R2,R3
OR R4,R1,R3
SUB R5,R4,R3
AND R1,R6,R5
BEQ R2,R1,Loop1

Thread 1

Loop2: LW R7,0(R1)
ADD R4,R7,R2
SUBI R5,R4,1
SW R5, 0(R1)
BGEZ R5, Loop2

Thread 2
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Two-Way Multithreaded Pipeline
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• Two threads share many of the pipeline 
resources (and virtual memory space)

• Each thread has its own PC and (physical) 
registers

• This is one example of multithreading, called 
Simultaneous Multithreading (SMT)

PC
PC IF/ID ID/EX EX/MEM MEM/WB

IF ID EX MEM WB

IM
A
L
U

DM

A
L
U

Reg

Reg

Reg

Reg
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Data-Level Parallelism
• Consider the following C code

• Arrays a, b, and c contain four 8-bit elements
– e.g., A[0], A[1], A[2], A[3] for array A

• Same operation is done for each data element

• Can replace the 4 add operations in the loop above 
by 1 SIMD add instruction

24

char A[4], B[4], C[4];
for (i = 0; i < 4; i++)
  A[i] = B[i] + C[i];
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SIMD Instructions
• SIMD: Single Instruction, Multiple Data 

• Special instructions for vector data (arrays)

• Identical operation is performed on each of the 
corresponding data elements

• Data elements are stored contiguously
– 1 load (store) can read (write) all the elements at once
– Register file is wide enough to hold all the elements in one 

register

25
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Implementing the for Loop Using SIMD

26

char A[4], B[4], C[4];

for (i = 0; i < 4; i++)
  A[i] = B[i] + C[i];

; load b and c from memory
LW     R0, 0(R4)  ; R4 points to B
LW     R1, 0(R5)  ; R5 points to C
; vector add
ADD.V  R2, R0, R1 ; one inst does four 8-bit adds!
; store result
SW     R2, 0(R3)  ; R3 points to A

Assume 32-bit registers and a 32-bit memory word 
(also note each `char’ variable holds 8 bits)
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ILP, TLP, and DLP
• Many processors exploit all three

– Best performance/watt achieved with each in moderation 
rather than one/two to the extreme

• ILP
– Typically 2 to 6-way superscalar pipeline
– Performance improvement tapers off with wider pipelines 

while power may increase significantly
• TLP

– Support for multiple threads may require small amount of 
additional hardware over single threaded SS pipeline

– May improve hardware efficiency compared to SS alone
• DLP

– Many applications (AI, graphics, video and audio processing, 
etc.) make this worthwhile 

27
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Ongoing Trends in Computer Systems
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Which Computer is Faster, 
and By How Much? 

NVIDIA GH200 
NVL2 Server

(2025)

Cray 1 
Supercomputer

(1975)

vs.
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Iron law of Processor Performance

CPU Execution Time = I x CPI x CT

30

number of instructions
in the program

average number of
cycles per instruction

clock cycle time 
(1/frequency)
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Revisiting Synchronous Circuits

• The processor functions as a large state machine
– The changes in the state of the memory elements are 

synchronized by a clock signal
– A faster clock enables more operations (instructions) per 

second

Next
State

Combinational
Logic

Inputs Outputs

Memory 
elements 
(FFs, RAMs)

Current
State

Clock
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Microprocessor Scaling (pre-2005)

• Transistor counts per chip doubled roughly every 2 years, 
following Moore’s Law

• Clock frequencies increased exponentially, enabled by 
Dennard scaling
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Microprocessor Scaling (post-2005)

• Transistor counts continue to scale
• Frequency scaling plateaued (end of Dennard scaling) => 

led to multicore & greater emphasis on energy efficiency

End of Dennard Scaling
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Era of Billion-Transistor Chips

AMD (Xilinx) Versal Premium
~92B transistors

Intel Sapphire Rapids 
(quad-chip module) 

~48B transistors

Apple A16
~16B transistors

Apple M2 Pro
~40B transistors

AMD EPYC Bergamo
(9-chip module) 
~82B transistors

NVIDIA Blackwell B200 
~208B transistors
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Typical Multicore Architecture

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Private L1/L2 Cache

Control
ALU

ALU ALU

ALU

Shared Last-Level Cache (LLC)

Do we expect a 4X speedup with 4 cores?
NO

• Per Amdahl’s Law, multicore speedup is limited by the serial part
• A multi-core processor typically runs at a lower frequency than a 

single big core due to power constraints
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GPU Architecture
• GPU has thousands of cores 

to run many threads in parallel
– Cores are simpler (compared 

to CPU)
– No support of superscalar, 

OOO, speculative execution, 
etc.

– ISA not backward compatible 

• Optimized to increase 
throughput of running data-
parallel applications
– Initially targeting graphics 

code

Cache

Control
ALU

ALU ALU

ALU

CPU

GPU
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Power = Energy
Second

=
Energy
Op

×
Ops

Second

<<1W/chip ~1W/chip ~15W/chip ~50W/chip ~100W/chip >100W/chip

To increase performance (Ops/sec) in a power-constrained 
regime, energy per operation must decrease—in other 
words, energy efficiency (Ops/Joule) needs to improve!

Computing’s Energy Problem
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Reducing Compute Energy Overhead

I-Cache RF Control

I-Cache RF Control

I-Cache RF Control hundreds 
or more 

… … 

… 

I-Cache RF Control

… 

[Figure credit] Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility in Specialized Computing, ISCA’13.

I-Cache RF Control

Arithmetic

Control overheads 
(clocking, 
decoding, pipeline 
control, ….) 

I-Cache 
access
(>20nJ)

Reg File
access
(~5nJ)

32-bit 
ALU

I-Cache RF Control

A sequence of energy-inefficient instructions

Single instruction multiple Data (SIMD): tens of operations per instruction

Further specialization (what we achieve using accelerators)

Energy breakdown of a typical instruction
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Era of Hardware Heterogeneity
• Special-purpose accelerators are increasingly used to 

improve performance & energy efficiency in both 
cloud and edge/mobile environments

Apple 12 (iPhone X)
Apple M1 Pro 

Google TPUv3
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Hardware Specialization in Mobile Chips

Apple 12 (iPhone X)

• Modern system-on-chips (SoCs) integrate a rich set of 
special-purpose hardware accelerators 
– Speed up critical tasks 
– Reduce power consumption and cost
– Increase energy efficiency
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HW Specialization in Laptop/Desktop Chips
• Special-purpose hardware accelerators (e.g., GPUs, 

NPUs) improve performance and energy efficiency

Apple M1 Pro SoC
(33.7B transistors)
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HW Specialization in Datacenter
• ASIC- and FPGA-based accelerators are being deployed 

for a rich mix of compute-intensive applications in cloud 
datacenters

Google TPUv3 board
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HW Specialization in GPUs
• Modern GPUs are increasingly specialized for 

AI workloads 

Tensor core in NVIDIA Hopper 
architecture
(WGMMA: Warp group matrix-multiply 
accumulation)

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
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The Incredible Advancements of 
Computer Hardware

8 PetaFLOPS 
900-2000W

NVIDIA GH200 
NVL2 Server

(2025)

160 MegaFLOPS
115 kW

Cray 1 
Supercomputer

(1975)

Credit: slide adapted from Jonathan Ragan-Kelley’s PLDI 2024 keynote
FLOPS stands for Floating Point Operations Per Second



Lecture 26: 45John Hennessy and David Patterson. "A New Golden Age for Computer 
Architecture." Communications of the ACM, 2019. 

https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
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Follow-on Courses
• ECE 2400 / ENGRD 2140: Computer Systems Programming

• ECE 3140 / CS 3420: Embedded Systems

• ECE 4750 / CS 4420: Computer Architecture

• ECE 4740: Digital VLSI Design

• CS 4410: Operating Systems

• CS 4120: Compilers

46
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• Fill out 2300 course evaluation

Next Time 

Final Exam
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