
Lecture 23:

Spring 2025

1

Performance Tradeoffs

ECE 2300
Digital Logic & Computer Organization

Lecture 23:

Announcements

2

• HW 7 due tomorrow

• HW 8 will be released today
– Some questions tie to lectures next week

• Lab 4c due Monday
– Download the updated zip file from CMS

(see Ed post #266)

• Lab 5 will be released tomorrow

https://edstem.org/us/courses/72685/discussion/6588543

Lecture 23:

Hexadecimal Notation (used in HW 7&8)
• Often convenient to write binary (base-2)

numbers as hexadecimal (base-16) numbers
– Fewer digits: 4 bits per hex digit
– Less error prone: easy to misread long string

of 1’s and 0’s (such as memory address)

Binary Hex Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7

Binary Hex Decimal
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

3

Lecture 23:

Converting from Binary to Hex
• Every group of four bits is a hex digit
– Start grouping from right-hand side

0011101010001111010011010111

7D4F8A3
We use Hex as a compact way to write binary
numbers, not as a new data representation in
hardware

4

Lecture 23: 5

• A cold miss is bound to occur on the first
access to a memory address

• Fully associative cache does not incur conflict
misses

• A capacity miss may occur even when some of
the cache blocks are not occupied

• LRU is an optimal block replacement policy

Cache Basics (True or False)

Lecture 23: 6

• Fully associative
Review: Another LRU Replacement Example

Note: LRU isn't always the best cache replacement policy. Though effective in many cases, its suitability
depends on the application characteristics, cache organization, and other factors. Other policies such as
LFU (Least Frequently Used), FIFO (First In, First Out), and random may perform better in certain
scenarios, determined by access patterns, cache size, etc.

Block
address

Cache
index

Hit/miss Cache contents after access

0 miss M[0] (0)
4 miss M[0] (1) M[4] (0)
2 miss M[0] (2) M[4] (1) M[2] (0)
6 miss M[0] (3) M[4] (2) M[2] (1) M[6] (0)
8 miss M[8] (0) M[4] (3) M[2] (2) M[6] (1)
0 miss M[8] (1) M[0] (0) M[2] (3) M[6] (2)
4 miss M[8] (2) M[0] (1) M[4] (0) M[6] (3)
2 miss M[8] (3) M[0] (2) M[4] (1) M[2] (0)
6 miss M[6] (0) M[0] (3) M[4] (2) M[2] (1)
8 miss M[6] (1) M[8] (0) M[4] (3) M[2] (2)
2 hit M[6] (2) M[8] (1) M[4] (3) M[2] (0)
6 hit M[6] (0) M[8] (2) M[4] (3) M[2] (1)
2 hit M[6] (1) M[8] (3) M[4] (3) M[2] (0)

(X) = LRU Age; 2 age bits per block in this case*
*Age saturates at 3 (an approximation to reduce hardware
complexity; multiple blocks can have the same age)

Lecture 23:

Cache Performance

7

• Time to get a block from memory is so long that
performance suffers even with a low miss rate

• Example: 3% miss rate, 100 cycles to main
memory
– 0.03 × 100 = 3 extra cycles on average to access

instructions or data => low performance

• What's the remedy?

Lecture 23:

Solution: Add Another Level of Cache

8

L2 Cache (MB)

Main Memory (GB)

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Instr
$

(KB)

D
ecoder

SE

M
U
X

MD

D_IN

L1
Data
$

(KB)

Fm … F0

Lecture 23:

Cache Hierarchy

9

• Level 1 (L1) instruction and data caches
– Small, but very fast

• Level 2 (L2) cache handles L1 misses
– Larger and slower than L1, but much faster than main memory
– L1 data are also present in L2

• Main memory handles L2 cache misses

• Example: assume 1 cycle to access L1 (3% miss rate),
10 cycles to L2, 10% L2 miss rate, 100 cycles to main
memory
– How many cycles on average for an instruction (or data)

access?

1 + 0.03 × (10 + 0.1 × 100) = 1.6 cycles

Lecture 23:

How Do We Measure Performance?
• Execution time: The time between the start and

completion of a program (or task)

• Throughput: Total amount of work done in a
given time

• Improving performance means
– Reducing execution time, or
– Increasing throughput

10

Lecture 23:

CPU Execution Time
• Amount of time the CPU takes to run a program

• Derivation

• Also known as the Iron Law of processor performance
– The execution time is determined by the product of three factors:

instruction count (I), cycles per instruction (CPI), and clock cycle
time (CT)

– Improving performance requires one or more of these factors,
while balancing trade-offs between them

11

number of instructions
in the program

average number of
cycles per instruction

clock cycle time
(1/frequency)

Lecture 23:

Instruction Count (I)
• Total number of instructions executed by the

processor for a given program

• Factors
– Instruction set
– Mix of instructions chosen by the compiler

12

Lecture 23:

Cycle Time (CT)
• Clock period (1/frequency)

• Factors
– Instruction set
– Processor organization and memory hierarchy

13

Lecture 23:

Cycles Per Instruction (CPI)
• Average number of cycles required to execute

each instruction

• Factors
– Instruction set
– Mix of instructions chosen by the compiler
– Ordering of the instructions by the compiler
– Processor organization and memory hierarchy

14

Lecture 23: 15

With forwarding: Reduced stall cycles
Lower CPI, potentially reduced execution time

Processor Organization
Impact on CPI (Example 1)

CC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

IM RegReg A
L
U

DM

IM RegReg A
L
U

DM

IM RegReg A
L
U

DM

IM RegReg A
L
U

DM

IM RegReg A
L
U

DM

LW R1,0(R2)

OR R4,R1,R3

SUB R5,R2,R1

AND R6,R1,R2

ADDI R7,R7,3

Lecture 23: 16

Processor Organization
Impact on CPI (Example 2)

Only one delay slot needed with branch resolved in ID
Lower CPI

Control
SignalsCU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

Inst
MEM

D
ecoder

SE

M
U
X

MDMW

D_IN

Data
MEM

Fm … F0

Lecture 23: 17

Filling the branch delay slot
with a useful instruction

Compiler Impact on CPI (Example 3)
CC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

IM RegReg A
L
U

DM

IM RegReg A
L
U

DM

IM RegReg A
L
U

DM

IM RegReg A
L
U

DM

IM RegReg A
L
U

DM

OR R4,R1,R3

SUB R5,R2,R1

X: AND R6,R1,R2

ADDI R7,R7,3

BEQ R2,R3,X

...

NOPADDI R7,R7,3

Lecture 23: 18

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

M
U
X

PCJ

+2

Inst
MEM

D
ecoder

SE

M
U
X

MDMW

D_IN

Data
MEM

Fm … F0

PCJ

MB, F MW, MD LD

Hazard
Detection
Unit

ClearIF/IDLPCL

ID.R-type

ID.SA
ID.SB EX.Load

EX.DR
Hazard detection adds stall
cycles (higher CPI) to ensure
correctness

Processor Organization
Impact on CPI (Example 4)

Lecture 23: 19

Shallow vs. Deep Pipelining

Discussion 1: Performance Tradeoff

Impact on CT and CPI?

Lecture 23:

A Rough Breakdown of CPI

20

• CPIbase is the base CPI in an ideal scenario where
instruction fetches and data memory accesses incur no
extra delay

• CPImemhier is the (additional) CPI spent for accessing the
memory hierarchy when a miss occurs in caches

• CPItotal is the overall CPI
– CPItotal = CPIbase + CPImemhier

Lecture 23:

Impact of the Memory Hierarchy

21

• With NO caches (only main memory)
– Every instruction is read from main memory
– Every load and store instruction accesses main memory
– Assume

• 100 cycles to access main memory
• 25% of all instructions are loads, 10% are stores

CPImemhier = 100 + (0.25 + 0.1) × 100 = 135

Instruction
access

Data
access

Lecture 23:

Impact of L1 Caches

22

• With L1 caches
– L1 instruction cache miss rate = 2%
– L1 data cache miss rate = 5%
– Miss penalty = 100 cycles (access main memory)
– 20% of all instructions are loads, 10% are stores

CPImemhier =

Lecture 23: 23

• With L1 caches
– L1 instruction cache miss rate = 2%
– L1 data cache miss rate = 5%
– Miss penalty = 100 cycles (access main memory)
– 20% of all instructions are loads, 10% are stores

CPImemhier = 0.02 × 100 + (0.2+0.1) × 0.05 × 100 = 3.5

Impact of L1 Caches

Instruction
access

Data
access

Lecture 23:

Impact of L1+L2 Caches

24

• With L1 and L2 caches
– L1 instruction cache miss rate = 2%
– L1 data cache miss rate = 5%
– L2 access time = 15 cycles
– L2 miss rate = 25%
– L2 miss penalty = 100 cycles (access main memory)
– 20% of all instructions are loads, 10% are stores

CPImemhier =

Lecture 23:

Impact of L1+L2 Caches
• With L1 and L2 caches
– L1 instruction cache miss rate = 2%
– L1 data cache miss rate = 5%
– L2 access time = 15 cycles
– L2 miss rate = 25%
– L2 miss penalty = 100 cycles (access main memory)
– 20% of all instructions are loads, 10% are stores

• CPImemhier = 0.02 × (15 + 0.25 × 100) +
0.30 × 0.05 × (15 + 0.25 × 100) = 1.4

25

Lecture 23:

Relative Performance
• Used to compare the performance of machines

– Processor performance and execution time are inversely related

• Used to report the performance benefit/loss of adding or
subtracting an architectural feature

26

Performance!
Performance"

=
Execution Time"
Execution Time!

Lecture 23:

Relative Performance Example:
With and Without L2 Cache

27

• Assume I and CT stay the same
• Execution time is determined by CPItotal

– Assume CPIbase = 1.5
– CPItotal = CPIbase + CPImemhier

Performance($%&$')
Performance($%)

=
Execution Time($%)

Execution Time($%&$')

=)*+!"!#$ (&')
)*+!"!#$ (&')&*)

= %.-&..-
%.-&%./

= 1.7

Lecture 23:

Amdahl’s Law
• The potential speedup of a program from an

enhancement (optimization) is limited by the proportion
of the program that is unaffected by the enhancement

28

• Example
– New optimization speeds up multiplication by factor of 10
– Total execution time of a program is 100 sec
– Multiply operations consume 5 sec of the total

No matter how fast you make the “optimized” part, the parts you
don’t speed up will eventually dominate the overall performance

Lecture 23: 29

ADD 0(R2),0(R1),4(R1)
LW R3,0(R1)
LW R4,4(R1)
ADD R3,R3,R4
SW R3,0(R2)

vs.

Complex Instruction vs. Simple Instruction

Discussion 2: Performance Tradeoff

Does Amdahl’s Law apply in this context?

1 cycle 4 cycles

Note: Other advanced computer architecture courses will delve into additional
differences and trade-offs between CISC (Complex Instruction Set Computer)
and RISC (Reduced Instruction Set Computer).

Lecture 23:

Next Class

Virtual Memory
(H&H 8.4)

30

