ECE 2300
Digital Logic & Computer Organization

Spring 2025

Caches

@9 ) Cornell University

Lecture 20: 1




Announcements

 Lab 4A due tomorrow

Lecture 20: 2



Review: Data Hazards Requiring Bubbles

Occur when instructions are too close together for
forwarding to be effective

Requires adding bubbles in the pipeline

Data hazard conditions to detect and handle
— Load followed by R-type

— Load followed by I-type ALU instruction

— Load followed by Load

— Load followed by Store (two cases)
* Forwarding for R[SA] and R[SB]

— Load followed by Branch
— ALU instruction followed by Branch

Lecture 20: 3



Load Followed by Store Instruction

CC1! CC2 ! CC3 ! CCA | CC5 ! CCB | CC7
| | | | | |

M I |

| | | |

LW R1,0 (R2) M RGQ:EE} DM i —RP9
| | |

| |
| |
| |
| |
- | |
I 1+
| | | |
SW R3,4(R1) i IM _i_Reg—i i » ﬂ DM H Reg
| | | |
| | | |

- WB->EX forwarding enabled after one bubble
inserted for R[SA] of the store instruction

Lecture 20: 4



Load Followed by Branch Instruction

CC1 ! CC2! CC3 ! CC4 ! CC5 ' CC6

|
|
1'.
| | |
LW R1,0(R2) IM Reg:E’D{ﬂ{\Reg

Reg)

CC7

i . s

|
|
BEQ R4,R1,X ML
|
|

Two bubbles needed

- WB->ID forwarding enabled after two bubbles
for the branch instruction

Lecture 20: 5



Course Content

Binary numbers and logic gates

Boolean algebra and combinational logic
Sequential logic and state machines
Binary arithmetic

Memories

Instruction set architecture

Processor organization

Caches and virtual memory
Input/output
Advanced topics

Lecture 20: 6



DRAM is Too Slow for Our Pipeline

50-100 cycles 1 cycle 1 cycle 50-100 cycles 1 cycle
[ ] [ ] [ ] (Load or Store)_
Reg \ Reg
> L
%

IF/ID ID/EX EX/MEM MEM/WB

* Typical processor cycle time: 300ps to 2ns (3GHz-500MHz)
- DRAM

— Slow to access (10-50 ns for a read or write)
— Cheap (1 transistor per bit cell); High capacity

+ SRAM

— Fast to access (100’s of ps to few ns for a read/write)
— Expensive (6 transistors per bit cell); Low capacity

Lecture 20: 7



Using Caches in the Pipeline

1 cycle 1 cycle 1 cycle 1 cycle 1 cycle
(hit) (hit)
Reg ’ Reg
IF/ID ID/EX EX/MEM MEM/WB
50-100 cycles 50-100 cycles Instructions
| (miss) (miss) | |} o

Address Data
A

Lecture 20: 8



Cache

Small SRAM memory that permits rapid access to a
subset of instructions or data

— If the data is in the cache (cache hit), we retrieve it without
slowing down the pipeline

— If the data is not in the cache (cache miss), we retrieve it from the
main memory (penalty incurred in accessing DRAM)

The hit rate is the fraction of memory accesses found in
the cache

The miss rate = 1 — hit rate

Lecture 20: 9



Memory Access with Cache

* Average memory access time with cache:
Hit time + Miss rate * Miss penalty

 An example
— Main memory access time = 50ns

— Cache hit time = 2ns
— Miss rate = 10%

Average mem access time w/o cache = 50ns

Average mem access time w/ cache =2 + 0.1*50 = 7ns

Lecture 20: 10



Why Caches Work: Principle of Locality

 Temporal locality

— If memory location X is accessed, then it is likely to
be accessed again in the near future

« Caches exploit temporal locality by keeping a referenced
instruction or data in the cache

« Spatial locality

— If memory location X is accessed, then locations near
X are likely to be accessed in the near future

« Caches exploit spatial locality by bringing in a block of
instructions or data into the cache on a miss

Lecture 20: 11



Memory Blocks

* Main memory is partitioned into blocks
— Each block typically contains multiple bytes of data

(block size is a power of 2)

— A whole block is read or written during data transfer
between main memory and cache

Lecture 20: 12



Memory Block Example

 Memory address has 6 bits => Memory holds 64 bytes

« Size of each block is 4 bytes => Memory holds 16 blocks

— Each byte within a block is indexed by a byte offset, which is the
lowest 2 bits of the memory address (00, 01, 10, 11)

Addr

0

Memory address (6 bits) 1 Memory block 0
2
3
4
Y 5

1 _ 6 ——— Memory block 1
byte offset (2 bits) |

memory block address
(4 bits)
62 «——— Memory block 15

63

Lecture 20: 13



Cache Blocks

 The cache is also divided into blocks, each of which
holds data of the same size as a memory block

— The cache is accessed at the block level using an index for

addressing

 Each cache block is associated with a valid bit and a taqg
— Valid bit (V): indicates a cache block is occupied (=1) or not (=0)

— Tag: A unique ID (a portion of memory address) used to identify
which memory block occupies the cache block

Index

A WN=-0

\'} Tag Data

<« Cache Block

Lecture 20: 14



Cache Intuition

Lecture 20: 15



Direct Mapped (DM) Cache Concepts

 Each memory block is mapped to one and only
one cache block (many-to-one mapping)

Memory Block | Cache Block

Example: (block address) (index)
. A cache with 8 blocks 0,8, 16, 24 0
— Each cache block has an 1,9,17,25 1
index (in decimal here) 2,10, 18, 26 2
 Assume the main memory 3,11, 19, 27 3
has 32 blocks (4 times Iarger 4, 12, 20, 28 4
than cache) | | 513, 21, 20 5

— Block addresses in decimal

6, 14, 22, 30 6
7,15, 23, 31 7

4 different memory blocks are mapped to
same cache block in this example

Lecture 20: 16



g index DM Cache Concepts

10101

— Last 3 bits of the memory block
address used for indexing the
cache block

— Remaining 2 bits are tags

11001

t_ 1
00001 -
AN Same Example:
00101 8 blocks in cache
\\ — Cache block indices in binary
01001 o | Cach * 32 blocks in main memory
~ ache 000 — Memory block addresses in
01101 — ;/ 8(1)(1) binary
Memory >< (1)(1)(1)
10001 - 101 * 4 different memory blocks
110
~ 1 mapped to the same cache
location
/
/
4
/
*/

11101

LMemory block address (in binary) Lecture 20: 17



Address Translation for DM Cache

 Breakdown of n-bit memory address for cache use

l Y A I_’_I

A a

n-i-b tag bits -J i index bits —

|
b byte offset bits

Main memory is byte addressable
» tag together with index form the memory block address with (n-b) bits
« memory block address and byte offset make up the complete address

« DM cache parameters
— Number of cache blocks is 2!
* index bits are used to address the cache blocks
— Size of each cache block is 2° bytes
« “cache block” and “cache line” are synonymous

— Total cache size is 2' x 2> = 2i*b phytes
Lecture 20: 18



DM Cache Organization

Memory address

tag index byte offset

\ \ V Tag Data

index bits are
used to address
the cache blocks

) 4
o
.

N

] The correct word or byte will be
Data extracted based on the byte offset
after reading it

Tag from the address is
compared with the tag
retrieved from the cache

Hit=1 if the cache block is valid
(V=1) and the tags match

Lecture 20: 19



Reading DM Cache

Use the index bits to address the cache Memory address
and retrieve the tag, data, and valid bit LL L

index byte offset

Y A N \Y Tag Data

Compare the tag from the
address with the retrieved tag

If valid & a match in tag (hit), select
the desired data using the byte offset 1 T

Otherwise (miss) it
— Bring the memory block into the cache (also set valid=1)
— Store the tag from the address associated with the memory block
— Select the desired data using the byte offset

Lecture 20: 20



Writing DM Cache

Use the index bits to address the cache
and retrieve the tag and valid bit

Memory address

O
tag

index byte offset

N \'% Tag Data

\ AN

Compare the tag from the
address with the retrieved tag

If valid & a match in tag (hit),
write the data into the cache location

2.
d
2

f Data
Otherwise (miss), one option Hit
— Bring the memory block into the cache (also set valid)

— Store the tag from the address associated with the memory block
— Write the data into the cache location

Lecture 20: 21



Direct Mapped Cache Example

Size of each block is 4 bytes

Cache holds 4 blocks
Memory holds 16 blocks

Memory address has 6 bits

2 tag bits J I EZ byte offset bits

2 index bits

{ tag, index } = memory block address

V tag data

00

01

10

11

|

Cache block
address (index)

Lecture 20: 22



Direct Mapped Cache Example

Processor Ve Cache Memory
tag index offset

0000

=) R1 <= M[H0J000)]
R2 <= M[000100] miss Y tad data 0001
R3 <= M[010000] mmp> 00] 0 0010
R2 <= M[011100] 01[0 0011
R1 <= M[000000] 10f0 0100
R1 <= M[000100] 1o 0101
0110
0111
RO 1000
R1 1001
R2 1010
R3 1011
7y 1100
. 1101
Each register./ 1110

holds 4-byte value

1111
t {

Memory block J

address (binary) Data (decimal)

Lecture 20: 23



Direct Mapped Cache Example

Processor Cache Memory

m=) R1 <= M[000000]

R2 <= M[000100] miss \) tag data | |
R3 <=M][010000] mmd 00| 1 100 | 100 «

R2 <= M[011100] 0101 A
R1 <= M[000000] 10
R1 <= M[000100] 0

RO /

R1l 100 ]
R2
R3

Lecture 20: 24



Direct Mapped Cache Example

Processor

R1 <= M[000000]
=) R2 <= M[000100]
R3 <= M[010000]
R2 <= M[011100]
R1 <= M[000000]
R1 <= M[000100]

RO
R1| 100
R2
R3

Cache

V tag data

miss 00[1 {00 | 100

> 01

0
1010
1110

Memory

Lecture 20: 25



Direct Mapped Cache Example

Processor

R1 <= M[000000]
=) R2 <= M[000100]
R3 <= M[010000]
R2 <= M[011100]
R1 <= M[000000]
R1 <= M[000100]

R2[ 110¥
R3

nﬁss(X)
> 01
10

11

Cache

V tag data

1100 ] 100

00 [ 110 «

e

1
0
0]

RO
R1| 100 /

Memory

0000
00

0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Lecture 20: 26




Direct Mapped Cache Example

Processor

R1 <= M[000000]
R2 <= M[000100]
m=) R3 <= M[010000]
R2 <= M[011100]
R1 <= M[000000]
R1 <= M[000100]

RO
R1| 100
R2| 110
R3

Cache

miss VY tag data

mmp- 00| 1 100 | 100

0111 00 | 110

1
1010
1110

Memory

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Lecture 20: 27



Direct Mapped Cache Example

Processor Cache Memory
R1 <= MJ[000000]
R2 <= M[000100] miss 00\{ t(;g j‘:‘;a
m=) R3 <=M][010000] — Pk’
R2 <= M[011100] 01[1 i 70| —
R1 <= M[000000] 10 })/
R1 <= M[000100] 1140

RO

R1 100

R2 110 /
R3| 140 ¥

Lecture 20: 28



Direct Mapped Cache Example

Processor

R1 <= M[000000]
R2 <= M[000100]
R3 <= M[010000]
=) R2 <= M[011100]
R1 <= M[000000]
R1 <= M[000100]

RO

R1l 100
R2[ 110
R3| 140

Cache

V tag data

00]1 |01 | 140

0111 00 | 110

1
miss 10(0
) 11| 0

Memory

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Lecture 20: 29




Direct Mapped Cache Example

Processor

R1 <= M[000000]
R2 <= M[000100]
R3 <= M[010000]
=) R2 <= M[011100]
R1 <= M[000000]
R1 <= M[000100]

RO

R1[ 100 | 7
R2 170 «~

R3[| 140

Cache

V tag data

00]1 |01 | 140

0111 00 | 110

1
miss 10(0
1

) 11 014,170‘

/

Memory

0000
0001
0010
0011
0100
0101
0110
011

1000
1001
1010
1011
1100
1101
1110
1111

Lecture 20: 30



Direct Mapped Cache Example

Processor

R1 <= M[000000]
R2 <= M[000100]
R3 <= M[010000]
R2 <= M[011100]
== R1 <= M[000000]
R1 <= M[000100]

RO

R1| 100
R2| 170
R3[| 140

Cache

: V tag data
miss

mmp 00| 1 ]O1 | 140

0111 00 | 110

1
1010
1

1111 101 | 170

Memory

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Lecture 20: 31




Direct Mapped Cache Example

Processor

R1 <= M[000000]
R2 <= M[000100]
R3 <= M[010000]
R2 <= M[011100]
== R1 <= M[000000]
R1 <= M[000100]

RO //
R1 100 «

R2 170

R3 140

miss

mp 00

01
10

Cache

V tag data

1

00 [L100 4

%{Oﬂ/ 110

1

01]170

Memory

Lecture 20: 32



Direct Mapped Cache Example

Processor

R1 <= M[000000]
R2 <= M[000100]
R3 <= M[010000]
R2 <= M[011100]
R1 <= M[000000]
=) R1 <= M[000100]

RO 1
R1 110 «

R2 170

R3 140

Cache

V tag data

hit 00} 1100 | 100

s 01[T[00 [ 110

1010 ]

1
0
11417101 1170

-

Memory

Lecture 20: 33



Next Class

More Caches

Lecture 20: 34



