ECE 2300
Digital Logic & Computer Organization

Spring 2025

More Timing Analysis
Binary Arithmetic

@E;) Cornell University

Lecture 12: 1

Announcements
* Lab 3 released; Form groups on CMS by Wed

 Lab 2b due tomorrow

Lecture 12: 2

Review: Important Timing Parameters

4 N
combinational

>

—

logic
> \ y,
CLOCK
LOCK /
CLOC | *
p— 0 ! "
1:clk
flip-flop _XXXXX
outputs

—Te

AXAXA

combinational
outputs

AXAXAX

flip-flop
inputs

thoId
Lecture 12: 3

Timing Analysis Discussion (1)

* To achieve a higher clock frequency (i.e.,
smaller cycle time), would you prefer
1) A smaller or larger combinational delay?

2) A wider or narrower setup time window?
3) A wider or narrower hold time window?

4) A positive or negative clock skew?

Lecture 12: 4

Review: Positive Clock Skew

IN A [combinational | D2 I
FF1 logic FF2
S >

CLK1 llong wire] CLK2
17

CLOCK

N _/
ck1 [/ \ /

D2 /

CLK2 (delayired) / \ /

Receiving FF receives clock later than sending FF

1:ffpd(max) + tcomb(max) + 1:setup = tclk + 1:skew(min)

> tffpd(max) + 1:comb(max) + (tsetup B tskew(min)) S tclk

(beneficial skew: setup time window
effectively narrowed) Lecture 12:

Review: Negative Clock Skew

IN A [combinational | D2 I
FF1 logic FF2
S >

CLK1 [long wire] ,, CLK2 CLOCK
11

N _/

CLK1 (delayed)%

Q1 (delayed)

D2 (delayed)

tS keW tsetu p

Receiving FF receives clock sooner than sending FF

tffpd(max) + tcomb(max) + tsetup S 1:clk - tskew(max)
> tffpd(max) + tcomb(max) + (tsetup + tskew(max)) S tclk

(harmful skew: setup time window

effectively widened) Lecture 12: 6

Recap: Avoiding Hold Time Violation

—_ rcombinational
FF1 l logic FF2
> >

CLOCK

* FF input must remain stable after the triggering edge by
at least t;,,y amount of time

— Otherwise, the receiving flip-flop may be contaminated with an
unexpected value

* Need to consider minimum propagation delays
(the shortest timing path) for hold time calculations

tffpd(min) + tcomb(min) 2 thold

Lecture 12: 7

Example: Hold Time Constraint

Q1 D2
IN —— Q2
FF1 very short wire (assume FF2
> negligible delay) >
CLOCK
IN / \
CLOCK tffpd \ / tffpd

at : U‘

D2 '/ :\

Q2 : /
5

Hold time window (t;,o,q): D2 must remain stable
and not change too quickly

Same requirement
every clock cycle

tiiodmin) T tcombminy = tepdmingt0 2 thoig
Lecture 12: 8

Example: Hold Time Calculations

rcombinational
FF1 L logic FF2
> >
CLOCK

Prop Delay (ns) Setup Hold
min max Time Time
(ns) (ns)

FF 1 2 3 2

Comb 2 7 - -

« Hold time at FF2 met?

Lecture 12: 9

Timing Analysis Discussion (2)

* To avoid hold time violation, would you prefer
1) A smaller or larger combinational delay?

2) A wider or narrower setup time window?
3) A wider or narrower hold time window?
4) A positive or negative clock skew?

Lecture 12: 10

Hold Time With Positive Clock Skew

IN A [combinational | D2 I
FF1 logic FF2
S >

CLK1 flong wire] CLK2
|
CLOCK '

N _/

CLK1

Q1

D2 N
CLK2 (setayen [/ \ /

tffiod

: tcomb

tokews thoid
Receiving FF receives clock later than sending FF

+ tskew(max)

tffpd(min) + tcomb(min) - thold
(hold time window

effectively widened)

Harmful skew for meeting hold time constraint Lecture 12: 11

Hold Time With Negative Clock Skew

IN A [combinational | D2 I
FF1 logic FF2
S >

17

What if receiving FF receives clock sooner than
sending FF?

tffpd(min) + tcomb(min) 2 thold B tskew(min)

(hold time window
effectively narrowed)

Beneficial skew for meeting hold time constraint

Lecture 12: 12

Example: Hold Time Analysis with Clock Skew

CLOCK

FF1
>

\.

4 N
combinational

logic

FF2

J

>

Clock may arrive at FF2 up to 2ns later than FF1

Prop Delay (ns) Setup Hold Time
min max Time (ns) (ns)
FF 1 3 3 2
Comb 3 7

* Hold time at FF2 met?

Lecture 12: 13

Example: Hold Time Analysis with Clock Skew

4 N
combinational

FF2

FF1 logic
> \ J

>

CLOCK

Clock may arrive at FF2 up to 2ns later than FF1

Prop Delay (ns) Setup Hold Time
min max Time (ns) (ns)
FF 1 3 3 2
Comb 3 7

* Hold time at FF2 met?

tffpd(min) + tcomb(min) >= thold + tskew(max)
1+3>=2+2
The hold time constraint is met

Lecture 12: 14

Course Content

Binary numbers and logic gates

Boolean algebra and combinational logic
Sequential logic and state machines
Clocking and timing analysis

Binary arithmetic
Memories

Instruction set architecture
Processor organization
Caches and virtual memory
Input/output

Lecture 12: 15

Unsigned Binary Integers

* An n-bit unsigned number represents 2" integer values

— Range is from 0 to 2"-1

* For the unsigned binary number b,_.b,,,...b4b,,

the decimal number is

n-1

D=3 be2i
i=0

22 21 20 | value
0 0 O 0
o 0 1 1
0o 1 0 2
o 1 1 3
1 0 O 4
1 0 1 5
1 1 0 6
1 1 1 7

Lecture 12: 16

Unsigned Binary Addition

* Just like base-10
— Add from right to left, propagating carry

carry

Y YY)
10010 (18) 10010) 01111 vy
+ 01001 © + 01011 ¢n <+ 00011 @
10010 7 (29) 10010 (18

Lecture 12: 17

Signed Magnitude Representation

Most significant bit is used as a sign bit

— Sign bit of 0 for positive (001 =1)

— Sign bit of 1 for negative (101 = -1)

Range is from -(2"-1-1) to (2"-1-1) for an n-bit
number

Two representations for zero (+0 and -0)

Does ordinary binary addition still work?
001 (¢
+ 101)
110 (not 0)

Lecture 12: 18

Another Way to Encode Signed
Binary Numbers

000
111 001
110 010
101 011

100

Lecture 12: 19

Two’s Complement Representation (2’s C)

« A (slightly) different positional 22 21 20
encoding: MSB has weight -2 0 0 O 0
— n is the bitwidth 0 0 1 1
— For the 2’s C binary number b,_b,,...b,b,,
the decimal is o O 1 0 2
D= -bn_102“'1+_§0 b,e2! o 1 1 3
| 1 0 0| -4
- Range of an n-bit number: 1 0 1 3
-2"1 through 2"-1-1
— Positive numbers and zero are same as T 1 0 -2
unsigned binary representation 1 1 1 -1

— Most negative number (namely, -2"1) has
no positive counterpart

Lecture 12: 20

Two’s Complement Addition

 Procedure for addition is the same as
unsigned addition regardless of the signs of
the numbers

001

+ 111
000 (o

Lecture 12: 21

Negating a 2°C Number

 To get two’s complement negative notation of
an integer
— Flip every bit first
— Then add one

@ 001 01001 (9
110 (1's comp) 101 10 (1’s comp)
+ 1 + 1
111 10111 9

X = (X'+1)

Lecture 12: 22

2’s C Negation Shortcut

« To get -X

— Copy bits from right to left up to and including the

first “1”

— Flip remaining bits to the left

011010000
100101111
+ 1

100110000

(1’s comp)

011010000

(flip)

1001

(copy)

10000

Lecture 12: 23

Converting Binary (2’s C) to Decimal

. If MSB = 1, take two’s complement to get a
positive number

. Add powers of 2 for bit positions that have a “1”

. If original number was negative,

add a minus sign

X
-X

X

= 11100110,

= 00011010

= 24423421 = 16+8+2
= 26ten

= '26ten

Assuming 8-bit 2’s complement numbers

n 2"

01
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

Lecture 12: 24

1.
2.
3.

Converting Decimal to Binary (2’s C)

First Method: Division

Change to nonnegative decimal number
Divide by two — remainder is least significant bit

Keep dividing by two until answer is zero,
recording remainders from right (LSB) to left

Append a zero as the MSB;

if original number X was negative, return X’+1

X =104, 104/2
52/2

26/2

13/2

6/2

3/2

1/2

X = 01101000,

5210

26 r0
13 rO
6 r1
3r0
1r1
0Or1

bit0=20
bit1=20
bit2=20
bit 3 =1
bit4 =20
bit 5 =1
bit 6 =1

Lecture 12: 25

1.
2.

s

Converting Decimal to Binary (2’s C)

Second Method: Subtract Powers of Two

Change to nonnegative decimal number
Subtract largest power of two
less than or equal to number
Put a one in the corresponding bit position
Keep subtracting until result is zero
Append a zero as MSB;
if original was X negative, return X’+1
X =104, 104-64 = 40 bit6=1
40-32 = 8 bit 5 =1
8-8 = 0 bit 3 =1

X = 01101000,

S

0 A DN-=2 N

o W
N

128
256
512
1024

© 0O N O O A WN 2 © 3
-_—
o

KN
o

Lecture 12: 26

Fixed Size Representation

Microprocessors usually represent numbers as fixed size
n-bit values

Result of adding two n-bit integers is stored as n bits

Integers are typically 32 or 64 bits (words)
— 4 or 8 bytes (1 byte = 8 bits)

Lecture 12: 27

Fixed Size Addition

 Examples withn=4

2 0010 2 0010 -2 1110
+ 3 0011 + -3 1101 + 6 0110
5 0101 -1 1111 4 0100

2 1110
+ -6 1010
-8 1000

Something went wrong!

Lecture 12: 28

Overflow

 If operands are too big, sum cannot be
represented as n-bit 2’s complement number

01000 (8) 11000 (-8)
+ 01001 (9) + 10111 (-9)
10001 (-15) 01111 (+15)

* Overflow occurs if
— Signs of both operands are the same, and
— Sign of sum is different

* Another test (easy to do in hardware)
— Carry into MSB does not equal carry out

Lecture 12: 29

Exercise: Would Overflow Occur?

011100
+ 010101

Lecture 12: 30

Next Class

More Binary Arithmetic
ALU
(H&H 5.1-5.2.4)

Lecture 12: 31

