
Lecture 9:

Spring 2025

ECE 2300
Digital Logic & Computer Organization

More Finite State Machines

1

Lecture 9:

Announcements

2

• TA-led Quartus/Verilog Tutorial next Tuesday
– Bring your laptop

• Prelim 1, Thursday 2/27, 1:25-2:40pm (in class)
– Arrive early by 1:15pm
– TA-led review on Monday, 2/24 @ 7:30 pm (virtual)
– No lab sessions next week
– Solutions for HW2, HW3, and practice prelim will be

released today

Lecture 9: 3

Recap: Procedural Assignments in Verilog
reg Y, Z;
always @ (posedge clk)
begin

Y = A & B;
Z = Y;

end
Blocking assignments

reg Y, Z;
always @ (posedge clk)
begin

Y <= A & B;
Z <= Y;

end
Nonblocking assignments

Simulator Interpretation

Znext ß Y // use “old” Y
Ynext ß A & B

• RHS evaluated in parallel (order doesn’t
matter)

• Assignment to LHS is delayed until
the end of the always block

Ynext ß A & B
Znext ß (Ynext = A & B) // use “new” Y

• RHS evaluated sequentially
• Assignment to LHS is immediate

Lecture 9: 4

Recap: Procedural Assignments in Verilog

ZY

B
A

ZY

B
A

Actual Circuit
(Synthesizer Interpretation)

When a reg (Y here) is assigned in a
nonblocking assignment (Y<=A&B),
employ its Q output for connection in
RHS of another assignment (Z<=Y)

When a reg (Y here) is assigned in a
blocking assignment (Y=A&B), employ its
D input (i.e., A&B) for connection in RHS
of a subsequent assignment (Z=Y)

reg Y, Z;
always @ (posedge clk)
begin

Y = A & B;
Z = Y;

end
Blocking assignments

reg Y, Z;
always @ (posedge clk)
begin

Y <= A & B;
Z <= Y;

end
Nonblocking assignments

Lecture 9:

(Improperly Created) Inferred Latches
• To infer combinational logic, you’re recommended to

ensure that each variable within an always block gets
assigned a value under all possible conditions
– Otherwise, the Verilog compiler assumes that the last value

should be used, and will create a latch

5

reg out;
always @(d, sel)
begin
 if (sel == 1'b1)

out = d;
end

reg out;
always @(d, sel)
begin
 if (sel == 1'b1)

out = d;
else
out = ~d;

end
out is keeping state because
it’s not always assigned a value
è latch inferred

out assigned a value in both conditions
è combinational logic inferred
(not latch)

Lecture 9:

Review: Finite State Machine (FSM)

• An FSM is an abstract representation of a sequential circuit
1. A finite number of inputs; 2. A finite number of outputs
3. A finite number of states; 4. A specification of all state transitions

6

Next
State

Combinational
Logic

Inputs Outputs

State
Current
State

Can be described by a state diagram

1 1

S0
0

S1
0

S2
1

0 1Reset

00
1/0 1/1

S0 S1

0/0Reset

0/0

Moore FSM Example Mealy FSM Example

Lecture 9: 7

•••

•••

•••
•••Inputs

Outputs

Next
State

Current
State

FF

FF

Next State
Combinational

Logic

Output
Combinational

Logic
•••

•••

Outputs only depend on
current state value

Review:
Moore Machine

Lecture 9:

Review:
Mealy Machine

8

Inputs

Outputs

Next
State

Current
State

FF

FF

Next State
Combinational

Logic

Output
Combinational

Logic

•••

•••

•••

•••

•••

•••

Outputs only depend on
input and current state value

Lecture 9:

FSM Design Procedure
(1) Understand the problem statement and

determine inputs and outputs

(2) Identify states and create a state diagram

(3) Determine the number of required FFs

(4) Implement combinational logic for outputs
and next state

(5) Simulate the circuit to test its operation
9

This
lecture

Lecture 9:

Example FSM: Pattern Detector
• Monitors the input, and outputs a 1 whenever a

specified input pattern is detected

• Example: Output a 1 whenever 111 is detected
on the input over 3 consecutive clock cycles
– Overlapping patterns also detected (1111...)

• Input In (one bit)
• Output Out (one bit)
• Reset causes FSM to start in initial state
• Clock input not shown (always present)

10

Lecture 9:

State Diagrams

11

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

Moore

Mealy

Lecture 9:

Transition/Output Table
• Shows the next state (S*) and output values for

each combination of current state (S) and inputs

• Used to derive the minimized state transition (S*)
and output Boolean equations

12

Lecture 9:

Moore Transition/Output Table 1

13

Current
State (S)

Next State (S*) Out
In = 0 In = 1

Init Init Got1 0
Got1 Init Got11 0
Got11 Init Got111 0
Got111 Init Got111 1

• Version 1: uses descriptive state names

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

Lecture 9:

Moore Transition/Output Table 2

14

S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1

• Version 2: uses state binary encodings

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

[00] [01] [10] [11]

Lecture 9: 15

Minimized Equations for S* and Out

S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1

Out=S1•S0

Lecture 9: 16

S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1

Minimized Equations for S* and Out

0 0 0 0

0 1 1 1

00 01 11 10

0

1

S1S0
In

S1*=S0•In+S1•In

0 0 0 0

1 0 1 1

00 01 11 10

0

1

S1S0
In

S0*=S0’•In+S1•In

Out=S1•S0

Lecture 9:

Mealy Transition/Output Table 1

17

Current
State (S)

Next State (S*), Out
In = 0 In = 1

Init Init, 0 Got1, 0
Got1 Init, 0 Got11, 0
Got11 Init, 0 Got11, 1

• Version 1: uses descriptive state names

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

Lecture 9:

Mealy Transition/Output Table 2

18

S1 S0
S1* S0*, Out

In = 0 In = 1
0 0 0 0, 0 0 1, 0
0 1 0 0, 0 1 0, 0
1 0 0 0, 0 1 0, 1

• Version 2: uses state binary encodings

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

[00] [01] [10]

Lecture 9:

Minimized Equations for S* and Out

19

S1 S0
S1* S0*, Out

In = 0 In = 1
0 0 0 0, 0 0 1, 0
0 1 0 0, 0 1 0, 0
1 0 0 0, 0 1 0, 1

Lecture 9:

Minimized Equations for S* and Out

20

S1 S0
S1* S0*, Out

In = 0 In = 1
0 0 0 0, 0 0 1, 0
0 1 0 0, 0 1 0, 0
1 0 0 0, 0 1 0, 1

0 0 d 0

0 1 d 1

00 01 11 10

0

1

S1S0
In

S1*=S0•In+S1•In

0 0 d 0

1 0 d 0

00 01 11 10

0

1

S1S0
In

S0*=S1’•S0’•In

0 0 d 0

0 0 d 1

00 01 11 10

0

1

S1S0
In

Out=S1•In

Lecture 9: 21

Moore State Diagram for DFF

• Input: D
• Output: Q

QD

CLK

State0
Q = 0

State1
Q = 1

D = 0

D = 1

D = 0 D = 1

[0] [1]

S
S* Q

D = 0 D = 1
0 0 1 0
1 0 1 1

Lecture 9: 22

Mealy State Diagram for DFF?

• Input: D
• Output: Q

QD

CLK

Lecture 9:

FSMs in Verilog

23

<module statement>
<input and output declarations>

<reg declarations>

<parameter or typedef statement>

<always block for next state>

<always block for output>

<always block for state FFs>

endmodule

Suggested
coding style

for FSM

Lecture 9:

Moore FSM in Verilog

24

module PatDetectMoore (Clk, In, Reset, Out);
input Clk, In, Reset;
output Out;

reg Out;
reg [1:0] Scurr, Snext;

parameter [1:0] Init = 2'b00,
Got1 = 2'b01,
Got11 = 2'b10,
Got111 = 2'b11;

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

[00] [01] [10] [11]

Lecture 9:

Moore FSM in Verilog

25

always @ (In, Scurr)
begin

case (Scurr)
Init: if (In == 1) Snext = Got1; else Snext = Init;
Got1: if (In == 1) Snext = Got11; else Snext = Init;
Got11: if (In == 1) Snext = Got111; else Snext = Init;
Got111: if (In == 1) Snext = Got111; else Snext = Init;
default: Snext = Init;

endcase
end

next state
comb logic

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

[00] [01] [10] [11]

Lecture 9:

Moore FSM in Verilog

26

always @ (Scurr)
if (Scurr == Got111) Out = 1;

 else Out = 0;

always @ (posedge Clk)
if (Reset == 1) Scurr <= Init;

 else Scurr <= Snext;

endmodule

update state FFs
(current state)

output comb logic

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

[00] [01] [10] [11]

Lecture 9:

Moore FSM Verilog Simulation

27

Lecture 9:

Mealy FSM in Verilog

28

module PatDetectMealy (Clk, In, Reset, Out);
input Clk, In, Reset;
output Out;

reg Out;
reg [1:0] Scurr, Snext;

parameter [1:0] Init = 2'b00,
Got1 = 2'b01,
Got11 = 2'b10;

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

[00] [01] [10]

Lecture 9:

Mealy FSM in Verilog

29

always @ (In, Scurr)
begin

case (Scurr)
Init: if (In == 1) Snext = Got1; else Snext = Init;
Got1: if (In == 1) Snext = Got11; else Snext = Init;
Got11: if (In == 1) Snext = Got11; else Snext = Init;
default: Snext = Init;

endcase
end

next state
comb logic

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

[00] [01] [10]

Lecture 9:

Mealy FSM in Verilog

30

always @ (Scurr, In)
if ((Scurr == Got11) && (In == 1)) Out = 1;

 else Out = 0;

always @ (posedge Clk)
if (Reset == 1) Scurr <= Init;

 else Scurr <= Snext;

endmodule

output comb logic

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

[00] [01] [10]

update state FFs
(current state)

Lecture 9:

Mealy FSM Verilog Simulation

31

Lecture 9:

Pushbutton Lock: Moore State Diagram

32

Init
UL = 0

X1
UL = 0

X1-X2
UL = 0

X1-X2-X2
UL = 1

[00]

[01] [10]

[11]

0 0
0 1
1 1

1 1

1 0

0 00 0

0 1

0 11 1
1 0

1 1
 1 0

0 0
0 1
1 0

• Output: UL=1 with sequence X1, X2, X2
• Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)

Lecture 9:

Moore Transition/Output Table 1

33

Current
State (S)

Next State (S*) UL

Input
0 0

(neither)

Input
0 1
(X2)

Input
1 0
(X1)

Input
1 1

(reset)
Init Init Init X1 Init 0

X1 X1 X1-X2 Init Init 0

X1-X2 X1,X2 X1-X2-X2 Init Init 0

X1-X2-X2 X1-X2-X2 X1-X2-X2 X1-X2-X2 Init 1

• Version 1: uses descriptive state names

Lecture 9: 34

S1 S0

S1* S0* UL

Input
0 0

Input
0 1

Input
1 0

Input
1 1

0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 1

Moore Transition/Output Table 2

• Version 2: uses state binary encodings

Lecture 9:

Pushbutton Lock: Mealy State Diagram

35

Init

X1 X1-X2

X1-X2-X2

[00]

[01] [10]

[11]

0 0
0 1

 1 1 /
UL=0 1 1 /

UL=0

1 0 /
UL=0

0 0 /
UL=0

0 0 /
UL=0

0 1 /
UL=0

0 1 /
UL=1

1 1
 1 0 /
UL=0

1 1
 1 0 /
UL=0

0 0
0 1

 1 0 /
UL=1

• Output: UL=1 with sequence X1, X2, X2
• Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)

Lecture 9: 36

S1 S0

S1* S0* , UL

Input
0 0

Input
0 1

Input
1 0

Input
1 1

0 0 0 0, 0 0 0, 0 0 1, 0 0 0, 0

0 1 0 1, 0 1 0, 0 0 0, 0 0 0, 0

1 0 1 0, 0 1 1, 1 0 0, 0 0 0, 0

1 1 1 1, 1 1 1, 1 1 1, 1 0 0, 0

Mealy Transition/Output Table

• uses state binary encodings

Lecture 9: 37

S0*

S1*

Analyzing the Sequential Logic
What does this circuit do?

S0* =
S1* =

Out =

Write down
transition and

output equations

Lecture 9:

Reconstruct State Diagram

38

[00]

Out = 0

[01]

Out = 0

[10]

Out = 0

[11]

Out = 1

In = 1
In = 0

In = 0

S0* = In’
S1* = In’•S1•S0’+In•S0
Out = S1•S0

In = 1

• Complete the
transition/output table
and state diagram

• Identify the functionality
of the FSM

In = 0

In = 1

S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 1 0 0 0
0 1 0 1 1 0 0
1 0 0
1 1 0 1 1 0 1

Lecture 9:

Another Pattern Detector

39

Init
Out = 0

[00]

Got 0
Out = 0

[01]

Got 01
Out = 0

[10]

Got 010
Out = 1

[11]

In = 1
In = 0

In = 0

S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 1 0 0 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
1 1 0 1 1 0 1

S0* = In’
S1* = In’•S1•S0’+In•S0
Out = S1•S0

In = 1

Detects 010 (overlapping
patterns included)

S0*

S1*

In = 0

In = 0 In = 1

In = 1

Lecture 9: 40

Next Lecture
More FSMs

Timing
Clocking

(H&H 2.9, 3.4.4)

Tuesday (2/25): Verilog/Quartus Tutorial
Thursday (2/27): In-Class Prelim 1

