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More Finite State Machines
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Lecture 9:

Announcements
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• TA-led Quartus/Verilog Tutorial next Tuesday
– Bring your laptop 

• Prelim 1, Thursday 2/27, 1:25-2:40pm (in class) 
– Arrive early by 1:15pm
– TA-led review on Monday, 2/24 @ 7:30 pm (virtual)
– No lab sessions next week
– Solutions for HW2, HW3, and practice prelim will be 

released today



Lecture 9: 3

Recap: Procedural Assignments in Verilog
reg Y, Z;
always @ (posedge clk)
begin

Y = A & B;
Z = Y;

end
Blocking assignments

reg Y, Z;
always @ (posedge clk)
begin

Y <= A & B;
Z <= Y;

end
Nonblocking assignments

Simulator Interpretation 

Znext ß Y  // use “old” Y 
Ynext ß A & B

• RHS evaluated in parallel (order doesn’t 
matter)

• Assignment to LHS is delayed until 
the end of the always block

Ynext ß A & B
Znext ß (Ynext = A & B) // use “new” Y

• RHS evaluated sequentially
• Assignment to LHS is immediate
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Recap: Procedural Assignments in Verilog

ZY

B
A

ZY

B
A

Actual Circuit
(Synthesizer Interpretation) 

When a reg (Y here) is assigned in a 
nonblocking assignment (Y<=A&B), 
employ its Q output for connection in 
RHS of another assignment (Z<=Y)

When a reg (Y here) is assigned in a 
blocking assignment (Y=A&B), employ its 
D input (i.e., A&B) for connection in RHS 
of a subsequent assignment (Z=Y)

reg Y, Z;
always @ (posedge clk)
begin

Y = A & B;
Z = Y;

end
Blocking assignments

reg Y, Z;
always @ (posedge clk)
begin

Y <= A & B;
Z <= Y;

end
Nonblocking assignments
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(Improperly Created) Inferred Latches
• To infer combinational logic, you’re recommended to 

ensure that each variable within an always block gets 
assigned a value under all possible conditions
– Otherwise, the Verilog compiler assumes that the last value 

should be used, and will create a latch 
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reg out;
always @(d, sel) 
begin
 if (sel == 1'b1)

out = d;
end 

reg out; 
always @(d, sel) 
begin
  if (sel == 1'b1) 

out = d; 
else             
out = ~d;

end 
out is keeping state because 
it’s not always assigned a value 
è latch inferred 

out assigned a value in both conditions 
è combinational logic inferred 
(not latch)
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Review: Finite State Machine (FSM)

• An FSM is an abstract representation of a sequential circuit
1. A finite number of inputs; 2. A finite number of outputs
3. A finite number of states; 4. A specification of all state transitions
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Next
State

Combinational
Logic

Inputs Outputs

State 
Current
State

Can be described by a state diagram

1 1

S0
0

S1
0

S2
1

0 1Reset

00
1/0 1/1

S0 S1

0/0Reset

0/0

Moore FSM Example Mealy FSM Example 
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•••

•••

•••
•••Inputs

Outputs

Next
State

Current
State

FF

FF

Next State
Combinational

Logic

Output
Combinational

Logic
•••

•••

Outputs only depend on 
current state value

Review: 
Moore Machine 
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Review: 
Mealy Machine 
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Inputs

Outputs

Next
State

Current
State

FF

FF

Next State
Combinational

Logic

Output
Combinational

Logic

•••

•••

•••

•••

•••

•••

Outputs only depend on 
input and current state value
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FSM Design Procedure
(1) Understand the problem statement and 

determine inputs and outputs

(2) Identify states and create a state diagram

(3) Determine the number of required FFs

(4) Implement combinational logic for outputs 
and next state

(5) Simulate the circuit to test its operation
9

This 
lecture
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Example FSM: Pattern Detector
• Monitors the input, and outputs a 1 whenever a 

specified input pattern is detected

• Example: Output a 1 whenever 111 is detected 
on the input over 3 consecutive clock cycles
– Overlapping patterns also detected (1111...)

• Input In (one bit)
• Output Out (one bit)
• Reset causes FSM to start in initial state
• Clock input not shown (always present) 
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State Diagrams
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Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

Moore

Mealy
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Transition/Output Table
• Shows the next state (S*) and output values for 

each combination of current state (S) and inputs

• Used to derive the minimized state transition (S*) 
and output Boolean equations 
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Moore Transition/Output Table 1
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Current
State (S)

Next State (S*) Out
In = 0 In = 1

Init Init Got1 0
Got1 Init Got11 0
Got11 Init Got111 0
Got111 Init Got111 1

• Version 1: uses descriptive state names

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset
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Moore Transition/Output Table 2
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S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1

• Version 2: uses state binary encodings

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

[00] [01] [10] [11]
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Minimized Equations for S* and Out

S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1

Out=S1•S0
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S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1

Minimized Equations for S* and Out

0 0 0 0

0 1 1 1

00 01 11 10

0

1

S1S0
In

S1*=S0•In+S1•In

0 0 0 0

1 0 1 1

00 01 11 10

0

1

S1S0
In

S0*=S0’•In+S1•In

Out=S1•S0
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Mealy Transition/Output Table 1
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Current
State (S)

Next State (S*), Out
In = 0 In = 1

Init Init, 0 Got1, 0
Got1 Init, 0 Got11, 0
Got11 Init, 0 Got11, 1

• Version 1: uses descriptive state names

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset
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Mealy Transition/Output Table 2
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S1 S0
S1* S0*, Out

In = 0 In = 1
0 0 0 0, 0 0 1, 0
0 1 0 0, 0 1 0, 0
1 0 0 0, 0 1 0, 1

• Version 2: uses state binary encodings

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

[00] [01] [10]
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Minimized Equations for S* and Out
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S1 S0
S1* S0*, Out

In = 0 In = 1
0 0 0 0, 0 0 1, 0
0 1 0 0, 0 1 0, 0
1 0 0 0, 0 1 0, 1
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Minimized Equations for S* and Out
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S1 S0
S1* S0*, Out

In = 0 In = 1
0 0 0 0, 0 0 1, 0
0 1 0 0, 0 1 0, 0
1 0 0 0, 0 1 0, 1

0 0 d 0

0 1 d 1

00 01 11 10

0

1

S1S0
In

S1*=S0•In+S1•In

0 0 d 0

1 0 d 0

00 01 11 10

0

1

S1S0
In

S0*=S1’•S0’•In

0 0 d 0

0 0 d 1

00 01 11 10

0

1

S1S0
In

Out=S1•In
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Moore State Diagram for DFF

• Input: D
• Output: Q 

QD

CLK

State0
Q = 0

State1
Q = 1

D = 0

D = 1

D = 0 D = 1

[0] [1]

S
S* Q

D = 0 D = 1
0 0 1 0
1 0 1 1
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Mealy State Diagram for DFF?

• Input: D
• Output: Q 

QD

CLK
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FSMs in Verilog
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<module statement>
<input and output declarations>

<reg declarations>

<parameter or typedef statement>

<always block for next state>

<always block for output>

<always block for state FFs>

endmodule

Suggested 
coding style 

for FSM
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Moore FSM in Verilog
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module PatDetectMoore (Clk, In, Reset, Out);
input Clk, In, Reset;
output Out;

reg Out;
reg [1:0] Scurr, Snext;

parameter [1:0] Init = 2'b00,
Got1 = 2'b01,
Got11 = 2'b10,
Got111 = 2'b11;

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

[00] [01] [10] [11]
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Moore FSM in Verilog
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always @ (In, Scurr)
begin

case (Scurr)
Init: if (In == 1) Snext = Got1; else Snext = Init;
Got1: if (In == 1) Snext = Got11; else Snext = Init;
Got11: if (In == 1) Snext = Got111; else Snext = Init; 
Got111: if (In == 1) Snext = Got111; else Snext = Init;
default: Snext = Init;

endcase
end

next state 
comb logic

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

[00] [01] [10] [11]
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Moore FSM in Verilog
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always @ (Scurr)
if (Scurr == Got111) Out = 1; 

   else Out = 0;

always @ (posedge Clk)
if (Reset == 1) Scurr <= Init; 

   else Scurr <= Snext;

endmodule

update state FFs 
(current state)

output comb logic

Init
Out = 0

Got1
Out = 0

Got11
Out = 0

Got111
Out = 1

In = 1 In = 1 In = 1

In = 0

In = 0

In = 0

In = 0 In = 1

Reset

[00] [01] [10] [11]
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Moore FSM Verilog Simulation
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Mealy FSM in Verilog
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module PatDetectMealy (Clk, In, Reset, Out);
input Clk, In, Reset;
output Out;

reg Out;
reg [1:0] Scurr, Snext;

parameter [1:0] Init = 2'b00,
Got1 = 2'b01,
Got11 = 2'b10;

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

[00] [01] [10]
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Mealy FSM in Verilog
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always @ (In, Scurr)
begin

case (Scurr)
Init: if (In == 1) Snext = Got1; else Snext = Init;
Got1: if (In == 1) Snext = Got11; else Snext = Init;
Got11: if (In == 1) Snext = Got11; else Snext = Init; 
default: Snext = Init;

endcase
end

next state 
comb logic

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

[00] [01] [10]



Lecture 9:

Mealy FSM in Verilog
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always @ (Scurr, In)
if ((Scurr == Got11) && (In == 1)) Out = 1; 

   else Out = 0;

always @ (posedge Clk)
if (Reset == 1) Scurr <= Init; 

   else Scurr <= Snext;

endmodule

output comb logic

Init Got1 Got11

In = 1
Out = 0

In = 1
Out = 0

In = 1
Out = 1

In = 0
Out = 0

In = 0
Out = 0

In = 0
Out = 0

Reset

[00] [01] [10]

update state FFs 
(current state)
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Mealy FSM Verilog Simulation
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Pushbutton Lock:  Moore State Diagram
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Init
UL = 0

X1
UL = 0

X1-X2
UL = 0

X1-X2-X2
UL = 1

[00]

[01] [10]

[11]

0 0
0 1
1 1

1 1

1 0

0 00 0

0 1

0 11 1
1 0

1 1
 1 0 

0 0
0 1
1 0

• Output: UL=1 with sequence X1, X2, X2
• Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)
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Moore Transition/Output Table 1
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Current
State (S)

Next State (S*) UL

Input  
0 0 

(neither)

Input 
0 1 
(X2)

Input 
1 0 
(X1)

Input 
1 1

(reset)
Init Init Init X1 Init 0

X1 X1 X1-X2 Init Init 0

X1-X2 X1,X2 X1-X2-X2 Init Init 0

X1-X2-X2 X1-X2-X2 X1-X2-X2 X1-X2-X2 Init 1

• Version 1: uses descriptive state names
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S1 S0

S1* S0* UL

Input 
0 0

Input
0 1

Input 
1 0

Input  
1 1

0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 1

Moore Transition/Output Table 2

• Version 2: uses state binary encodings
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Pushbutton Lock:  Mealy State Diagram
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Init

X1 X1-X2

X1-X2-X2

[00]

[01] [10]

[11]

0 0
0 1

 1 1 /
UL=0 1 1 /

UL=0

1 0 /
UL=0

0 0 /
UL=0

0 0 /
UL=0

0 1 /
UL=0

0 1 /
UL=1

1 1
  1 0 /
UL=0

1 1
  1 0 /
UL=0 

0 0
0 1

 1 0 /
UL=1

• Output: UL=1 with sequence X1, X2, X2
• Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)
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S1 S0

S1* S0* , UL

Input 
0 0

Input
0 1

Input 
1 0

Input  
1 1

0 0 0 0, 0 0 0, 0 0 1, 0 0 0, 0

0 1 0 1, 0 1 0, 0 0 0, 0 0 0, 0

1 0 1 0, 0 1 1, 1 0 0, 0 0 0, 0

1 1 1 1, 1 1 1, 1 1 1, 1 0 0, 0

Mealy Transition/Output Table

• uses state binary encodings
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S0*

S1*

Analyzing the Sequential Logic
What does this circuit do?

S0* =
S1* =

Out =

Write down 
transition and 

output equations
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Reconstruct State Diagram
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[00]

Out = 0

[01]

Out = 0

[10]

Out = 0

[11]

Out = 1

In = 1
In = 0

In = 0

S0* = In’
S1* = In’•S1•S0’+In•S0
Out = S1•S0

In = 1

• Complete the 
transition/output table 
and state diagram

• Identify the functionality 
of the FSM

In = 0

In = 1

S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 1 0 0 0
0 1 0 1 1 0 0
1 0 0
1 1 0 1 1 0 1



Lecture 9:

Another Pattern Detector
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Init
Out = 0

[00]

Got 0
Out = 0

[01]

Got 01
Out = 0

[10]

Got 010
Out = 1

[11]

In = 1
In = 0

In = 0

S1 S0
S1* S0* Out

In = 0 In = 1
0 0 0 1 0 0 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
1 1 0 1 1 0 1

S0* = In’
S1* = In’•S1•S0’+In•S0
Out = S1•S0

In = 1

Detects 010 (overlapping 
patterns included)

S0*

S1*

In = 0

In = 0 In = 1

In = 1
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Next Lecture
More FSMs

Timing
Clocking

(H&H 2.9, 3.4.4)

Tuesday (2/25): Verilog/Quartus Tutorial
Thursday (2/27): In-Class Prelim 1


