ECE 2300
Digital Logic & Computer Organization

Spring 2025

More Finite State Machines

@g) Cornell University

Lecture 9: 1

Announcements

* TA-led Quartus/Verilog Tutorial next Tuesday
— Bring your laptop

* Prelim 1, Thursday 2/27, 1:25-2:40pm (in class)
— Arrive early by 1:15pm
— TA-led review on Monday, 2/24 @ 7:30 pm (virtual)
— No lab sessions next week

— Solutions for HW2, HW3, and practice prelim will be
released today

Lecture 9: 2

Recap: Procedural Assignments In Verilog

reg Y, Z;
always @ (posedge clk)
begin
Y =A&B;
Z=Y;
end
Blocking assignments

reg Y, Z;
always @ (posedge clk)
begin
Y <=A&B;
Z<=Y;
end
Nonblocking assignments

Simulator Interpretation

Yot € A&B
Lot € (Ypext = A & B) // use “new” Y

* RHS evaluated sequentially
* Assignment to LHS is immediate

Lot €Y //use“old”Y
Yoext € A&B

RHS evaluated in parallel (order doesn’t

matter)
Assignment to LHS is delayed until
the end of the always block

Lecture 9: 3

Recap: Procedural Assignments In Verilog

reg Y, Z;

always @ (posedge clk)

begin
Y=A&B;
Z=Y;
end

Blocking assignments

)
B—___J

D

Y

reg Y, Z;
always @ (posedge clk)
begin
Y <=A&B;
Z<=Y;
end

Nonblocking assignments

Actual Circuit

(Synthesizer Interpretation)

D

A
B

When a reg (Y here) is assigned in a
blocking assignment (Y=A&B), employ its
D input (i.e., A&B) for connection in RHS

of a subsequent assignment (Z=Y)

| :

D D
Y z

When a reg (Y here) is assigned in a
nonblocking assignment (Y<=A&B),

employ its Q output for connection in
RHS of another assignment (Z<=Y)

Lecture 9: 4

(Improperly Created) Inferred Latches

* To infer combinational logic, you’re recommended to

ensure that each variable within an always block gets
assigned a value under all possible conditions

— Otherwise, the Verilog compiler assumes that the last value
should be used, and will create a latch

reg out;
always @(d, sel)
begin
if (sel == 1'b1)
out =d;
end

out is keeping state because

it's not always assigned a value
=» latch inferred

reg out;
always @(d, sel)
begin
if (sel == 1'b1)
out =d;
else
out = ~d;
end

out assigned a value in both conditions

= combinational logic inferred
(not latch)

Lecture 9: 5

Review: Finite State Machine (FSM)

Inputs Outputs

Current Next

State [Swee

« An FSM is an abstract representation of a sequential circuit
1. A finite number of inputs; 2. A finite number of outputs
3. A finite number of states; 4. A specification of all state transitions

Can be described by a state diagram

Reset

0/0

(=) Lo

170 171

Moore FSM Example Mealy FSM Example
Lecture 9: 6

Review:
Moore Machine

Inputs

Outputs only depend on
current state value

— Output >
. Combinational : Outputs
> Logic >

>
. Next State

¢o—P| Combinational
.> Logic
g
Fr[®
Current L_ Next
State . State
|
FF

Lecture 9: 7

Review:

Mealy Machine

Inputs

Outputs only depend on
input and current state value

-
Output |—p
— ®|Combinational| : Outputs
L Logic —
—>
>
Next State
*—»Combinationall .
¢ - Logic :
® : .
J
Current L—Il Next
State . State
m>

FF

Lecture 9: 8

FSM Design Procedure

(1) Understand the problem statement and
determine inputs and outputs

(2) Identify states and create a state diagram

(3) Determine the number of required FFs

(4) Implement combinational logic for outputs LT’[SlJre
and next state

(5) Simulate the circuit to test its operation

Lecture 9: 9

Example FSM: Pattern Detector

Monitors the input, and outputs a 1 whenever a
specified input pattern is detected

Example: Output a 1 whenever 111 is detected
on the input over 3 consecutive clock cycles
— Overlapping patterns also detected (1111...)

Input /n (one bit)

Output Out (one bit)

Reset causes FSM to start in initial state
Clock input not shown (always present)

Lecture 9: 10

State Diagrams

Reset Out=0 Out=0

Mealy

Lecture 9: 11

Transition/Output Table

« Shows the next state (S°) and output values for
each combination of current state (S) and inputs

 Used to derive the minimized state transition (S)
and output Boolean equations

Lecture 9: 12

Moore Transition/Output Table 1

In =1

Current Next State (S’) Out
State (S) In=0 In =1
Init Init Got1 0
Got1 Init Got11 0
Got11 Init Got111 0
Got111 Init Got111 1

* Version 1: uses descriptive state names

Lecture 9: 13

Moore Transition/Output Table 2

S1S0 | |n= In =1

00 00 01 0
01 00 10 0
10 00 11 0
11 00 11 1

* Version 2: uses state binary encodings

Lecture 9: 14

Minimized Equations for S* and Out

S1° So Out
S1 So In=0 In =
00 00 01 0
01 00 10 0
10 00 11 0
11 00 11 1

OUt=S1 'So

Lecture 9: 15

Minimized Equations for S and Out

S1SO S1So
In\ 00 01 11 10 In\. 00 01 11 10
o 0 0,0 |0 o 0, 00 |0
@@y Doaw
S.'=S,°In+S,°In S0 =Sy’ *In+S,°In
S1 So Out
S1S0 | In=0 | In=
00 00 01 0
01 00 10 0
10 00 11 0
11 00 11 1

Out=S1°So

Lecture 9: 16

Mealy Transition/Output Table 1

In =1

Current Next State (S’), Out

State (S) In=0 In =1
Init Init, 0 Got1, 0
Got1 Init, 0 Got11, 0
Got11 Init, 0 Got11, 1

* Version 1: uses descriptive state names

Lecture 9: 17

Mealy Transition/Output Table 2

In =1

S1° So’, Out
S1 So In=0 In =1
00 00,0 01,0
01 00,0 10,0
10 00,0 10, 1

* Version 2: uses state binary encodings

Lecture 9: 18

Minimized Equations for S and Out

S1° SO', Out
S1S0 In=0 In=1
00 00,0 01,0
01 00,0 10,0
10 00,0 10, 1

Lecture 9: 19

Minimized Equations for S and Out

S1So S1So S1S0
InN_00 01 11 10 In\ 00 01 11 10 In\\, 00 O1 11 10

00| 0|d O of]0|0|d| 0| 000 |d |0

[@@ (@0 ¢ 0] o0 @

S$:=Sy°In+S°In S0 =S:"*Sy’*In Out=S,°In
S1" S0, Out
S1S50 In=0 In=1
00 00,0 01,0
01 00,0 10,0
10 00,0 10,1

Lecture 9: 20

Moore State Diagram for DFF

 Input: D —D Q—
* Output: Q —DCLK -

Lecture 9: 21

Mealy State Diagram for DFF?

 Input: D —D Q—
* Output: Q —DCLK -

Lecture 9: 22

FSMs in Verilog

<module statement>
<input and output declarations>

<reg declarations>

<parameter or typedef statement>
<always block for next state>
<always block for output>
<always block for state FFs>

endmodule

Suggested
coding style
for FSM

Lecture 9: 23

Moore FSM in Verilog

Reset In =1 In =1 In =1

module PatDetectMoore (Clk, In, Reset, Out);
input Clk, In, Reset;
output Out;

reg Out;
reg [1:0] Scurr, Snext;

parameter [1:0] Init = 2'b00,
Got1 = 2'b01,
Got11 = 2'b10,
Got111 = 2'b11;

Lecture 9: 24

Moore FSM in Verilog

Reset In = 1 In = 1 In = 1

always @ (In, Scurr)
begin
case (Scurr)
Init: if (In == 1) Snext = Got1; else Snext = Init;
Got1: if (In == 1) Snext = Got11; else Snext = Init; next state
Got11: if (In == 1) Snext = Got111; else Snext = Init; comb logic
Got111: if (In == 1) Snext = Got111; else Snext = Init;

default: Snext = Init;
endcase
end

Lecture 9: 25

Moore FSM in Verilog

Reset In =1 In =1 In =1

always @ (Scurr)

if (Scurr == Got111) Out = 1; output comb logic
else Out = 0;
always @ (posedge CIk)
if (Reset == 1) Scurr <= Init; update state FFs
else Scurr <= Snext; (current state)
endmodule

Lecture 9: 26

Moore FSM Verilog Simulation

Lecture 9: 27

Mealy FSM in Verilog

In =1 In =1
Reset Out=0 Out=0

In =
Out=0

module PatDetectMealy (Clk, In, Reset, Out);
input Clk, In, Reset;
output Out;

reg Out;
reg [1:0] Scurr, Snext;

parameter [1:0] Init = 2'b00,

Got1 = 2'b01,
Got11 = 2'b10;

Lecture 9: 28

Mealy FSM in Verilog

In =1 In =1
Reset Out=0 Out=0

In =
Out = 1
In=0
Out=0
always @ (In, Scurr)
begin
case (Scurr)
Init: if (In == 1) Snext = Got1; else Snext = Init;
Got1: if (In == 1) Snext = Got11; else Snext = Init; next state
Got11: if (In == 1) Snext = Got11; else Snext = Init; comb logic
default: Snext = Init;
endcase
end

Lecture 9: 29

Mealy FSM in Verilog

In =1 n—1
Reset Out=0 Out =

In =1
Out =1
Out =
always @ (Scurr, In) output comb logic
if ((Scurr == Got11) && (In == 1)) Out = 1;
else Out = 0;
always @ (posedge CIk)
if (Reset == 1) Scurr <= Init; update state FFs
else Scurr <= Snext; (current state)

endmodule

Lecture 9: 30

Mealy FSM Verilog Simulation

Lecture 9: 31

Pushbutton Lock: Moore State Diagram

* Output: UL=1 with sequence X1, X2, X2
* Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)

Lecture 9: 32

Moore Transition/Output Table 1

Current Next State (S7) UL
State (S)
Input Input Input Input
00 01 10 11
(neither) (X2) (X1) (reset)
Init Init Init X1 Init 0
X1 X1 X1-X2 Init Init 0
X1-X2 X1,X2 | X1-X2-X2 Init Init 0
X1-X2-X2 | X1-X2-X2 | X1-X2-X2 | X1-X2-X2 Init 1

* Version 1: uses descriptive state names

Lecture 9: 33

Moore Transition/Output Table 2

S1* So* UL
S1 So

Input | Input | Input | Input
00 01 10 11

00 00 00 01 00
01 01 10 00 00
10 10 11 00 00
11 11 11 11 00

- O| O] O

* Version 2: uses state binary encodings

Lecture 9: 34

Pushbutton Lock: Mealy State Diagram

* Output: UL=1 with sequence X1, X2, X2
* Input: 00 (neither), 10 (X1), 01 (X2), 11 (reset)

Lecture 9: 35

Mealy Transition/Output Table

S1* So* , UL

S1 80

Input | Input | Input | Input

00 01 10 11
00 00,0000 |01,0 00,0
01 01,0 10,0 | 00,0 | 00,0
10 10,0 (11,1 { 00,0 | 00,0
11 11,1 1 11,1 111,11 00,0

* uses state binary encodings

Lecture 9: 36

Analyzing the Sequential Logic

What does this circuit do?

) Out
So” D Q-
D
__-Dc
o S1+* S,
In D Q
D
Clock
Sy =
Write down .
transition and S =

output equations Out =

Lecture 9: 37

Reconstruct State Diagram

In =1
G

Complete the
transition/output table
and state diagram

Identify the functionality
of the FSM

Out

0
In=0

In=0

In =1

S1* So* Out

S * = I S1.So In=0 In=1

o = 1IN

Sy* = IN"*S12Sy+IN*Sy o1 o1 T 10 1
1 1°99 0 01 01 10 0
OUt=S1'So 10 0
11 01 10 1

Lecture 9: 38

Another Pattern Detector

In=0

L
n I i _l

Clock

Detects 010 (overlapping
patterns included)

S1* So* Out
. , S1.So In=0 In =
SO* - I", , 00 01 00 0
S;* = In’e§,25y’ +IneS, 0 1 01 10 0
Out = S;°S, 10 11 00 0
11 01 10 1

Lecture 9: 39

Tuesday (2/25): Verilog/Quartus Tutorial
Thursday (2/27): In-Class Prelim 1

Next Lecture

More FSMs
Timing
Clocking
(H&H 2.9, 3.4.4)

Lecture 9: 40

