
Lecture 7:

Spring 2025

ECE 2300
Digital Logic & Computer Organization

More Sequential Logic
Verilog

1

Lecture 7:

Announcements

2

• Lab 1 due tomorrow

• Lab 2 will be released today

Lecture 7: 3

Sequential Logic: True or False

• 4 transistors are required to build an S-bar-R-bar
latch

• A rising clock edge is also called a positive edge

• D latch changes its state when input changes

• D Flip-Flop is edge sensitive

Lecture 7: 4

S-R Latch
• S-bar-R-bar latch

– Built from NAND gates
– Inputs are active low rather than active high

QS

R

S R Q QN

0 0 1 1

0 1 1 0

1 0 0 1

1 1 Last
Q

Last
QN

– When both inputs are 0, Q = QN = 1 (avoid!)

S

R

Q

QN

Lecture 7:

D Latch and Flip-Flop

5

• D Latch: level sensitive
– Captures the input when enable signal asserted

• D Flip-Flop (DFF): edge sensitive
– Captures the input at the triggering clock edges

(e.g., LàH)
– A single FF is also called a one-bit register

Q

QN

D

C

QD

CLK

Lecture 7: 6

Recap: DFF Timing

CLKL2

CLKL1

D
QL1
Q

CLK
(L1 open)

(L2 closed) (L2 open)

(L1 closed)

(L2 closed)
(L1 open)

(L2 open)

(L1 closed)

Input D copied to Q on the rising edge of the clock

CLK

QD

C

D

C

D Q

CLKL1

L1

CLKL2

L2

Q
QL1

Lecture 7: 7

Another DFF Timing Example

ZY

B
A

CLK

Z

A

Y
B

CLK

Circuit diagram
Waveform

(assume both DFFs hold 0s initially)

Lecture 7: 8

Yet Another DFF Timing Example

CLK

A

Z

B
Y

ZY

B
A

CLK

1 A DFF is often termed a “delay element” because it introduces a delay in data propagation.
This delay results from updating the DFF state/output only on a clock edge. Beyond its
important role as a storage element for holding states, the delay introduced by a DFF is also
crucial for timing control and sequencing in digital systems.

Circuit diagram
Waveform1

(assume both DFFs hold 0s initially)

Lecture 7:

T (Toggle) Flip-Flop

9

• Output toggles only if T=1
• Output does not change if T=0
• Useful for building counters

Q

CLK

T
T QD

CLK
?

(when T=1)
Q: 0, 1, 0, 1, 0, 1, 0, ...

Can we build a T flip-flop using
a DFF as the building block?

Lecture 7:

T (Toggle) Flip-Flop

10

• Output toggles only if T=1
• Output does not change if T=0
• Useful for building counters

T QD

CLK

Qnext = T•Q’ + T’•Q

T Q Qnext

0 0 0
0 1 1
1 0 1
1 1 0

Q

CLK

T

(when T=1)
Q: 0, 1, 0, 1, 0, 1, 0, ...

Lecture 7:

Binary Counters
• Counts in binary in a particular sequence
• Advances at every tick of the clock
• Many types

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1...

Up Down

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0...

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0...
n-1

0 0 0
0 0 1

Divide-
by-n

n
n+1
n+2...
m-1
m
n

n+1...

n-to-m

11

Lecture 7:

Up Counter Sequence

12

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Toggles every clock tick

Toggles every clock tick
that right bit = 1

Toggles every clock tick
that two right bits = 11

Lecture 7:

Building Binary Up Counter

13

CLK

Q0

Q2

Q1

QT

QT

QT

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1

Q2 Q1 Q0
1

Q0 toggles at every rising edge
Q1 toggles at the rising edge when Q0=1
Q2 toggles at the rising edge when Q0=Q1=1

Lecture 7: 14

Up Counter Timing Diagram

Q0

Q2

Q1

CLK

Count 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

CLK
Q0

Q2

Q1

QT

QT

QT

1

Lecture 7: 15

Evolution of Design Abstractions

Design
Productivity

CAD Tool EffortMcKinsey S-Curve

Transistor-level entry

Gate-level entry

HDL (Verilog, VHDL)

High-level programming
language or AI (?)

[Figure credit: Kurt Keutzer]

Lecture 7:

Hardware Description Languages

16

• Hardware Description Language (HDL):
a language for describing hardware
– Efficiently code large, complex designs

• Programming at a more abstract level than schematics
– CAD tools can automatically synthesize circuits

• Industry standards:
– Verilog: We start using it from Lab 2
– SystemVerilog: Successor to Verilog, gaining wide

adoption
– VHDL (Very High Speed Integrated Circuit HDL)

Lecture 7: 17

Verilog
• Developed in the early 1980s by Gateway Design

Automation (later bought by Cadence)

• Supports modeling, simulation, and synthesis
– Simulation verifies the functionality of the design by executing

the model (i.e., Verilog design) and testing its behavior over time
– Synthesis converts the Verilog design into an optimized circuit

for implementation on physical hardware
– We will use a (synthesizable) subset of the language features

• Major language features (in contrast to software
programming languages)
– Structure and instantiation
– Concurrency
– Bit-level behavior

Lecture 7:

Values
• Verilog signals can take 4 values (for simulation purpose)

0 Logical 0, or false
1 Logical 1, or true
x Unknown logical value
z High impedance (Hi-Z), floating/non-connected

18

x means unknown/uninitialized (could be 0, 1, z, or
in transition) or don’t cares

Lecture 7: 19

Bit Vectors
• Multi-bit values are represented by bit vectors

(i.e., grouping of 1-bit signals)
– Right-most bit is always least significant
– Examples:

input a; /* 1-bit input */
input[7:0] a, b, c; /* three 8-bit inputs */

• Constants
4’b1001

Decimal number representing bit width

Base format (b,d,h,o)

• Binary Constants
– 8’b00000000
– 8’b0xx01xx1

• Decimal Constants
– 4’d10
– 32’d65536

Lecture 7: 20

Operators
• Bitwise Boolean operators

~ NOT
& AND
^ Exclusive OR
| OR

• Arithmetic operators
+ Addition
– Subtraction
* Multiplication

/ Division
% Modulus

<< Shift left
>> Shift right

Lecture 7: 21

Verilog Program Structure
• System is a collection of
modules
– Module represents a hardware

component or a design unit

• Declarations
– Describe names and types of inputs and outputs
– Describe local signals, variables, constants, etc.

• Statements specify what the module does

declarations

statements

module

Lecture 7: 22

Verilog
Module

Hierarchy

declarations

statements

declarations

statements

declarations

statements

declarations

statements

module A

module C module D

module F

A module can instantiate
other modules forming a
module hierarchy

Lecture 7:

module M_2_1 (a, b, sel, Y);
 input a, b;
 input sel;
 output Y;
 wire ta, tb;

 AND and0 (a, ~sel, ta);
 AND and1 (b, sel, tb);
 OR or0 (ta, tb, Y);

endmodule

23

Example: Verilog Program Structure

Declarations

Statements
(instantiating two AND
gates and one OR gate)

Lecture 7: 24

Verilog Programming Styles
• Structural

– Describe how a module is built from other modules
and their interconnections via instance statements

– Textual equivalent of drawing a schematic

• Behavioral
– Specify what a module does in high-level constructs
– Use continuous assignments and/or procedural code

(in always blocks) to indicate what actions to take

We can mix the structural and behavioral styles
 in a Verilog design

Lecture 7:

Net and Variable Types
• We will mainly use two data type classes

– wire: represents a physical connection (also called
net) between hardware elements

• A stateless way of connected two elements
• Can only be used to model combinational logic
• Cannot be used in the left-hand side (LHS) in an always block

– reg: similar to wires, but can be used to store
information (or state) like registers

• This is used in the behavioral style only
• Can be used to model both combinational & sequential logic
• Cannot be used in the LHS of a continuous assignment

statement

25

Lecture 7: 26

Structural Style

The order of the module instantiation does not matter,
essentially describing the schematic textually

ta

tb

module MUX_2_1 (a, b, sel, Y);
 input a, b, sel; // here “input” is same with “input wire”
 output Y; // here “output” is same with “output wire”

 wire ta, tb;

 AND and0 (a, ~sel, ta);
 AND and1 (b, sel, tb);
 OR or0 (ta, tb, Y);

endmodule

a

b

sel

Y

Lecture 7: 27

• An assign statement represents continuously
executing combinational logic

• Multiple continuous assignments happen in
parallel; the order does not matter

module MUX_2_1 (a, b, sel, Y);
 input a, b, sel;
 output Y;

 assign Y = (~sel & a) | (sel & b);

endmodule

Behavioral Style with
Continuous Assignments

continuous assignment

Lecture 7: 28

Always Blocks

• An always block is a procedural construct that
executes whenever there is a change in the specified
sensitivity list
– Can model either combinational or sequential logic
– Sequential logic can only be modeled using always blocks

• Always blocks execute concurrently with other
always blocks, instance statements, and continuous
assignment statements in a module

always @(<sensitivity_list>)
 begin
 <procedural assignments>
 end

Lecture 7:

Procedural Statements in Always Block
• Procedural statements are similar to conventional

programming language statements
– begin-end blocks

• begin procedural-statement … procedural-statement end
– if

• if (condition) procedural-statement else procedural-statement
– case

• case (sel-expr) choice : procedural-statement … endcase
– for

• for(initial_assignment; expression; step_assignment) statement;
– while

• while (logical-expression) procedural-statement
– repeat

• repeat (integer-expression) procedural-statement

29

Mostly used in test bench
(simulation only, not synthesizable)

Lecture 7: 30

(Behavioral Style) Combinational
Logic with Always Blocks

module MUX_2_1 (a, b, sel, Y);
 input a, b, sel;
 output reg Y;

 always @(a, b, sel)
 begin
 Y = (~sel & a) | (sel & b);
 end
endmodule

• An always block is activated whenever a signal in its
sensitivity list changes
– Formed by procedural assignment statements
– The left-hand side of a procedural assignment must be

declared as a “reg”

sensitivity list

procedural assignment

Lecture 7:

Sequential Logic with Always Blocks

31

reg Q;

always @(clk, D)
begin
 if (clk)
 Q = D;
end

Sequential logic can ONLY be modeled using always blocks

D latch DFF

QD

C

QD

CLK

Q is declared as a "reg" since it appears on the left-hand side of
a procedural assignment

reg Q;

always @(posedge clk)
begin
 Q = D;
end

Lecture 7: 32

Next Class

More Verilog
Finite State Machines

(H&H 3.4)

