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Announcements
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• Lab 1 due tomorrow

• Lab 2 will be released today
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Sequential Logic: True or False

• 4 transistors are required to build an S-bar-R-bar 
latch

• A rising clock edge is also called a positive edge 

• D latch changes its state when input changes

• D Flip-Flop is edge sensitive 
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S-R Latch
• S-bar-R-bar latch

– Built from NAND gates
– Inputs are active low rather than active high
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R
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1 0 0 1
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– When both inputs are 0, Q = QN = 1 (avoid!)
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D Latch and Flip-Flop
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• D Latch: level sensitive
– Captures the input when enable signal asserted

• D Flip-Flop (DFF): edge sensitive
– Captures the input at the triggering clock edges 

(e.g., LàH)
– A single FF is also called a one-bit register
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Recap: DFF Timing
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Another DFF Timing Example
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Circuit diagram
Waveform 

(assume both DFFs hold 0s initially)
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Yet Another DFF Timing Example
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1 A DFF is often termed a “delay element” because it introduces a delay in data propagation. 
This delay results from updating the DFF state/output only on a clock edge. Beyond its 
important role as a storage element for holding states, the delay introduced by a DFF is also 
crucial for timing control and sequencing in digital systems. 

Circuit diagram
Waveform1 

(assume both DFFs hold 0s initially)
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T (Toggle) Flip-Flop
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• Output toggles only if T=1
• Output does not change if T=0
• Useful for building counters 

Q

CLK

T
T QD

CLK
?

(when T=1)
Q: 0, 1, 0, 1, 0, 1, 0, ...

Can we build a T flip-flop using 
a DFF as the building block?
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T (Toggle) Flip-Flop
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• Output toggles only if T=1
• Output does not change if T=0
• Useful for building counters 

T QD

CLK

Qnext = T•Q’ + T’•Q

T Q Qnext

0 0 0
0 1 1
1 0 1
1 1 0

Q
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(when T=1)
Q: 0, 1, 0, 1, 0, 1, 0, ...
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Binary Counters
• Counts in binary in a particular sequence
• Advances at every tick of the clock
• Many types

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1...

Up Down

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0...

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0...
n-1

0 0 0
0 0 1

Divide-
by-n

n
n+1
n+2...
m-1
m
n

n+1...

n-to-m
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Up Counter Sequence
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0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Toggles every clock tick

Toggles every clock tick 
that right bit = 1

Toggles every clock tick 
that two right bits = 11
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Building Binary Up Counter
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CLK

Q0

Q2

Q1

QT

QT

QT

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
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1

Q0 toggles at every rising edge
Q1 toggles at the rising edge when Q0=1
Q2 toggles at the rising edge when Q0=Q1=1
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Up Counter Timing Diagram
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Evolution of Design Abstractions

Design 
Productivity

CAD Tool EffortMcKinsey S-Curve

Transistor-level entry

Gate-level entry

HDL (Verilog, VHDL)

High-level programming 
language or AI (?)

[Figure credit: Kurt Keutzer]
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Hardware Description Languages
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• Hardware Description Language (HDL): 
a language for describing hardware
– Efficiently code large, complex designs 

• Programming at a more abstract level than schematics 
– CAD tools can automatically synthesize circuits

• Industry standards: 
– Verilog: We start using it from Lab 2 
– SystemVerilog: Successor to Verilog, gaining wide 

adoption
– VHDL (Very High Speed Integrated Circuit HDL)
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Verilog
• Developed in the early 1980s by Gateway Design 

Automation (later bought by Cadence) 

• Supports modeling, simulation, and synthesis
– Simulation verifies the functionality of the design by executing 

the model (i.e., Verilog design) and testing its behavior over time
– Synthesis converts the Verilog design into an optimized circuit 

for implementation on physical hardware
– We will use a (synthesizable) subset of the language features

• Major language features (in contrast to software 
programming languages) 
– Structure and instantiation 
– Concurrency 
– Bit-level behavior
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Values
• Verilog signals can take 4 values (for simulation purpose)

0  Logical 0, or false
1  Logical 1, or true
x  Unknown logical value
z  High impedance (Hi-Z), floating/non-connected

18

x means unknown/uninitialized (could be 0, 1, z, or 
in transition) or don’t cares 
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Bit Vectors
• Multi-bit values are represented by bit vectors 

(i.e., grouping of 1-bit signals) 
– Right-most bit is always least significant 
– Examples: 

input a; /* 1-bit input */
input[7:0] a, b, c; /* three 8-bit inputs */

• Constants
4’b1001

Decimal number representing bit width

Base format (b,d,h,o)

• Binary Constants
– 8’b00000000
– 8’b0xx01xx1 

• Decimal Constants
– 4’d10 
– 32’d65536
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Operators
• Bitwise Boolean operators 

~ NOT 
& AND 
^ Exclusive OR 
| OR

• Arithmetic operators
+ Addition 
– Subtraction 
* Multiplication 

/ Division 
% Modulus 

<< Shift left 
>> Shift right
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Verilog Program Structure
• System is a collection of 
modules
– Module represents a hardware 

component or a design unit

• Declarations 
– Describe names and types of inputs and outputs
– Describe local signals, variables, constants, etc.

• Statements specify what the module does

declarations

statements

module
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Verilog 
Module 

Hierarchy

declarations

statements

declarations

statements

declarations

statements

declarations

statements

module A

module C module D

module F

A module can instantiate 
other modules forming a 
module hierarchy
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module M_2_1 (a, b, sel, Y);
  input  a, b;
  input  sel;
  output Y;
  wire ta, tb;
  
  AND and0 (a, ~sel, ta);
  AND and1 (b,  sel, tb);
  OR  or0  (ta, tb, Y);
  
endmodule
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Example: Verilog Program Structure

Declarations

Statements
(instantiating two AND 
gates and one OR gate)
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Verilog Programming Styles
• Structural

– Describe how a module is built from other modules 
and their interconnections via instance statements

– Textual equivalent of drawing a schematic

• Behavioral
– Specify what a module does in high-level constructs
– Use continuous assignments and/or procedural code 

(in always blocks) to indicate what actions to take

We can mix the structural and behavioral styles
 in a Verilog design
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Net and Variable Types
• We will mainly use two data type classes

– wire: represents a physical connection (also called 
net) between hardware elements

• A stateless way of connected two elements
• Can only be used to model combinational logic
• Cannot be used in the left-hand side (LHS) in an always block

– reg: similar to wires, but can be used to store 
information (or state) like registers

• This is used in the behavioral style only
• Can be used to model both combinational & sequential logic
• Cannot be used in the LHS of a continuous assignment 

statement
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Structural Style

The order of the module instantiation does not matter,
essentially describing the schematic textually

ta

tb

module MUX_2_1 (a, b, sel, Y);
  input  a, b, sel; // here “input” is same with “input wire”
  output Y; // here “output” is same with “output wire”

  wire ta, tb;
  
  AND and0 (a, ~sel, ta);
  AND and1 (b,  sel, tb);
  OR  or0 (ta, tb, Y);
  
endmodule

a

b

sel

Y
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• An assign statement represents continuously 
executing combinational logic 

• Multiple continuous assignments happen in 
parallel; the order does not matter

module MUX_2_1 (a, b, sel, Y);
  input  a, b, sel;
  output Y;
  
  assign Y = (~sel & a) | (sel & b);
  
endmodule

Behavioral Style with 
Continuous Assignments

continuous assignment
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Always Blocks

• An always block is a procedural construct that 
executes whenever there is a change in the specified 
sensitivity list
– Can model either combinational or sequential logic
– Sequential logic can only be modeled using always blocks

• Always blocks execute concurrently with other 
always blocks, instance statements, and continuous 
assignment statements in a module

always @(<sensitivity_list>) 
  begin
    <procedural assignments>
  end
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Procedural Statements in Always Block
• Procedural statements are similar to conventional 

programming language statements
– begin-end blocks

• begin procedural-statement … procedural-statement end
– if

• if ( condition ) procedural-statement else procedural-statement
– case

• case ( sel-expr ) choice : procedural-statement … endcase
– for

• for(initial_assignment; expression; step_assignment) statement;
– while

• while ( logical-expression ) procedural-statement
– repeat

• repeat ( integer-expression ) procedural-statement
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Mostly used in test bench 
(simulation only, not synthesizable)
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(Behavioral Style) Combinational 
Logic with Always Blocks

module MUX_2_1 (a, b, sel, Y);
  input  a, b, sel;
  output reg Y;
  
  always @(a, b, sel) 
  begin
    Y = (~sel & a) | (sel & b);
  end
endmodule

• An always block is activated whenever a signal in its 
sensitivity list changes
– Formed by procedural assignment statements
– The left-hand side of a procedural assignment must be 

declared as a “reg”

sensitivity list 

procedural assignment
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Sequential Logic with Always Blocks
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reg Q;

always @(clk, D) 
begin 
  if ( clk ) 
      Q = D; 
end 

Sequential logic can ONLY be modeled using always blocks 

D latch DFF

QD

C

QD

CLK

Q is declared as a "reg" since it appears on the left-hand side of 
a procedural assignment

reg Q;

always @(posedge clk) 
begin 
  Q = D; 
end 
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Next Class

More Verilog
Finite State Machines

(H&H 3.4)


