ECE 2300
Digital Logic & Computer Organization
Spring 2024

Combinational Building Blocks
Announcements

• HW 2 will be released tonight

• Lab 1 is due tomorrow
CMOS Logic: True or False?

1. NMOS is an active low switch

2. PMOS (pull-up) network passes a poor zero

3. NMOS and PMOS networks can be ON at the same time

4. A CMOS gate consists of an even number of transistors

5. A 2-input NOR requires 2 transistors
2-Input NOR Gate in CMOS

Series subnet

Parallel subnet
Recap: A More Complicated Circuit

Pull-up: \((A' + B') \cdot (C' + D')\)

Pull-down: \((A \cdot B + C \cdot D)'\)
Constructing CMOS Gate from Boolean Expression

Example: $F = (A \cdot (B+C))'$

Step 1. Figure out pull-down network that does what you want (e.g., what combination of inputs generates a low output)

Step 2. Walk the hierarchy replacing NMOS with PMOS, series subnets with parallel subnets, and parallel subnets with series subnets

Step 3. Combine PMOS pull-up network (from Step 2) with NMOS pull-down network (from Step 1) to form a fully-complementary CMOS gate
CMOS Sanity Checks

• Equal number of NMOS and PMOS

• NMOS sources tied to ground or to drain of another NMOS

• PMOS sources tied to Vdd or drain of another PMOS

• Inputs tied to pairs of PMOS and NMOS transistors
Sum-of-Products Revisited

AND-OR

NAND-NAND
Product-of-Sums Revisited

OR-AND

NOR-NOR
Multi-Level Logic

- So far we have primarily focused on two-level representations for combinational logic

- Multi-level logic is typically more compact (i.e., cost-efficient) in practice

\[Y = (A+B)(C'+D) + E' \]
Combinational Building Blocks

• More complex functions built from basic gates
 – Comparators
 – Multiplexers
 – Decoders
 – Encoders
 ...

• Typically tens to hundreds of transistors
 – Used to be called Medium Scale Integration (MSI)

• Common building blocks for digital systems
Lecture 5: 12

• **XOR:** $F = X \cdot Y' + X' \cdot Y$
 - Similar to OR gate, except when inputs are 1
 - Used for comparisons, error checking, etc.

• **XNOR:** $F = X' \cdot Y' + X \cdot Y$
 - Complemented version of XOR

XOR Gate

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$X \oplus Y$</th>
<th>$(X \oplus Y)'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR: odd parity gate
XNOR: even parity gate
Equality Comparators Using XOR

1-bit comparator

\[X \quad \text{different} \quad Y \]

4-bit comparator

\[A0 \quad B0 \quad A1 \quad B1 \quad A2 \quad B2 \quad A3 \quad B3 \quad \text{different} \]
Multiplexer ("mux")

- Connects one of \(n \) inputs to the output
 - \(\text{select} \) control signals pick one of the \(n \) sources
 - \(\lceil \log_2 n \rceil \) select bits

- Useful when multiple data sources need to be routed to a single destination
 - Often arises from resource sharing
 - Example: select 1-of-\(n \) data inputs to an adder
2-to-1 Mux

- Selects one of two inputs to appear at the output

- \(Y = S' \cdot I_0 + S \cdot I_1 \)
4-to-1 Mux

- Selects one of four inputs to appear at the output

- \[Y = S_1' \cdot S_0' \cdot I_0 + S_1' \cdot S_0 \cdot I_1 + S_1 \cdot S_0' \cdot I_2 + S_1 \cdot S_0 \cdot I_3 \]
Cascading Multiplexers

- Large multiplexers can be implemented by cascading smaller ones
Logic Functions Using Muxes

- Any function of n variables can be implemented with a $2^n:1$ multiplexer
 - Input variables connected to select inputs
 - Data inputs tied to 0 or 1 according to truth table

<table>
<thead>
<tr>
<th>ABC</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
</tr>
</tbody>
</table>
Getting Away with a Smaller Mux

- Can use $2^{n-1}:1$ multiplexer and at most one inverter
 - Connect $n-1$ input variables to select inputs
 - Data inputs tied to 0, 1, n^{th} variable, or inverted n^{th} variable

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Decoder

- **Binary decoders**
 - n inputs, 2^n outputs
 - Each output corresponds to a unique input value
 - At most one output asserted (true) at a time

- **Example: A 1-to-2 decoder**

<table>
<thead>
<tr>
<th>A</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$Y_0 = A'$
$Y_1 = A$
2-to-4 Decoder

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_0</th>
<th>Y_0</th>
<th>Y_1</th>
<th>Y_2</th>
<th>Y_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$Y_0 = A_1' \cdot A_0'$
$Y_1 = A_1' \cdot A_0$
$Y_2 = A_1 \cdot A_0'$
$Y_3 = A_1 \cdot A_0$
Logic Functions Using Decoders

- $n:2^n$ decoder can be used to implement any function of n variables
 - Connect variables to inputs
 - Appropriate minterms summed using extra gates to form the function

![Decoder Diagram]
Logic Functions Using Decoders

- \(F_1 = A'B'C'D' + AB'CD' + ABC'D' \)
- \(F_2 = A'B'C' + A'B'CD \)
- \(F_3 = A+B+C+D = (A'B'C'D')' \)
Decoder with Enable

<table>
<thead>
<tr>
<th>E</th>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

X: don’t care input
Here 0XX covers four input combinations 000, 001, 010, 011
Decoder with Enable (2)

\[Y_3 = A_1 \cdot A_0 \cdot E \]
\[Y_2 = A_1 \cdot A_0' \cdot E \]
\[Y_1 = A_1' \cdot A_0 \cdot E \]
\[Y_0 = A_1' \cdot A_0' \cdot E \]
Before Next Class

• H&H 3.1-3.2

Next Time

Sequential Logic: Clocks, Latches, Flip-Flops