ECE 2300 Digital Logic and Computer Organization
Topic 8: Sequential Building Blocks

http://www.csl.cornell.edu/courses/ece2300
School of Electrical and Computer Engineering
Cornell University

revision: 2025-11-04-16-45

List of Problems

1 Comparative Analysis of Multiplier Designs
1.A Single-Cycle Linear Multiplier
1.B Single-Cycle Tree Multiplier
1.C Pipelined Multiplier
1.D Multi-Cycle Multiplier

1.E Comparative Analysis

2 Map Logic to the FPGA
2A

O© NN a0 W N

12

ECE 2300 Digital Logic and Computer Organization NetID:

Problem 1. Comparative Analysis of Multiplier Designs

In this problem, we will consider four different implementations of an unsigned two-input integer
multiplier capable of multiplying a 32-bit operand (input A) by a 4-bit operand (input B) to produce
a truncated 32-bit result (output Z).

We compute the multiplication by performing multiple additions, exploiting the fact that an operand
can be decomposed into a sum. This sum can then be multiplied term-by-term with the other
operand, and the resulting products can be added together. We decompose operand B into a sum
of powers of two (corresponding to B’s bits), since multiplying by each power of two (1, 2,4, 8, ...)
corresponds to a simple bit-shift operation. For example, multiplying A by two is equivalent to left-
shifting A by one bit position; multiplying by four corresponds to a left-shift by two positions, and
SO on.

For instance, if B = 7 (binary: 0111; decimal: 4 4- 2 + 1), the result is computed as the sum of A x 4
(A left-shifted by two bits), A x 2 (A left-shifted by one bit), and A x 1 (A unshifted).

We will fill the following table during this assignment. For each design, we compute the average
number of clock cycles per transaction, the clock period, the total execution time for 100 transactions,
and lastly the area of the design.

Avg Cycles
Num per
Trans transaction Clock Period Total Execution
Microarchitecture (#) (cyc/trans) () Time (7) Area (x)

Single-Cycle

(Linear) 100
Single-Cycle

(Tree) 100
Pipelined 100
Multi-Cycle 100

ECE 2300 Digital Logic and Computer Organization NetID:

Use the parameters to the right for all following prob-

loms. tpd Area
Shift 0t Ou
Part 1.A Single-Cycle Linear Multiplier 1-Bit AND2 3t S
1-Bit 2-to-1 Mux 8T 11«
We begin with the following linear single-cycle mul- 32']_3it Ripple-Carry Adder 3487 992a
tiplier design, which contains three concatenated 1-Bit FF (teq) 9T 33
adders. The inputs are A (with a width of 32 bits) and
B (with a width of 4 bits). Since shift and slice oper- FF (tsetup) 10T
ations can be hardwired, we do not add any delay FF (f;,,14) 1T

or area penalty for these modules. The AND gates
directly preceding the adder modules are not typical AND gates. Upon closer inspection, one can
observe that one input is 32 bits wide (input A), while the other (input B) is only a single bit. Thus,
each AND gate actually consists of many AND2 gates in parallel, with each gate receiving the single
B input bit and one of the input bits from A.

Note: When computing the area, consider whether all 32 AND?2 gates are actually needed for each AND gate
when its respective input A is shifted.

[0] 1
A32/ <<1 |—
N 1
_ <<2
B 4, 2] 1
4 — <<3
[3] 1

Fill out the simulation table for the single-cycle linear multiplier.

Simulation Table

Input After Reg W X Y V4
TA: A=12, B=3
TB: A=7, B=8
TC: A=24, B=0

ECE 2300 Digital Logic and Computer Organization NetID:

Fill out transaction diagram for the single-cycle linear multiplier.

Transaction Diagram

01 2 3 4 5 6 7 8 9 10 11 12 13

Transaction A

Transaction B

Transaction C

Identify the critical path of the single-cycle linear multiplier. Draw its path in the block diagram.
What is the minimum clock period (T¢) that would still ensure correct operation?

How many cycles are needed in average by the single-cycle linear multiplier to process a single
transaction?

Compute the total execution time to process 100 transactions with the single-cycle linear multi-
plier (in units of 7). Note: Use the following formula. Also consider the number of clock cycles until the first
result appears at the output.

Time Transactions y Avg Cycles Time

Sequence Sequence Transaction Cycle

Compute the area of the single-cycle linear multiplier (in units of «).

Add your computed data from the single-cycle linear multiplier to the comparison table above.

ECE 2300 Digital Logic and Computer Organization NetID:

Part 1.B Single-Cycle Tree Multiplier

We converted the single-cycle multiplier from the previous section into a tree structure. Ultilize the
same timing parameters as before.

Do
[0] 1
_ o | W
ABg/ <<1 33724> Fg
= — N
I — <<2 32 \ AN 32
4, 2] T
b= >3
ol I N s 2 & X
[3] 1 |

Fill out the simulation table for the single-cycle tree multiplier.

Simulation Table

Input After Reg w X Y V4
TA: A=12, B=3
TB: A=7, B=8
TC: A=24, B=0

Fill out transaction diagram for the single-cycle tree multiplier.

Transaction Diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Transaction A

Transaction B

Transaction C

ECE 2300 Digital Logic and Computer Organization NetID:

Identitfy the critical path of the single-cycle tree multiplier. Draw its path in the block diagram.
What is the minimum clock period (T) that would still ensure correct operation?

How many cycles are needed in average by the single-cycle tree multiplier to process a single
transaction?

Compute the total execution time to process 100 transactions with the single-cycle tree multiplier
(in units of 7). Note: Use the following formula. Also consider the number of clock cycles until the first result
appears at the output.

Time Transactions » Avg Cycles = Time
Sequence Sequence Transaction ~ Cycle

Compute the area of the single-cycle tree multiplier (in units of «).

Add your computed data from the single-cycle tree multiplier to the comparison table above.

ECE 2300 Digital Logic and Computer Organization NetID:

Part 1.C Pipelined Multiplier

Next, we introduce pipeline registers in our previous multiplier design.

D
[0] 1 -
A = I
N 1 |
_ <<2 32 \
4, 2] ;
B S e
4 <<3 32 —g
[3] 1 /

Fill out the simulation table for the pipelined multiplier.

Simulation Table

Input After Reg O vV W X Y

TA: A=12, B=3

TB: A=7, B=8

TC: A=24, B=0

Fill out transaction diagram for the pipelined multiplier.

Transaction Diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Transaction A

Transaction B

Transaction C

ECE 2300 Digital Logic and Computer Organization NetID:

Identitfy the critical path of the pipelined multiplier. Draw its path in the block diagram. What
is the minimum clock period (T) that would still ensure correct operation?

How many cycles are needed in average by the pipelined multiplier to process a single transac-
tion?

Compute the total execution time to process 100 transactions with the pipelined multiplier (in
units of 7). Note: Use the following formula. Also consider the number of clock cycles until the first result
appears at the output.

Time Transactions » Avg Cycles = Time

Sequence Sequence Transaction ~ Cycle

Compute the area of the pipelined multiplier (in units of «).

Add your computed data from the pipelined multiplier to the comparison table above.

ECE 2300 Digital Logic and Computer Organization NetID:

Part 1.D Multi-Cycle Multiplier

Lastly, we build a multi-cycle multiplier. Its datapath is shown below. The datapath contains a
single adder. The control unit (not shown) manages the data to perform the multiplication over
multiple cycles. Initially, it loads A and B through multiplexers into X and Y, respectively. Similarly,
it initializes the result Z to zero. Each cycle, X is shifted one bit to the left (effectively doubling X)
while Y is shifted to the right. If the current lowest bit of Y is set (b_lsb signal), the control unit adds
X to Z (by setting the select signals of the muxes accordingly).

b_mux_sel b_Isb

j >>1
B Y
T
a_mux_sel
X
<<1

add_mux_sel
res_mux_sel

ECE 2300 Digital Logic and Computer Organization NetID:

Fill out the simulation table for the multi-cycle multiplier.

Simulation Table

Input X Y V4
TA: A=12, B=3

TB: A=7, B=8

Fill out transaction diagram for the multi-cycle multiplier.

Transaction Diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Transaction A

Transaction B

Transaction C

10

ECE 2300 Digital Logic and Computer Organization NetID:

Identitfy the critical path of the multi-cycle multiplier. Draw its path in the block diagram. What
is the minimum clock period (T) that would still ensure correct operation?

How many cycles are needed in average by the multi-cycle multiplier to process a single transac-
tion?

Compute the total execution time to process 100 transactions with the multi-cycle multiplier (in
units of 7). Note: Use the following formula. Also consider the number of clock cycles until the first result
appears at the output.

Time Transactions » Avg Cycles = Time

Sequence Sequence Transaction ~ Cycle

Compute the area of the multi-cycle multiplier (in units of «).

Add your computed data from the multi-cycle multiplier to the comparison table above.

11

ECE 2300 Digital Logic and Computer Organization NetID:

Part 1.E Comparative Analysis

Create a Pareto frontier plot of the four multiplier designs. Note: X-Axis is area and Y-Axis is execu-
tion time.

Which multiplier implementation would you choose in which situation?

12

ECE 2300 Digital Logic and Computer Organization NetID:

Problem 2. Map Logic to the FPGA

A_|
-
C—

Part 2.A 5

Map a NANDA4 gate to the FPGA logic. Consider a tree structure.

EEEE l EEEE l
332323 L LUT, 2223 LUT,
HE N HE e
EEEE EEEE
000 000
001 - 001 -
010) 010[7]
011 011
100 100
101 — 101 —
110 110
111 111
/ /
\ — \ —]
000 000
001 001
010 5 00 01 10 11 010 5 00 01 10 11
011 4 0114
100 [0] 100([0]
101 FF 101 EF
110 | 110 |
111 111
| — 0 1 | — 0 1
N 3 n 3
| |
L LUT, LUT,
3 I] 3] .
000 000
001 L 001 L
010[] 010[3
011 011
100 100
101 — 101 —
110 110
111 111
\ — \ —]
000 000
001 001
010 5 00 01 10 11 010 5 00 01 10 11
011 g 011l g
100] [0] 100([0]
101 EF 101 EF
110 | 110 |
111 111
| — 0 1 | — 0 1
| 3 n 3

13

ECE 2300 Digital Logic and Computer Organization

Part 2.B

Map the gate network on the right to the FPGA.

' L LUT,

from LUT,
from LUT;
from LUT,
from LUT;
from LUT,
from LUT,
from LUT,
from LUT;

000
001
010
011
100
101 —
110

)\
!

—

111
=

P
000
001

010 s 00 01 10 11
011

—
100] [0]

101 FF
110 |

Y, - R

000
001
010 4
011
100
101 —
110

111
=

T
000
001

010 5 00 01 10 11
0114
100 [0]

101 FF
110 |

— T)

14

o]

LUT,

5 00 01 10 11

FF

LUT,

5 00 01 10 11

FF

ECE 2300 Digital Logic and Computer Organization NetID:

A
B
Part 2.C C
Map the gate network on the right to the FPGA.
RS | oo |
5535 L LUT, 2323 LUT,
EEEE] — — EEEE — — —
SE5E 3 SESE 3
000 000
001 L 001 L
010[) 010[77)
011 011
100 100
101 — 101 —
110 110
111 111
|111]
T~ — T~ —]
000 000
001 001
010 e 00 01 10 11 010 5 00 01 10 11
011 011
— —
100] [0] 100] [0]
101 FF 101 FF
110 | 110 |
111 111
| — 0 1 | — 0 1
| 3 | 3
| |
L LUT, LUT;
3]] 3 .]
000 000
001 L 001 L
010[7 010[77)
011 011
100 100
101 — 101 —
110 110
111 111
000] 000]
001 001
010 5 00 01 10 11 010 5 00 01 10 11
011 g 011
100 [0] 100([0]
101 FF 101 FF
110 | 110 |
111 111
| — 0 1 l — 0 1
| 3 | 3

15

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.D

Design a two bit equality comparator unit. Draw its gate network and map the network to the
FPGA.

==l ===l
2333 ' L LUT, 2223 | LUT,
EEEE . — — EEEE]] -
gege § gege ’
000 000
001 001
010H]< 010H]<
011 011
100 100
101 — 101 —
110 110
111 111
000] 000 1
001 001
010 #\‘%’M 010 ﬁ%\gw
011 011
1006]< 1OOE]<
101 FF 101 FE
110 | 110 |
111 111
T R T R
_ 3 | 3
| L LUT, | LUT,
3]] 3]]
000 000
001 001
Oloﬁf 010H1<
011 011
100 100
101 — 101 —
110 110
111 111
000] 000 1
001 001
010 #\gﬁ/ 010 #\g@/
011 011
100E]< IOOE]<
101 FF 101 FF
110 | 110 |
111 111
— T, o — T B
_ 3 B 3

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.E

Design a two bit incrementor with two half adders. Draw its gate network and map it to the
FPGA.

EEEE EEEE
2333 ' L LUT, 2333 ' LUT,
EEEE . — — EEEE] — —
B82S 3 EE2E 3
000 000
001 001
010€]< 010_1]<
011 011
100 100
101 — 101 —
110 110
111 111
000] 000 1
001 001
010 ﬁ%\gm 010 ﬁﬁ%’m
011 011
1OOE]< 1OOE]<
101 FF 101 FE
110 l 110 l

111 111
| — 0 1 l — 0 1
3 3

| |
L LUT, LUT,
3 .] 3 I]
000 000
001] 001 4
010[q) 010[7]
011 011
100 100
101 — 101 —
110 110
111 111
000 1 000 N
001 001
010 5 00 01 10 11 010 5 00 0110 11
011 011
— —
100([0] 100] [0]
101 FE 101 FF
110 | 110 |
111 111
| — 0 1 | — 0 1
n 3 n 3

17

