
ECE 2300 Digital Logic and Computer Organization

Topic 8: Sequential Building Blocks

http://www.csl.cornell.edu/courses/ece2300
School of Electrical and Computer Engineering

Cornell University

revision: 2025-11-04-16-45

List of Problems

1 Comparative Analysis of Multiplier Designs 2

1.A Single-Cycle Linear Multiplier . 3

1.B Single-Cycle Tree Multiplier . 5

1.C Pipelined Multiplier . 7

1.D Multi-Cycle Multiplier . 9

1.E Comparative Analysis . 12

2 Map Logic to the FPGA 13

2.A . 13

2.B . 14

2.C . 15

2.D . 16

2.E . 17

ECE 2300 Digital Logic and Computer Organization NetID:

Problem 1. Comparative Analysis of Multiplier Designs

In this problem, we will consider four different implementations of an unsigned two-input integer
multiplier capable of multiplying a 32-bit operand (input A) by a 4-bit operand (input B) to produce
a truncated 32-bit result (output Z).

We compute the multiplication by performing multiple additions, exploiting the fact that an operand
can be decomposed into a sum. This sum can then be multiplied term-by-term with the other
operand, and the resulting products can be added together. We decompose operand B into a sum
of powers of two (corresponding to B’s bits), since multiplying by each power of two (1, 2, 4, 8, . . .)
corresponds to a simple bit-shift operation. For example, multiplying A by two is equivalent to left-
shifting A by one bit position; multiplying by four corresponds to a left-shift by two positions, and
so on.

For instance, if B = 7 (binary: 0111; decimal: 4 + 2 + 1), the result is computed as the sum of A × 4
(A left-shifted by two bits), A × 2 (A left-shifted by one bit), and A × 1 (A unshifted).

We will fill the following table during this assignment. For each design, we compute the average
number of clock cycles per transaction, the clock period, the total execution time for 100 transactions,
and lastly the area of the design.

Microarchitecture

Num
Trans

(#)

Avg Cycles
per

transaction
(cyc/trans)

Clock Period
(τ)

Total Execution
Time (τ) Area (α)

Single-Cycle
(Linear) 100

Single-Cycle
(Tree) 100

Pipelined 100

Multi-Cycle 100

2

ECE 2300 Digital Logic and Computer Organization NetID:

tpd Area

Shift 0τ 0α
1-Bit AND2 3τ 3α
1-Bit 2-to-1 Mux 8τ 11α
32-Bit Ripple-Carry Adder 348τ 992α
1-Bit FF (tcq) 9τ 33α

FF (tsetup) 10τ
FF (thold) 1τ

Use the parameters to the right for all following prob-
lems.

Part 1.A Single-Cycle Linear Multiplier

We begin with the following linear single-cycle mul-
tiplier design, which contains three concatenated
adders. The inputs are A (with a width of 32 bits) and
B (with a width of 4 bits). Since shift and slice oper-
ations can be hardwired, we do not add any delay
or area penalty for these modules. The AND gates
directly preceding the adder modules are not typical AND gates. Upon closer inspection, one can
observe that one input is 32 bits wide (input A), while the other (input B) is only a single bit. Thus,
each AND gate actually consists of many AND2 gates in parallel, with each gate receiving the single
B input bit and one of the input bits from A.

Note: When computing the area, consider whether all 32 AND2 gates are actually needed for each AND gate
when its respective input A is shifted.

ad
d

ad
d

32

32
1[0]

1

ad
d

32
Z

A

4
B

<<1

<<2

<<3

1

1

[1]

[2]

[3]

32

32

32

W

X

Y

Fill out the simulation table for the single-cycle linear multiplier.

Simulation Table

Cycle Input After Reg W X Y Z

0 TA: A=12, B=3

1 TB: A=7, B=8

2 TC: A=24, B=0

3

4

3

ECE 2300 Digital Logic and Computer Organization NetID:

Fill out transaction diagram for the single-cycle linear multiplier.

Transaction Diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Transaction A

Transaction B

Transaction C

Identify the critical path of the single-cycle linear multiplier. Draw its path in the block diagram.
What is the minimum clock period (TC) that would still ensure correct operation?

How many cycles are needed in average by the single-cycle linear multiplier to process a single
transaction?

Compute the total execution time to process 100 transactions with the single-cycle linear multi-
plier (in units of τ). Note: Use the following formula. Also consider the number of clock cycles until the first
result appears at the output.

Time
Sequence

=
Transactions

Sequence
× Avg Cycles

Transaction
× Time

Cycle

Compute the area of the single-cycle linear multiplier (in units of α).

Add your computed data from the single-cycle linear multiplier to the comparison table above.

4

ECE 2300 Digital Logic and Computer Organization NetID:

Part 1.B Single-Cycle Tree Multiplier

We converted the single-cycle multiplier from the previous section into a tree structure. Utilize the
same timing parameters as before.

32

32

32

32

ad
d

ad
d

32
Z

ad
d

32
1[0]

1

A

4
B

<<1

<<2

<<3

1

1

[1]

[2]

[3]

W

Y

X

Fill out the simulation table for the single-cycle tree multiplier.

Simulation Table

Cycle Input After Reg W X Y Z

0 TA: A=12, B=3

1 TB: A=7, B=8

2 TC: A=24, B=0

3

4

Fill out transaction diagram for the single-cycle tree multiplier.

Transaction Diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Transaction A

Transaction B

Transaction C

5

ECE 2300 Digital Logic and Computer Organization NetID:

Identitfy the critical path of the single-cycle tree multiplier. Draw its path in the block diagram.
What is the minimum clock period (TC) that would still ensure correct operation?

How many cycles are needed in average by the single-cycle tree multiplier to process a single
transaction?

Compute the total execution time to process 100 transactions with the single-cycle tree multiplier
(in units of τ). Note: Use the following formula. Also consider the number of clock cycles until the first result
appears at the output.

Time
Sequence

=
Transactions

Sequence
× Avg Cycles

Transaction
× Time

Cycle

Compute the area of the single-cycle tree multiplier (in units of α).

Add your computed data from the single-cycle tree multiplier to the comparison table above.

6

ECE 2300 Digital Logic and Computer Organization NetID:

Part 1.C Pipelined Multiplier

Next, we introduce pipeline registers in our previous multiplier design.

a
d

d

a
d

d

32
Z

a
d

d

32

32

32

32

32

1[0]

1

A

Y

W

X

4
B

<<1

<<2

<<3

1

1

[1]

[2]

[3]

O

V

Fill out the simulation table for the pipelined multiplier.

Simulation Table

Cycle Input After Reg O V W X Y Z

0 TA: A=12, B=3

1 TB: A=7, B=8

2 TC: A=24, B=0

3

4

Fill out transaction diagram for the pipelined multiplier.

Transaction Diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Transaction A

Transaction B

Transaction C

7

ECE 2300 Digital Logic and Computer Organization NetID:

Identitfy the critical path of the pipelined multiplier. Draw its path in the block diagram. What
is the minimum clock period (TC) that would still ensure correct operation?

How many cycles are needed in average by the pipelined multiplier to process a single transac-
tion?

Compute the total execution time to process 100 transactions with the pipelined multiplier (in
units of τ). Note: Use the following formula. Also consider the number of clock cycles until the first result
appears at the output.

Time
Sequence

=
Transactions

Sequence
× Avg Cycles

Transaction
× Time

Cycle

Compute the area of the pipelined multiplier (in units of α).

Add your computed data from the pipelined multiplier to the comparison table above.

8

ECE 2300 Digital Logic and Computer Organization NetID:

Part 1.D Multi-Cycle Multiplier

Lastly, we build a multi-cycle multiplier. Its datapath is shown below. The datapath contains a
single adder. The control unit (not shown) manages the data to perform the multiplication over
multiple cycles. Initially, it loads A and B through multiplexers into X and Y, respectively. Similarly,
it initializes the result Z to zero. Each cycle, X is shifted one bit to the left (effectively doubling X)
while Y is shifted to the right. If the current lowest bit of Y is set (b_lsb signal), the control unit adds
X to Z (by setting the select signals of the muxes accordingly).

ad
d

<<1

0

A

>>1

B

Z

add_mux_sel

a_mux_sel

res_mux_sel

b_mux_sel b_lsb

32

Y

X

9

ECE 2300 Digital Logic and Computer Organization NetID:

Fill out the simulation table for the multi-cycle multiplier.

Simulation Table

Cycle Input X Y Z

0 TA: A=12, B=3

1

2

3

4

5 TB: A=7, B=8

6

7

8

9

10

Fill out transaction diagram for the multi-cycle multiplier.

Transaction Diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Transaction A

Transaction B

Transaction C

10

ECE 2300 Digital Logic and Computer Organization NetID:

Identitfy the critical path of the multi-cycle multiplier. Draw its path in the block diagram. What
is the minimum clock period (TC) that would still ensure correct operation?

How many cycles are needed in average by the multi-cycle multiplier to process a single transac-
tion?

Compute the total execution time to process 100 transactions with the multi-cycle multiplier (in
units of τ). Note: Use the following formula. Also consider the number of clock cycles until the first result
appears at the output.

Time
Sequence

=
Transactions

Sequence
× Avg Cycles

Transaction
× Time

Cycle

Compute the area of the multi-cycle multiplier (in units of α).

Add your computed data from the multi-cycle multiplier to the comparison table above.

11

ECE 2300 Digital Logic and Computer Organization NetID:

Part 1.E Comparative Analysis

Create a Pareto frontier plot of the four multiplier designs. Note: X-Axis is area and Y-Axis is execu-
tion time.

Which multiplier implementation would you choose in which situation?

12

ECE 2300 Digital Logic and Computer Organization NetID:

Problem 2. Map Logic to the FPGA

Part 2.A

A
B
C
D

Y

Map a NAND4 gate to the FPGA logic. Consider a tree structure.

00 01 10 11 00 01 10 11

00 01 10 11 00 01 10 11

0 1

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

LUT0 LUT1

LUT2 LUT3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3

0 1

FF

0 1

0 1

FF

FFFF

13

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.B

A

B

C

Y

Map the gate network on the right to the FPGA.

00 01 10 11 00 01 10 11

00 01 10 11 00 01 10 11

0 1

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

LUT0 LUT1

LUT2 LUT3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3
0 1

FF

0 1

0 1

FF

FFFF

14

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.C

A

B

C

D

Map the gate network on the right to the FPGA.

00 01 10 11 00 01 10 11

00 01 10 11 00 01 10 11

0 1

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

LUT0 LUT1

LUT2 LUT3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3
0 1

FF

0 1

0 1

FF

FFFF

15

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.D

Design a two bit equality comparator unit. Draw its gate network and map the network to the
FPGA.

00 01 10 11 00 01 10 11

00 01 10 11 00 01 10 11

0 1

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

LUT0 LUT1

LUT2 LUT3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3

0 1

FF

0 1

0 1

FF

FFFF

16

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.E

Design a two bit incrementor with two half adders. Draw its gate network and map it to the
FPGA.

00 01 10 11 00 01 10 11

00 01 10 11 00 01 10 11

0 1

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

2

[1]

[0]

00 01 10 11

000

001

010

011

100

101

110

111

3

000

001

010

011

100

101

110

111

3

LUT0 LUT1

LUT2 LUT3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3

fr
o

m
 L

U
T

0

fr
o

m
 L

U
T

1

fr
o

m
 L

U
T

2

fr
o

m
 L

U
T

3

0 1

FF

0 1

0 1

FF

FFFF

17

