
ECE 2300 Digital Logic and Computer Organization

Topic 7: Finite State Machines

http://www.csl.cornell.edu/courses/ece2300
School of Electrical and Computer Engineering

Cornell University

revision: 2025-11-04-00-07

List of Problems

1 Control System for Multi-Cycle Quad Adder 2

2 Modulo Counters 12

2.A A Simple FSM . 12

2.B A Generalization . 13

2.C Gate-level implementation . 14

2.D A Further Generalization . 15

2.E Representing Larger Numbers . 16

2.F A quick comparison . 17

2.G One Final Optimization . 17

ECE 2300 Digital Logic and Computer Organization NetID:

Problem 1. Control System for Multi-Cycle Quad Adder

In lecture (topic 8), we will discuss a multi-cycle quad adder (module dpath in figure below), which
sums up four four-bit values in multiple cycles utilizing a single adder module. In this assignment,
we will design a control system (module ctrl) for such a multi-cycle quad adder. Furthermore, we
will design a wrapper FSM (module wrppr), which connects this multi-cycle quad adder via the
latency insensitive valid/ready interface to a producer and consumer.

4

4'd0

4

2

ad
d

4

W

FFI_en

strt done_nextCTRL

WRPPR

DPATH

mux0_sel mux1_sel

X

Y
Z

A

B

C

D

4

4

irdy

ival

ordy

oval

The data path of the multi-cycle quad adder has four four-bit input ports (A, B, C, D) and one four-
bit output port (Z). Furthermore, the data path can be controlled by a control module via three input
ports. FFI_en enables the registers of C and D. mux0_sel and mux1_sel control the two multiplexors
in front of the adder.

Note: This multi-cycle quad adder is modified from lecture: For instance, input A and B are not stored in reg-
isters, the registers for C and D have additional enable logic, and the mux, which outputs X, has an additional
input hardcoded to 0.

The control module itself has an input port strt to start the addition process and an output done_next,
which indicates that in the next cycle the computation will be complete. The wrapper module con-
nects to the control module via its strt and done_next ports. Furthermore, the wrapper module has
has an irdy output and ival input for its input val/rdy interface, and an ordy input and oval output
for its output val/rdy interface.

2

ECE 2300 Digital Logic and Computer Organization NetID:

tpd tcd

Mux2 8τ 2τ
Mux4 15τ 3τ
4-Bit Adder 40τ 2τ
FF (tcq) 9τ 2τ

FF (tsetup) 10τ
FF (thold) 1τ

TC 75τ

First, let us analyze the data-path module. Use the following table to list
every constraint which must be satisfied to ensure correct operation of
the data-path. Start by labeling the two possible constraints at the top
of the table. Each path should be specified with just the start and end
points of the path (feel free to name FFs yourself). Assume paths that
start at an input port or end at an output port are unconstrained (for the
moment, only cosider paths starting and ending at FFs). Each constraint
should be expressed as an inequality. If the constraint is satisfied use ≥
or ≤. If the constraint is not satisified use ≱ or ≰. You must show each
delay component in the inequality along with the the final sum. Circle
any constraints which are not statisified and would result in a timing
violation.

Path Start Point Path End Point Constraint Constraint

Are there any unsatisfied constraints (i.e., timing violations) within the data-path? What is the
minimum clock period (TC) that would still ensure correct operation of the data-path?

3

ECE 2300 Digital Logic and Computer Organization NetID:

We designed the following FSM for the ctrl unit.

S2
FFI_en=0

mux0_sel=0
mux1_sel=11
done_next=1

strt==0
mux0_sel=0
mux1_sel=00

strt==1
mux0_sel=1
mux1_sel=01

S1
FFI_en=0

mux0_sel=0
mux1_sel=10
done_next=0

S0
FFI_en=1

done_next=0

Is this a Moore or Mealy FSM? Explain why.

Design the next state logic of the FSM with the following kmaps; write the resulting boolean
expression under each kmap:

next_s[1]

strt

S1S0

00 01 11 10

0

1

next_s[0]

strt

S1S0

00 01 11 10

0

1

4

ECE 2300 Digital Logic and Computer Organization NetID:

Design the output logic of the FSM with the following kmaps; write the resulting boolean expres-
sion under each kmap:

FFI_en

strt

S1S0

00 01 11 10

0

1

mux0_sel

strt

S1S0

00 01 11 10

0

1

mux1_sel[1]

strt

S1S0

00 01 11 10

0

1

mux1_sel[0]

strt

S1S0

00 01 11 10

0

1

done_next

strt

S1S0

00 01 11 10

0

1

5

ECE 2300 Digital Logic and Computer Organization NetID:

Draw the gate network and registers of the ctrl module in the its box below.

4

4'd0

4

2

ad
d

4

W

FFI_en

strt done_next

CTRL

WRPPR

DPATH

mux0_sel mux1_sel

X

Y
Z

A

B

C

D

4

4

irdy

ival

ordy

oval

6

ECE 2300 Digital Logic and Computer Organization NetID:

tpd tcd

NOT 1τ 1τ
AND2 3τ 1τ
OR2 4τ 1τ
FF (tcq) 9τ 2τ

FF (tsetup) 10τ
FF (thold) 1τ

TC 75τ

Next, let us analyze the ctrl module. Use the following table to list every
constraint which must be satisfied to ensure correct operation of the
control unit. Start by labeling the two possible constraints at the top of
the table. Each path should be specified with just the start and end points
of the path (feel free to name FFs yourself). Assume paths that start at an
input port or end at an output port are unconstrained (for the moment,
only cosider paths starting and ending at FFs within the control unit).
Each constraint should be expressed as an inequality. If the constraint is
satisfied use ≥ or ≤. If the constraint is not satisified use ≱ or ≰. You
must show each delay component in the inequality along with the the
final sum. Circle any constraints which are not statisified and would
result in a timing violation.

Path Start Point Path End Point Constraint Constraint

Are there any unsatisfied constraints (i.e., timing violations) within the control unit? What is the
minimum clock period (TC) that would still ensure correct operation of the control unit?

7

ECE 2300 Digital Logic and Computer Organization NetID:

Next, we will design the wrapper FSM of the wrppr unit. It lets the multi-cycle quad adder accept a
set of four four-bit inputs (A, B, C, D of the data-path) with its latency insensitive valid/ready input
interface. After the computation is complete, the module transfers the sum via its output valid/ready
interface to a subsequent consumer. The wrapper module communicates with the control unit of the
data-path via the strt and done_next port.

The latency insensitive valid/ready interface works like this: The producer sets its valid signal when
its data is ready for the consumer. The consumer sets its ready signal, when it is ready to accept
incoming data. When at the end of a clock cycle both ready and valid signals are set, producer and
consumer know that the data was transferred.

Draw the FSM diagram according to the following features:

1. The FSM should have the following three states: WS0, WS1, WS2.

2. It should reset to state WS0.

3. In state WS0, output irdy needs to be set and oval not set.

4. The FSM should move from state WS0 to WS1 when ival is set. In this case, the FSM should set
strt. Otherwise the FSM would remain in WS0 and strt would be unset.

5. In state WS1, all its outputs (strt, irdy, oval) should not be set.

6. The system should move from WS1 to WS2 when done_next is set. Otherwise it should remain
in WS1.

7. In state WS2, the FSM needs to set oval, while keeping strt and irdy unset.

8. The FSM needs to move from WS2 to WS0 when ordy is set. Otherwise it should remain in
WS2.

8

ECE 2300 Digital Logic and Computer Organization NetID:

Next, we will design the next state logic for the WRPPR unit. Is this a moore or mealy FSM? Why
can we not minimize it with kmaps?

Instead, write the next state logic without major minimization in sum of products form from the
FSM diagram.

However, we will minimize the output logic with kmaps. We won’t consider done_next and ordy
for minimization, since they don’t have any impact on the outputs of the wrppr FSM. Complete the
kmaps for strt, irdy, and oval.

strt

ival

S1S0

00 01 11 10

0

1

irdy

ival

S1S0

00 01 11 10

0

1

oval

ival

S1S0

00 01 11 10

0

1

Draw the gate network and registers of the wrppr module in its box of the previous figure (the
same figure, in which you drew the gate network of the control unit).

9

ECE 2300 Digital Logic and Computer Organization NetID:

tpd tcd

NOT 1τ 1τ
AND2 3τ 1τ
OR2 4τ 1τ
FF (tcq) 9τ 2τ

FF (tsetup) 10τ
FF (thold) 1τ

TC 75τ

Let us analyze the timing constraints of the wrppr module. Use the fol-
lowing table to list every constraint which must be satisfied to ensure
correct operation of the control unit. Start by labeling the two possible
constraints at the top of the table. Each path should be specified with
just the start and end points of the path (feel free to name FFs yourself).
Assume paths that start at an input port or end at an output port are un-
constrained (for the moment, only cosider paths starting and ending at
FFs within the control unit). Each constraint should be expressed as an
inequality. If the constraint is satisfied use ≥ or ≤. If the constraint is not
satisified use ≱ or ≰. You must show each delay component in the in-
equality along with the the final sum. Circle any constraints which are
not statisified and would result in a timing violation. Note: Depending
on your implementation, you might not need all rows of the table.

Path Start Point Path End Point Constraint Constraint

Are there any unsatisfied constraints (i.e., timing violations) within the control unit? What is the
minimum clock period (TC) that would still ensure correct operation of the control unit?

10

ECE 2300 Digital Logic and Computer Organization NetID:

Until now, we only considered critical paths within each module starting at a FF and ending at a FF.
For this part of the assignment, we will now consider paths starting at the input ports. Can you find
a path starting at the input port of the WRPPR module, crossing the ctrl unit and ending at the
output register of the data-path? Mark this critical path in your gate diagram.

Assume the input port has an input delay of 20τ. Compute the critical path delay crossing all three
modules. Would this critical path lead to timing violations?

Explain the reason for this long critical path. Why does it go through all three modules?

How could this be prevented?

Anthony’s Solution

https://vod.video.cornell.edu/media/ECE+2300+Topic+7%2C+Practice+Problem+1/1_8oa6z69v

11

ECE 2300 Digital Logic and Computer Organization NetID:

Problem 2. Modulo Counters

Part 2.A A Simple FSM

Consider the following sequential gate-level network. Fill in the the truth table (i.e. the next state
and output table). Note that this is not a simulation table.

A Y

S0

S A Y

0 0

0 1

1 0

1 1

What type of FSM is this? .

Draw the FSM diagram for this simple FSM.

Fill out the following simulation table for this FSM.

cycle 0 1 2 3 4 5 6 7 8 9 10

A 0 0 1 1 0 1 0 0 1 1 1

S 0

Snext 0

Y 1

What does this FSM do?

12

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.B A Generalization

Generalizing this, this finite state machine can be thought of as representing a “divisibility” operator
for n = 2. That is, it indicates whether a stream of bits representing a binary number is divisble by
n = 2 or not.

In fact, we can create such finite state machines for any value of n. And, each of these finite state
machines only require n states. Let’s practice by creating another finite state machine for n = 3.

Draw a FSM diagram for a n = 3 “divisibility” operator. The reset state is indicated with a double
circle. The values of S0, S1, Y have already been filled in for you.

S1=0
S0=0
Y=1

S1=0
S0=1
Y=0

S1=1
S0=0
Y=0

Complete the Karnaugh Maps for S0, S1.

A

S1S0

00 01 11 10

0

1

A

S1S0

00 01 11 10

0

1

13

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.C Gate-level implementation

Please implement the gate-level network for the n = 3 “divisibility” operator.

Gate tpd tcd

NOT 1τ 1τ

NAND2 2τ 1τ

NOR2 3τ 1τ

AND2 3τ 1τ

OR2 4τ 1τ

XOR2 7τ 6τ

FF (tcq) 9τ 2τ

FF tsetup 10τ

FF thold 1τ

TC 26τ

Use the following table to list every constraint which must be satisfied to ensure correct operation
of this gate-level network. You should specify each gate on the path. Assume output ports are
unconstrained. Just write the final sum and constraint. Circle any constraints that are violated.

Path 1st Constraint 2nd Constraint

Similar to problem 4F in topic 2, we can optimize our gate-level network to meet timing (if it currently isn’t)by
switching most ANDs and ORs to NAND gates. Think of why this is equivalent (T03).

14

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.D A Further Generalization

Why does your n = 3 finite state machine work? This is explained by modulo arithmetic.

Each state represents a modulo equivalence class. Let v denote the value given by the stream of A. Then,
each state represents v mod n (i.e. the remainder of v when divided by n). The initial state represents
when the remainder is zero. By using modulo arithmetic, we can derive all of the next state logic.

Suppose you are in module state r. Then, if we see a zero, the remainder doubles. Thus, the next state
we go to is 2r mod n. If we see a one, the remainder doubles AND we add one. Thus, the next state we
go to is 2r + 1 mod n. This may be initially confusing, but we will practice with n = 5.

Draw the FSM diagram for a n = 5 modulo counter (“divisibility” operator).

15

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.E Representing Larger Numbers

We’ve explored very small n values thus far. But, what if we wanted to make a finite state machine
for n = 15? Following our earlier reasoning, we would need 15 states!

This seems like (and is) a lot of work! In fact, the FSM diagram is incredibly complicated:

S=0
Y=1

S=7A=1

A=0

A=1

A=1

A=0

A=0

A=0 A=1

A=1

A=1

A=1

A=1

A=0

A=1

A=0

A=0

A=1

A=0

A=0

A=0

A=1

A=0

A=1

A=1

A=1

A=0

A=0

A=0

A=0

A=1

Y=0

S=3
Y=0

S=11
Y=0

S=5
Y=0

S=9
Y=0

S=10
Y=0

S=12
Y=0

S=6
Y=0

S=13
Y=0

S=14
Y=0

S=1
Y=0

S=2
Y=0

S=8
Y=0

S=4
Y=0

We should (and will) find a more intelligent approach to building such FSMs. To do so, we will need
to exploit the course principles of modularity, hierarchy, and regularity. Fill in the blanks below.

If a number is divisble by 15, it must also be divisible by and .

Let’s try to construct a 15-counter with a 3-counter and a 5-counter. In class, you compose FSMs by
having one impact the state of another. Now, we will explore a different method. Create a combina-
tional gate-level network that utilizes the output from the 3-counter, Y3, and the output from the
5-counter, Y5 to indicate when an input is divisible by 15 (i.e. Y15).

16

ECE 2300 Digital Logic and Computer Organization NetID:

Part 2.F A quick comparison

Which of the two constructions of the 15-counter do you prefer? Is one definitely better, and if so,
why? Is there any tradeoff between the two? Does this hold for all modular modulo counters?

Part 2.G One Final Optimization

Instead, consider building a modulo 6 counter.

How many states do we need if we use a single FSM? How about modular FSMs?

In fact, we can actually build this counter with just four states. And, in a single FSM. To do this, we
exploit the factor of two in six. Draw the FSM diagram for a 4-state modulo 6 counter.

17

