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1. Latches, Flip-Flops, and Registers 1.1. SR Latch

1. Latches, Flip-Flops, and Registers

* Combinational Logic: outputs only depend on current inputs
* Sequential Logic: outputs depend on current inputs and previous inputs

1.1. SR Latch
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® SR Latch: bi-stable state element with set and reset inputs
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1. Latches, Flip-Flops, and Registers 1.1. SR Latch

e Let’s create a new kind of truth table
* Treat Qprey as an input and Qyext as an output

S R Qprev W Qnext Quext,next
0 0 0

0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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1. Latches, Flip-Flops, and Registers 1.2. D Latch

1.2. D Latch

® SR Latch: Asserting one input determines not only what the new
state should be but also when it should change

® D Latch: One input controls what the next state should be, while
second input controls when the state should change
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1. Latches, Flip-Flops, and Registers 1.3. D Flip-Flop

1.3. D Flip-Flop

* D Latch: Input is sampled continuously when clock is high

* D Flip-Flop: Input is only sampled at a specific instance in time
(on the rising edge of the clock)

leader  follower

N1
DD Q D Q—Q —D Q-
clk clk

clk

0 1
Before Rising Clock Edge After Rising Clock Edge
a1 1
D, | 1 EEREEE
N1,
Q,
time
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1. Latches, Flip-Flops, and Registers 1.4. D Flip-Flop with Synchronous Reset

1.4. D Flip-Flop with Synchronous Reset

D
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time
1.5. D Flip-Flop with Synchronous Reset and Enable
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|
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0 en
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rst »o Fo

clk
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1. Latches, Flip-Flops, and Registers

1.6. Multi-Bit Register

1.6. Multi-Bit Register

en

— Qs

rst

clk

en

clk
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2. Sequential Gate-Level Networks

2. Sequential Gate-Level Networks

» Combinational truth tables have one column for every input,
intermediate signal, and output; one row for all possible input
values

* Sequential truth tables have one column for every input, flip-flop,
intermediate signal, and output; one row for all possible input
values and possible flip-flop values

FF
A FFnext I—l W
B D N [o—x

Truth Table

FF FEiext W Y

mRlm R ,r|lo|lojlo|lo| >

B
0
0
1
1
0
0
1
1

| Ol Rr | O|lRr|O|=,|O
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2. Sequential Gate-Level Networks

FF
A FFooe [ W
BD t|4>| o

[

L
time

* Drawing waveforms for sequential logic over many cycles can
become quite tedious

* Simulation tables are a more compact way to illustrate waveforms for
sequential logic assuming a zero delay model
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2. Sequential Gate-Level Networks

FF
A Pl [ W
BD t|4>| Y

Explicit-Clock Simulation Table

* Clock signal is shown

cdk A B FF FFenx W
as a column
1 0 1
* One row per clock
phase, row shows 0 0 1
values during that 1 0 0
clock phase 0 0 o
1 1 0
0 1 0
1 0 1
1 0 1

Implicit-Clock Simulation Table

¢ Clock signal is not

FP Panxt W
shown as a column

® One row per clock
cycle, row shows

values when clock is

o|l~mlo|lo| >
—|lolo|l ]|

high phase
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2. Sequential Gate-Level Networks

FF

FFnext

m

Truth Table

FFnext 144

FF

12

Topic 6: Sequential Logic



2. Sequential Gate-Level Networks

FF
A FFrext W
B
Y
C
Implicit-Clock Simulation Table

A B C FF FFEpext W Y

1 1 0

1 1 0

0o 1 0

o 1 1

0o 1 1

* Use arrows to show dependencies between values

— Horizontal dependency arrows correspond to combinational logic
— Vertical dependency arrows correspond to sequential logic
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2. Sequential Gate-Level Networks

Complete the truth table and implicit-clock simulation table for the

given sequential gate-level network.

Truth Table
S
S1 ot § Sl SO Sl,next SO,next Y
,next \ 0 0
- 0 1
S0
SO,next DC 1 0
Fa 1 1
Y
Implicit-Clock Simulation Table
Assume all flip-flops are reset to zero.
Sl SO Sl,next SO,next Y
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3. Sequential Gate-Level Timing

3. Sequential Gate-Level Timing

e (Critical Path for Combinational

Gat t t
Gate-Level Networks: longest e pd cd
propagation path delay from any NOT 1t 1t
input to any output NAND2 21 1T
NOR2 3t 1t
AND2 37 1t
OR2 4t 1t
XOR2 7T 1t
XNOR2 7t 1t
w
e
Z
b
c — )
X

Propagation Critical

Path Delay

A — NOT — NAND2 — NOR2 —+Y

B - NAND2 —+ NOR2 = Y

C —-NOT - NOR2 —- Y
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3. Sequential Gate-Level Timing

¢ Identify all paths from any input to any output

------------------------------------------------------------------------------------------------

i D Latch

i+ Follower
i1 D Latch

D+

>0

clk Z;

Path

D — AND2 — NOR2 — NOR2 — AND2 — NOR2 — NOR2 — Q
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3. Sequential Gate-Level Timing

Critical Path for Combinational Gate-Level Networks

* Longest propagation path delay from:

— any input to any output

A >0

B

>

Critical Path for Sequential Gate-Level Networks

* Longest propagation path delay from:
— any input to any output
- any input to any flip-flop

any flip-flop to any output

any flip-flop to any flip-flop

NN

C—{>o—
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3. Sequential Gate-Level Timing 3.1. Setup Time

3.1. Setup Time

"""""""""""""""""""""""""""""" {{Follower . —
11 D Latch

D~

A
clk

Clock-to-Q Propagation Delay (¢, )

Propagation Critical
Path Delay Path?

Setup Time (tsetup)

Propagation Critical
Path Delay Path?
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3. Sequential Gate-Level Timing 3.1. Setup Time

lio v tpa  ted
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FF, z
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B — AW FF, p Te 247

e clock period or cycle time (T¢): time between rising edges of clock
e clock frequency (fc = 1/T¢): rate of rising edges of the clock
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3. Sequential Gate-Level Timing

3.1. Setup Time

FFO tpd ted
A — XNOR2 7t 1t
N FF (tcq) 9t
FF (tsetup) 10T
B — AW 1:1:2 o Te 247
, T, = 247 ,
1 :
clko | | RN
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time
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3. Sequential Gate-Level Timing 3.1. Setup Time

Setup Time Constraint

CLK CLK
R1 R2
CLK, = -

o lme—
D2 XK KRK

tpcq H tpd i tsetup
P l—)

* Setup time constraint is a race between the clock and data
— We want the data to win, we want the data to be sampled by the leader
latch before the clock causes the leader latch to become opaque

* How can we fix a setup time violation?

* Static timing analysis table for sequential logic shows the setup time
constraints on every path through the gate-level network that are
required to ensure correct operation

¢ In this course we assume the following are unconstrained

— paths from input to any output
— paths from input to any flip-flop
- paths from any flip-flop to any output

¢ Each constraint is an inequality which is either:

— > or < (satistified, no timing violation)
— # or £ (not satistified, timing violation)
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3. Sequential Gate-Level Timing 3.1. Setup Time

FEO tpd tea
A — NAND2 2t 1t
- NOR2 3t 1t
FF, FF (th) 9t
] FF,
B — FF (ferup) 10T
- Y
Tc 21t
FF,
C —
N
Path Start Path End
Point Point Constraint

* Are there any unsatisfied constraints (i.e., timing violations)?

* What is the critical path of this gate-level network?

* What is the minimum clock period (T¢) that would still ensure
correct operation?

* What is the maximum clock frequency that would still ensure
correct operation?
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3. Sequential Gate-Level Timing 3.2. Hold Time

3.2. Hold Time

"""""""""""""""""""""""""""""" {{Follower . —
11 D Latch

D~

A ax D, D,
clk

Clock-to-Q Contamination Delay (¢ ¢,)

Contamination Shortest
Path Delay Path?

Hold Time (t,,4)

Contamination Shortest
Path Delay Path?
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3. Sequential Gate-Level Timing

3.2. Hold Time

FFO tpd ted
A — XNOR2 7t 1t
N FF (tcg) 9T 21
FF (tsetup) 10T
— FF (t 1t
B AW Clk FF2 o (thota)
TC 26T
1 a
Clko _I I
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time
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3. Sequential Gate-Level Timing 3.2. Hold Time

Hold Time Constraint

CLK CLK
e A
R1 R2

1

|

)

1

HA !

Q1 X :
T 1

) ! ! 1

D2 | —»00000XXXX l
1z | ! |
:ccq: tcd 1 :
> !

» thold " !

¢ Hold time constraint is a race between the clock and data
— We want the clock to win, we want the clock to cause the leader latch to
become opaque before the data is sampled

e How can we fix a hold time violation?

e Static timing analysis table for sequential logic shows the setup and hold
time constraints on every path through the gate-level network that
are required to ensure correct operation

¢ In this course we assume the following are unconstrained

- paths from input to any output
— paths from input to any flip-flop
— paths from any flip-flop to any output

¢ Each constraint is an inequality which is either:

— > or < (satistified, no timing violation)
— # or £ (not satistified, timing violation)
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3. Sequential Gate-Level Timing 3.2. Hold Time

FEO tpd tea
A — NAND2 2t 1t
a NOR2 3t 1t
FF, FF (th) 9t 27
B ] FF,
— FF (fotip) 10T
aa Y FF (thor)
].:EQ TC 30T
C —
N
Path Start Path End
Point Point Constraint Constraint

* Are there any unsatisfied constraints (i.e., timing violations)?

* What is the critical path and short path of this gate-level network?

* What is the minimum clock period (T¢) that would still ensure

correct operation?

* What is the maximum clock frequency that would still ensure

correct operation?
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3. Sequential Gate-Level Timing

3.2. Hold Time

t t
FF, pd cd
R NOT 1Tt 1t
AND2 3t 1t
XOR2 7T 1t
FF,; FF (tcg) 9t 21

[] {>o
|45 FF FF (tsetup) 107
2 EF (tr014) 1t
Tc 23T
Path Start Path End
Point Point Constraint Constraint

* Are there any unsatisfied constraints (i.e., timing violations)?

* What is the critical path and short path of this gate-level network?

* What is the minimum clock period (T¢) that would still ensure

correct operation?
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3. Sequential Gate-Level Timing 3.3. Clock Skew

3.3. Clock Skew
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3. Sequential Gate-Level Timing 3.3. Clock Skew

FF, FF,

/N

tak—Fr1

Setup Time Constraint with Clock Skew

Hold Time Constraint with Clock Skew

* Timing constraints are a race between the clock and data
— Setup time constraint — we want the data to win
— Hold time constraint — we want the clock to win

* Positive clock skew

— Slows down the clock, easier for the data to win the race
— Decreases effective setup time, easier to satisfy setup time contraint
— Increases effective hold time, harder to satisfy hold time constraint

* Negative clock skew

— Effectively slows down the data, easier for clock to win the race
— Increases effective setup time, harder to satisfy setup time contraint
— Decreases effective hold time, easier to satisfy hold time constraint
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3. Sequential Gate-Level Timing 3.3. Clock Skew

FEO tpd tea

A — NAND2 2t 1t
a NOR2 3t 1t
FF, FF (th) 9t 27

B ] FF,

—] FF (fotip) 10T
aa Y FF (thor)
FF2 FF (tskew) 4t
45
Path Start Path End
Point Point Constraint Constraint

* Are there any unsatisfied constraints (i.e., timing violations)?

* What is the critical path and short path of this gate-level network?

* What is the minimum clock period (T¢) that would still ensure

correct operation?

* What is the maximum clock frequency that would still ensure

correct operation?
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3. Sequential Gate-Level Timing 3.4. Timing Constraints in Practice

3.4. Timing Constraints in Practice

e Static timing analysis involves “statically” analyzing all constraints
across all paths in the entire design

* Timing closure is the process of guaranteeing that all timing
constraints are satisfied in a design (i.e., no setup time constraint
violations and no hold time constraint violations)

1 set_max_delay -from [all_inputs] -to [all_outputs] 20
2 set_min_delay -from [all_inputs] -to [all_outputs] O
3

4 create_clock -name clk -period 20 [get_ports {clk}]

5

6 set_input_delay -add_delay -clock clk -max O [all_inputs]
7 set_input_delay -add_delay -clock clk -min O [all_inputs]

8 set_output_delay -add_delay -clock clk -max O [all_outputs]
9 set_output_delay -add_delay -clock clk -min O [all_outputs]
set Operating Conditions na = [wnmvps«:nm

O Slow 1100mV 85C Model Command Info Summary of Paths.

om Node

© Slow 1100mV 0C Model ToNode launchClock LatchClock  Relationship  Clock Skew

6125 swi(2)

Swi1)

LEDR[)]  CLOCK_50 CLOCK 50 20,000

© Fast 1100mV 85C Model

LEDR{0] 20.000

cLocK_50

€LOCK_50 0.000

6180  SW[o] LEDR[D]  CLOCK_50 CLOCK 50 20,000 0.000 13820

Paths in our
Raport ] Design

B Timing Analyzer summary

© Fast1100mV 0C Model

Advanced /O Timing
E® 5D File List Path #1: Setup slack is 6.125 Path
v I Report Timing PathSummary  Statistcs  DataPath  waveform  Extra Fitterinformation Pa
o™ stow 1100my esc vodel i
= Total Incr  RF Type  Fanout Location Element
2 v o000 0.000 clock path
e Ll 0000 0000 lock network del:
- clock network delay
%, Open Project.. How Our Loy
3 oo o000 F B 1 PIN_T13 swizl Path
Netlist Setup ” - i
4 v oaers 13875 ata path ropagates
P Create Timing Netlist P pag
S e 1 0000 0000 FF I 1 I0BUF_X34_Y0_N1 SWi2J-input
(S ey 2 4559 4559 P CEL 1 I0IBUF_X34_Y0_N1 SW(zI-inputlo Lat
P Reset Design 3 6852 2293 FF IC 1 MLABCELL X34 ¥2 N30 my_detector|out-Ojdataf
Dat.
I 56t Operatig Conditons. B 6933 oom FF cEL 1 MLABCELL 134 Y5100 |y, Betecurjour-Oleambeut
Reports s 0321 3388 FF K 1 I00BUF_X0_Y18 N79  LEDRIO}-outputli
v I siack 5 13875 3554 FF CEL 1 I00BUF_X0_Y18 N79  LEDR[O-outputlo
BB Report Setup Summary 7 13875 0000 FF CEL 0O PIN_AAZ LEDR[0) Lo
EJ Report Hold Summary
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3. Sequential Gate-Level Timing

3.4. Timing Constraints in Practice

¢ Increasing the supply voltage 4
makes the transistors faster

— requires higher power consumption
and uses up more energy

— enables running at a shorter clock
period (higher clock frequency)

* Decreasing the supply voltage
makes the transistors slower

— requires lower power consumption
and uses up less energy

Power Consumption (W)

v

- enables running at a longer clock Supply Voltage (V)
period (lower clock frequency)

* Laptop power modes enable trade-off performance vs. power

— When your laptop goes into sleep mode, it lowers the supply voltage and

uses a longer clock period (lower clock frequency) to reduce power

— When your laptop goes into turbo boost mode, it increases the supply
voltage and uses a shorter clock period (higher clock frequency) to
improve performance (but at higher power causing the fan to turn on)

Q
‘ Joe Lipscomb
Apple Account

Wi-Fi
Bluetooth
Network
VPN

- Battery

Ei2] General

< Battery

@ Battery Level: 100%

Battery Health Normal (3)

Energy Mode
Your Mac can optimize either its battery usage with Low Power Mode, or its
performance in resource-intensive tasks with High Power Mode.

Your Mac will automatically choose the best level of

performance and energy usage Automatic
High Power
On power adapter Automatic £

Your Mac will automatically choose the best level of
performance and energy usage.
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3. Sequential Gate-Level Timing 3.5. Summary of Sequential Gate-Level Timing

3.5. Summary of Sequential Gate-Level Timing

CLK :
output(s) i ' (

input(s) XEXRXK | XREXTRIXRIR

tsetup E thold

1, by

foeq

CLK CLK
e ]
R1 R2

. Te
CLK T_ﬁ
Q1 S

D2

A
A,

A
Y
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4. Verilog Modeling

4. Verilog Modeling

* Although possible to use gate-level modeling for sequential logic, far

more common to use register-transfer-level modeling (RTL)

—_D Q}
™\

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

module DFF_RTL

(
input logic clk,
input logic d,
output logic q

);

always_ff @( posedge clk ) begin
q <= d;
end

endmodule

module DFFR_RTL

(
input logic clk,
input logic rst,
input logic d,
output logic q

always_ff @( posedge clk ) begin
if ( rst )
q <= 1'b0;
else

q <= d;

“ECE2300_SEQ_XPROP( q, $isunknown(rst) );
end

endmodule

Topic 6: Sequential Logic

34



4. Verilog Modeling

module DFFRE_RTL

en (
—AD Q - input logic clk,
rst input logic rst,

1
2
3
4
T T 5 input logic en,
6 input logic d,
7 output logic q
8 )3

9
10 always_ff @( posedge clk ) begin

11

12 if ( rst )

13 q <= 1'b0;

14 else if ( en )

15 q <= d;

16

17 “ECE2300_SEQ_XPROP( q, $isunknown(rst) );

18 “ECE2300_SEQ_XPROP( q, (rst == 0)

19 && $isunknown(en) );
20 end

21
2 endmodule

¢ Even though we are raising the level of abstraction, must always
keep in mind the hardware we are modeling!

— Critical to keep clean separation between combinational logic and
sequential logic
* In this course, always_ff blocks are only allowed in:

— DFF_RTL, DFFR_RTL, DFFRE_RTL
— Registers, Memories
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