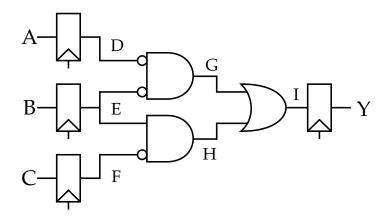
ECE 2300 Digital Logic and Computer Organization Topic 6: Sequential Logic

http://www.csl.cornell.edu/courses/ece2300 School of Electrical and Computer Engineering Cornell University

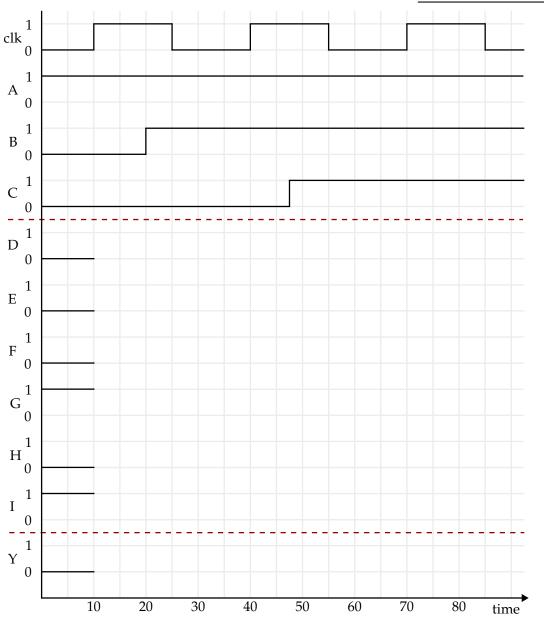

revision: 2025-12-09-12-28

List of Problems

1	Sequential Network 1	2
2	Sequential Network 2	6
3	Sequential Network 3	9
4	Sequential Network 4	12
5	Sequential Network 5	14

Problem 1. Sequential Network 1

Complete the explicit-clock simulation table for the following sequential network.


clk	A	В	С	D	Е	F	G	Н	I	Y
1	0	0	0							
0	0	0	0							
1	1	0	0							
0	1	0	0							
1	1	1	0							
0	1	1	0							
1	1	1	1							
0	1	1	1							
1	0	0	1							
0	0	0	1							
1	0	0	0							
0	0	0	0							

NetID: __

Complete the timing diagram for the sequential gate network utilizing the delay model to the right. Illustrate both the propagation and contamination delays in the timing diagram. Note: Use NOT-Gates for inverted inputs.

	t_{pd}	t_{cd}
NOT	1τ	1τ
AND2	3τ	1τ
OR2	4 au	1τ
$FF(t_{cq})$	9τ	2τ

$\begin{array}{c} \text{FF } (t_{setup}) \\ \text{FF } (t_{hold}) \end{array}$	10τ 1τ
T_C	30τ

Prof. Batten's Solution

https://vod.video.cornell.edu/id/1_uh9aao0s

ECE 2200	Digital	Lagic and	Committee	Organiza	tion
ECE 2300	Digitut	Logic ana	! Computer	Organizai	uon

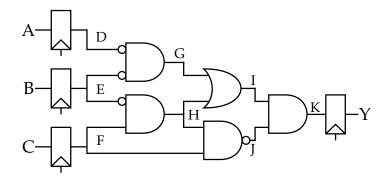
Use the following table to list every constraint which must be satisfied to ensure correct operation of this gate-level network. Start by labeling the two possible constraints at the top of the table. You do not need to include the unit τ in your constraints. Each path should be specified with just the start and end points of the path. You do not need to list the gates along the path. Assume paths that start at an input port or end at an output port are unconstrained. Each constraint should be expressed as an inequality. If the constraint is satisfied use \geq or \leq . If the constraint is not satisified use \geq or \leq . You must show each delay component in the inequality along with the the final sum. Circle any constraints which are not statisified and would result in a timing violation. *Note: Use NOT-Gates for inverted inputs.*

Path Start Point	Path End Point	Constraint	Constraint

Are there any unsatisfied constraints (i.e., timing violations)?
Identify the critical path. Describe its path and calculate its setup time slack.
Identify the short path. Describe its path and calculate its hold time slack.
What is the minimum clock period (T _C) that would still ensure correct operation?
What is the maximum clock frequency that would still ensure correct operation? Presume 1τ to be $1\mathrm{ns}$.

Computing Slack

Slack measures the margin by which the timing constraints are met (positive slack) or missed (negative slack). For the setup constraint ($T_C \ge t_{pd,cq} + t_{pd,comb} + t_{setup}$), the setup slack is computed using the following formula:


$$t_{slack, setup} = T_C - t_{pd, cq} - t_{pd, comb} - t_{setup}$$

For the hold constraint ($t_{hold} \le t_{cd,cq} + t_{cd,comb}$), the hold slack is computed using the following formula:

$$t_{slack,hold} = t_{cd,cq} + t_{cd,comb} - t_{hold}$$

Problem 2. Sequential Network 2

Complete the implicit-clock simulation table for the following sequential network. *Note: Due to the logic in the subsequent stage, a larger output flip-flop is used in this stage (with different setup and hold parameters).*

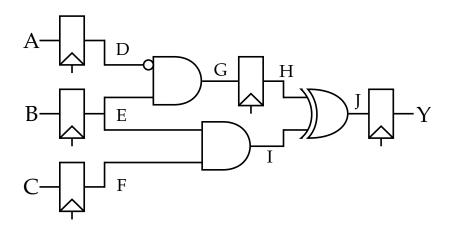
A	В	С	D	Е	F	G	Н	I	J	K	Y
0	0	0									
0	1	1									
0	1	0									
1	1	1									

NetID:

Use the following table to list every constraint which must be satisfied to ensure correct operation of this gate-level network. Start by labeling the two possible constraints at the top of the table. You do not need to include the unit τ in your constraints. Each path should be specified with just the start and end points of the path. You do not need to list the gates along the path. Assume paths that start at an input port or end at an output port are unconstrained. Each constraint should be expressed as an inequality. If the constraint is satisfied use \geq or \leq . If the constraint is not satisified use $\not\geq$ or $\not\leq$. You must show each delay component in the inequality along with the the final sum. Circle any constraints which are not statisified and would result in a timing violation.

	t_{pd}	t_{cd}
NOT	1τ	1τ
NAND2	2τ	1τ
AND2	3τ	1τ
OR2	4τ	1τ
$FF(t_{cq})$	9τ	2τ
FF-Input ($t_{in,setup}$)	10)τ
FF-Input $(t_{in,hold})$	1	τ
FF-Output ($t_{out,setup}$)	20)τ
FF-Output ($t_{out,hold}$)	5	τ
T_C	45	5 τ

Path Start Point	Path End Point	Constraint	Constraint


Are there any unsatisfied constraints (i.e., timing violations)?
Identify the critical path. Describe its path and calculate its setup time slack.
Identify the short path. Describe its path and calculate its hold time slack.
What is the minimum clock period (T _C) and the maximum clock frequency that would still ensure correct operation? Presume 1τ to be $1\mathrm{ns}$.
In case the hold constraint was violated: How can this be fixed? Can this fix be performed after tapeout? Note: Draw the potential fix in the block diagram.

Stephen's Solution

https://vod.video.cornell.edu/id/1_vvqvf4my

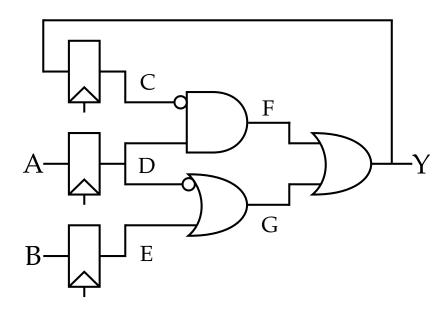
Problem 3. Sequential Network 3

Complete the implicit-clock simulation table for the following sequential network.

A	В	С	D	Е	F	G	Н	I	J	Y
0	0	0								
0	1	0								
1	1	0								
1	1	0								
0	1	1								
0	1	1								
1	1	1								
0	1	0								

NetID:		

Use the following table to list every constraint which must be satisfied to ensure correct operation of this gate-level network. Start by labeling the two possible constraints at the top of the table. You do not need to include the unit τ in your constraints. Each path should be specified with just the start and end points of the path. You do not need to list the gates along the path. Assume paths that start at an input port or end at an output port are unconstrained. Each constraint should be expressed as an inequality. If the constraint is satisfied use \geq or \leq . If the constraint is not satisfied use $\not\geq$ or $\not\leq$. You must show each delay component in the inequality along with the the final sum. Circle any constraints which


·	t_{pd}	t_{cd}	
NOT	1τ	1τ	
AND2	3τ	1τ	
XOR2	7τ	1τ	
$FF(t_{cq})$	9τ	2τ	
$FF(t_{setup})$	10)τ	
$FF(t_{hold})$	1τ		
T_C	27τ		

are not statisified and would result in a timing violation. Note: Use NOT-Gates for inverted inputs.

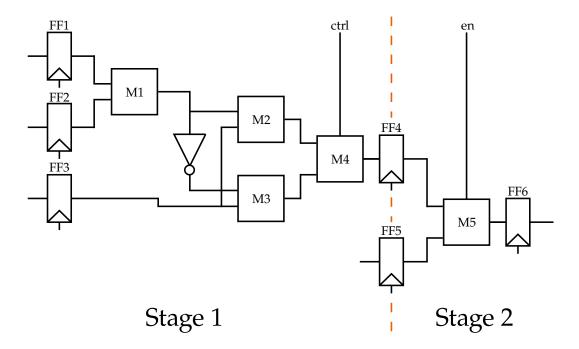
Path Start Point	Path End Point	Constraint	_ Constraint
Are there an	y unsatisfied constraints (i.e., timing vi	olations)?	

Problem 4. Sequential Network 4

Complete the implicit-clock simulation table for the following sequential network.

A	В	С	D	E	F	G	Y
0	0						
1	0						
1	0						
1	1						
0	0						

Use the following table to list every constraint which must be satisfied to ensure correct operation of this gate-level network. Start by labeling the two possible constraints at the top of the table. You do not need to include the unit τ in your constraints. Each path should be specified with just the start and end points of the path. You do not need to list the gates along the path. Assume paths that start at an input port or end at an output port are unconstrained. Each constraint should be expressed as an inequality. If the constraint is satisfied use \geq or \leq . If the constraint is not satisified use $\not\geq$ or $\not\leq$. You must show each delay component in the inequality along with the the final sum. Circle any constraints which


1τ 3τ 4τ	1τ 1τ 1τ	
4τ	1τ	
_		
9τ	2τ	
10τ		
1τ		
30τ		
	1′	

are not statisified and would result in a timing violation. Note: Use NOT-Gates for inverted inputs.

n Start Point	Path End Point	Constraint	Constrair
Are there ar	ny unsatisfied constraints (i.e	e., timing violations)?	
Identify the	critical nath. Describe its n	ath and calculate its setup time slack.	
rucitiny the	critical path. Describe its po	and carculate its setup time stack.	
I domtify the	shout math. Docariba its mat	h and salaulata ita hald tima alask	
identity the	short path. Describe its pat	h and calculate its hold time slack.	
		\ \d_{\dagger}	
	-	 that would still ensure correct oper till ensure correct operation? Presume 	
	ioun iroquoney unu mounu s	op cannon a recursion	11 10 00 11101

Problem 5. Sequential Network 5

In this problem, we will inspect a two stage network containing the abstract combinational modules M1-M5.

Use the following table to list every constraint which must be satisfied to ensure correct operation of this gate-level network. Start by labeling the two possible constraints at the top of the table. You do not need to include the unit τ in your constraints. Each path should be specified with just the start and end points of the path. You do not need to list the gates along the path. Assume paths that start at an input port or end at an output port are unconstrained. Each constraint should be expressed as an inequality. If the constraint is satisfied use \geq or \leq . If the constraint is not satisified use $\not\geq$ or $\not\leq$. You must show each delay component in the inequality along with the the final sum. Circle any constraints which are not statisified and would result in a timing violation.

	t_{pd}	t_{cd}
NOT	1τ	1τ
M1	5τ	1τ
M2	10τ	1τ
M3	12τ	1τ
M4	7τ	1τ
M5	17τ	1τ
$FF(t_{cq})$	9τ	2τ
$FF(t_{setup})$	10	τ
$FF(t_{hold})$	1τ	
T_C	40τ	

Path Start Point	Path End Point	Constraint	Constraint