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Keyframes

Automatically fill in motion between these
points in time

Manual Tweening

Tweening = Interpolation

VRML Examples

Floops

Animation in VRML

DEF PI Positioninterpolator {

key [00.51]

keyValue [

0050,| (x(t) y(t) 2(t))
0250,
0050
I
DEF Ol OrientationlInterpolator {
key [01] L
keyValue [
0010,

0-101.570796, l (n,(t) ny(t) n.(t;) B(t;)) quaternion

Three Degrees of Freedom

Gimball

Orientation and Euler Angles

« The orientation of any 3D object may
be described by three Euler angles:
successive rotations (relative to an
initial orientation) around three axes:

— x-roll: rotation around x axis.
— y-roll: rotation around y axis.
— z-roll: rotation around z axis.

+ The order of rotation application is
important, as rotations do not
commute.

An obvious way to interpolate two
orientations is to interpolate their Euler
angles.
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Rotation by Euler Angles Gimbal Lock
R f.7)=R, R, R, =
1 0 0 0 cosp 0 -sing 0 ! o L )
. Cosycos B sin ycosa+cosysin Bsina sin ysina—cosysin fcosa O
R (a): 0 cosa sina 0 Ry(ﬂ)* 1 0 0 —sin ycos B cosycosa —sin ysin Asina cosysin a +sin ysin fcosa 0
* 0 -sina cosa 0 sinfg 0 cosp 0 sin g —cos fisin a cos fcosa 0
0 0 0 1
When/j’:ﬁlhis is:
2
cosy siny 0 0 0 sinycosa+cosysina sinysina—cosycosa 0] [0 sin@ —-cosd O
R ()= —siny cosy 0 O 0 cosycosa—sinysina cosysina+sinycosa 0| |0 cos@ sin@ O
V)= 0 0 10 1 0 0 ol |1 o 0 o
0 0 01 0 0 0 1 0 0 0 1
where 6= a+ y, so one degree of freedom is lost.
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General Rotations

Rotation
Axis,

y axis

Euler, 1756

Theorem: (Euler): In 3D, any
displacement of a rigid body such
that a point on the rigid body remains
fixed, is equivalent to a single
rotation about some axis that runs
through the fixed point.

Rotation

(toward viewd)

STATIC POSITION

ROTATIONAL MOVEMENT

Equivalent: In 3D space, any two
Cartesian coordinate systems with a
common origin are related by a
rotation about some fixed axis.

Conclusion: Any 3D orientation may
be described by four parameters:
angle 6 and unit axis n=(n,,ny,n,).

Gimbal Lock

General Rotations (cont’d) Quaternions

Definition: A quaternion is a quadruple g=[s,v], where s is a scalar,
and v a three-dimensional vector.
The quaternions form a non-commutative group under the

Hamilton
1843

R(v) =R(v, +v,)
=R(v)+R(v,)
=V, +V, coséd

+(nxv)sing

=(n-v)n+(v—(n-v)n)cosé&
+(nxv)sing

=|vcosd+n(n-v)(1-cosd)
+(nxv)sin@

v, =(n-v)n
R(v,) =V, cos@+(nxv,)sin@

=V, cosé+(nxv)sin@
R(v) =y,

v=v-y
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multiplication rule:

Q,- 9, =[S1'V1]'[52!V2]

=[S, =V, V,, SV, +S,V; +V, XV, ]

Equivalent to:

q=Ss+iv, + jv, +kv,

where i = j?=k?=-1,ij =k, ji=—k
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Quaternions (cont’d) Special Cases

The conjugate of q,i[s'V] is The inverse of g =[sv] is: Seatare: 6000
a=[s-v] 2 q Complex numbers: [x.(y,0,0)]
q- = W 3D Vectors: [0,(xy.2)]
-9, = qj q:
Corollary:
The norm of g =[s,v] is
a-b ol =l

0 -0, =[s, V][5, v, ]
=[S,S, =V, - V,, SV, + S,V +V, XV, ]

HqHz =q-G=s>+Vi+Vi+V?
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Rotating with Quaternions

right hand
coordinate system

Examples

+ Rotation by ¢around unit direction n may be represented by the

unit quaternion
q=[cos4,nsin4]

X
+ The 3D vector [0,v] is rotated by q to:
1 —
Rq(v):q -v-q=q-v-q ‘
z
Since
R,(v) =[cos§,-nsin §]-[0,v]-[cos 4, nsin §]
. . . =(0,1,0), 6=0 n=(0,01),0=-x/2 n=(10,0),0=7/2
=[0,v(cos? £—sin®£) +2n(n-v)sin® £+ 2(nxv)cos £sin & n=(
[0.v(cos"3 2)+20(-V)sin’ + 2(Nxv)cosgsin ] q=(10,0,0) q=(1/42,0,0,-1/42) q=(1/42,1//2,0,0)

=[0,vcos&+n(n-v)(L-cosd)+(nxv)sind]

q=(cos,nsing)=(w,xy,2)

21 22

Quaternion to Rotation Matrix

Unit Quaternions (column vectors)

The quaternions used for rotation have only three degrees of freedom.
They all lie on the surface of a unit sphere in 4D space, forming a
subgroup.

Rotation by unit-length quaternion:

q=[cos§,nsing]=[w,x,y,1]

Theorem: Rotation by 6 and -0 in

Theorem: A vector v is invariant
under rotations around an axis
through v.

Proof: The rotation operator is
g=[s,cv] such that ||q||?=1.

q-v-q=[s,—cv]-[0,v]-[s,cv]
=[s,—cv]-[-cv-v,sv]
=[0,s?v+c*(v-v)v]
=(s? +c*(v-v))[0,v]
=[al’v
=v

the opposite direction are
equivalent.
Proof:

= in=e]=
[cos=£,-nsin-£]=

0 nsin®
[cos4,nsin4]

R,(0.vD=q-[0,v]-q=
vcosd+n(n-v)(1-cosd)+ (nxv)sin g

Theorem: Rotation by 6, and then
by 6, (around n) is equivalent to
rotation by 0,+0,.
Proof: (q,-(d,-v-,)- ;) =(d,-6,)-v-(d; - 0,)
=(4,-9,)-v-(4-,)
[cos%, nsin4]-[cos %, nsin %] =

[cos % cos % —sin &sin%,
n(sin % cos % +cos £sin 2] =

[cos 5% nsin 432

The first row of the equivalent rotation matrix:

R ([0,v]), =v,cos@ +n,(nyv, +nyv +nyv,){L-cosd)+(nyv,-nyv )sing
M., =cos 8 +n?(1-cos6)
M, =n.n, (1-cos@)-n,sin &

My =n,n,(1-cosd)+n, sing
2 2
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Quaternion to Rotation Matrix
(column vectors)

g =[cos& nsing]=[w,x,y,1]

M, = cos 8+ n?(L-cos d)
=1-2sin’£+n}(2sin’ £)
=1-2(n} +n} +n?)sin? 4+ n?(2sin” £)
=1-2(n} +nf)sin* 4
=1-2y*-27°

1-2y*-22%  2xy-2wz  2xz+2wy 0
y+2wz  1-2x*-2z2%  2yz-2wx O
2xz-2wy  2yz+2wx  1-2x*-2y* 0

0 0 0 1
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Rotation Matrix to Quaternion

Given rotation matrix

right hand
coordinate system

Examples

n=(0,0),6=0 n=(0,01),0=-7/2 n=(10,0),0=7/2

q=(10,0,0) q=(1/+2,0,0,-1/2) q=(/2,1/~2,0,0)
100 010 100

M=[010] M=[—100} M=0 0 -1
001 001 01 0

‘ q=(cos%,nsing)=(w,x,y,2) ‘

27

Mll MIZ MLB 0
M= MZ] MZZ MZJ 0
Mll MZZ MM 0
0 0 0 1
The equivalent quaternion is q = [w, x, Y, z] 1-2y'-22"  2xy-2wz  2xz+2wy 0
2| ez 122z ay-awx 0
M, + My, + My, +1=4-4(y* +2° + X*) = 4w’ 2xa-2wy  2yz+2wx 1-2x'-2y" 0
0 0 0 1
M
wWe n+My + My +1
2
M, -M
My, =M, =4wx = x=—2 —2
2~Mz i
M, -M
M, -M, =dwy = y=—52_—3
13— Mg, = 4wy y oo
My —-M, =4wz = Z:M
4w 2%
Prove Usmg

Quaternions and Matrices

« The quaternion i=(0,1,0,0) is rotation by = around the x axis.
+ The quaternion j=(0,0,1,0) is rotation by = around the y axis.
+ The quaternion k=(0,0,0,1) is rotation by = around the z axis.
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Animation in VRML

DEF PI Positionlnterpolator
key [00.51] ﬁ
keyValue [
0050, (x(t) y(t) 2(t))
0250,
0050
I

DEF Ol Orientationinterpolator {
key [01 ] ]
keyValue [

0010,

0-101.570796, [ (n,(t) n,(t) n,(t) (1)) _quaternion
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Geodesics

« Agreatcircle is a circle on the surface of a sphere that has the same
circumference as the sphere, dividing the sphere into two equal
hemispheres.

« A great circle is a spherical geodesic — the shortest path between two
points on a sphere.

AT CORNELL TECH




CS3620

Intro to Computer Graphics

Animation

Interpolating Two Orientations

Orientations may be interpolated by interpolating their respective
quaternions.

Quaternions on a 4D sphere may be interpolated along a geodesic (the
shortest path between two points on a sphere).

For any ue[0,1], writing q(u) = a(u)gy*+p(u)q;, and solving the following
system of equations for a(u) and p(u):

qD
cos =[] 0s <., >

q(u) uelo.1]
1=|a)]f = @) + A(u)? +2(u) Au) < Gy, G, > %

cos(up) =< 0y, q(u) >=a(u) + B(u) <Gy, ¢, > A G
q(0)=q,
ab=q,

31

COS@ =<(,, 0, >
1=a’+p°+2af <4y, q, >
cos(up) =a + £ <q,,q, >

1=a?+ % +2aficosp
cos(up) =a + Bcosg

B2 cos® p+ Bcosp(l—2cosup)—1=0

sinugp a(u):sin(l—u)w
sing sing

pl)=

Spherical Linear Interpolation (SLERP) \

sind=u)g , -, SiNWe) o 10,13
sing sing

qu) =

Equivalentto:  q(u) =0, (05'y)"
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Interpolating Multiple Orientations

As with linear interpolation between multiple positions, spherical linear
interpolation between multiple orientations generates discontinuities in
the derivative at the interpolated points.

This may be solved by more elaborate interpolation schemes, which
are not shortest path, similarly to splines for positions.

VZ.

Vo

33

Copyright
C. Gotsman, G. Elber, M. Ben-Chen
Computer Science Dept., Technion

JACOBS

TECHNION-CORNELL
INSTITUTE

AT CORNELL TECH




