Intro to Computer Graphics

Geometric Modeling II

Cubic Splines

Standard spline input - set of points $\left\{P_{i}\right\}_{i=0, n}$

- No derivatives' specified as input

Interpolate by n cubic segments ($4 n$ DOF):
\square Force C^{1} and C^{2} continuity at points

- Solve $4 n$ linear equations in $4 n$ unknowns

Copyright
C. Gotsman, G. Elber, M. Ben-Chen

Computer Science Dept., Technion

JACOBS
TECHNION-CORNELL INSTITUTE

Page 1

CS5620

Geometric Modeling II

Intro to Computer Graphics

Algebraic Form of Bezier Curves
Bezier curve for set of control points $\left\{P_{i}\right\}_{i=0, n}$

$\left\{B_{i}^{n}(t)\right\}_{i=0, n}=$ Bernstein basis of polynomials of degree n

Copyright
C. Gotsman, G. Elber, M. Ben-Chen

Computer Science Dept., Technion

JACOBS
TECHNION-CORNELL INSTITUTE

Page 2

CS5620

Intro to Computer Graphics

Geometric Modeling II

$$
B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i} t^{i} \quad \forall t \in[0,1], \forall i \quad B_{i}^{n}(t)>0, \quad \sum_{i=0}^{n} B_{i}^{n}(t)=1
$$

Bezier curve is linear combination of basis functions:

$$
C(t)=\sum_{i=0}^{n} P_{i} B_{i}^{n}(t)
$$

Bezier curve is convex combination of control points (combination depends on t):

Idea: Generate basis of functions with local support

For each parameter value only a finite set of basis functions is non-zero
The parametric domain is partitioned into sections at integer parameter values (called knots).

Copyright
C. Gotsman, G. Elber, M. Ben-Chen

Computer Science Dept., Technion

JACOBS
TECHNION-CORNELL INSTITUTE

Page 3

CS5620

Geometric Modeling II

Intro to Computer Graphics

Properties of B-Spline Curves

$$
C(\theta)=\sum_{\mathrm{e}}^{-1} P N,(\theta), \quad t \in[\beta, n)
$$

For n control points, $C(t)$ is a piecewise polynomial of degree 3 , defined over $t \in[3, n$)
$C(t) \in \bigcup_{i=0}^{n-4} C H\left(P_{i}, . ., P_{i+3}\right)$
$C(t)$ is affine invariant and variation diminishing

Questions:

- What is $C(i)$ equal to?
- What is $C^{\prime}(i)$ equal to?
- What is the continuity of $C(t)$? Prove !

From Curves to Surfaces

A curve is expressed as inner product of coefficients
P_{i} and basis functions

$$
C(u)=\sum_{i=0}^{n} P_{i} B_{i}(u)
$$

Treat surface as a curve of curves. Also known as tensor product surfaces
Assume P_{i} is not constant, but are functions of a second, new parameter v :

$$
P_{i}(v)=\sum_{j=0}^{m} Q_{i j} B_{j}(v)
$$

Copyright
C. Gotsman, G. Elber, M. Ben-Chen

Computer Science Dept., Technion

JACOBS
TECHNION-CORNELL INSTITUTE

CS5620

Intro to Computer Graphics

Geometric Modeling II

Bilinear Patches

Bilinear interpolation of 4 3D points - 2D analog of 1D linear interpolation between 2 points in the plane Given $P_{00}, P_{01}, P_{10}, P_{11}$ the bilinear surface for $u, v \in[0,1]$ is:

```
P(u,v)=(1-u)(1-v)P}\mp@subsup{P}{00}{}+(1-u)v\mp@subsup{v}{01}{}+u(1-v)\mp@subsup{P}{10}{}+uv\mp@subsup{P}{11}{
```


Questions:
What does an isoparametric curve of a bilinear patch look like? Can you represent the bilinear patch as a Bezier surface? When is a bilinear patch planar ?

JACOBS
TECHNION-CORNELL institute

CS5620

Intro to Computer Graphics

Geometric Modeling II

Surface of Revolution
Rotate a, usually planar, curve around an axis

Consider curve
$\beta(t)=\left(\beta_{x}(t), 0, \beta_{z}(t)\right)$
and let Z be the axis of revolution.

$x(u, v)=\beta_{x}(u) \cos (v)$,
$y(u, v)=\beta_{x}(u) \sin (v)$,
$z(u, v)=\beta_{z}(u)$.

Extruded Surface

Extrusion of a, usually planar, curve along a linear segment.

Given curve $\beta(t)$ and
 vector \vec{V}

$$
S(u, v)=\beta(u)+v \vec{V}
$$

36

Copyright

C. Gotsman, G. Elber, M. Ben-Chen

Computer Science Dept., Technion

JACOBS
TECHNION-CORNELL INSTITUTE

Page 6

CS5620

Intro to Computer Graphics

