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Geometric  

Modeling 

 Part II 
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Physical Splines 
Curve design pre-computers 

3 4 

Cubic Splines 

 Standard spline input – set of points {Pi}i=0, n 

No derivatives’ specified as input 

 Interpolate by n cubic segments (4n DOF): 

Force C1  and C2 continuity at points 

Solve 4n linear equations in 4n unknowns 

Interpolation (2  equations):

C continuity constraints (  equations):

C continuity constraints (  equations):
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Cubic Splines  

 Have two degrees of freedom left (to reach 4n DOF) 

 Options 

Natural end conditions: C1''(0) = 0, Cn''(1) = 0 

Complete end conditions: C1'(0) = 0, Cn'(1) = 0 

Prescribed end conditions (derivatives available at the ends): 

    C1'(0) = T0, Cn'(1) = Tn 

Periodic end conditions 

 C1'(0) = Cn'(1), C1''(0) = Cn''(1), 

  

 

 

 Question: What parts of C(t) are affected as a result of a change in 

Pi ? 

prescribed 

natural 

demo 

Basis functions should be local 6 

 The assumption t  [0,1] (uniform parameterization) 

is arbitrary 

Implicitly implies same curve “length” for each segment 

 Not natural if points are not equally spaced 

One alternative - chord-length parameterization: 

 

 

 

 

Parameterization 
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http://www.cse.unsw.edu.au/~lambert/splines/natcubic.html
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Parameterization 

Uniform 

Chord- length 

[0,1] 

[0,1] 

[0,8] 

[0,1] 

[0,3] 

[0,1] 

[0,1] 

[0,4] 
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Bezier Curves 

 Bezier curve is an 

approximation of given 

control points 

 Denote by C(t): t[0,1] 

 Bezier curve of degree 

n is defined over n+1 

control points {Pi}i=0, n  
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De Casteljau Construction 
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Select t[0,1] value.  

t = 1/3 

demo 
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Algebraic Form of Bezier Curves 

Bezier curve for set of control points {Pi}i=0, n : 

 

 

 

{Bi
n(t)}i=0, n  = Bernstein basis of polynomials of degree n 

 

Cubic case: 
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Algebraic Form of Bezier Curves 

                                 

 

why? 

 Curve is linear combination of basis functions 

 Curve is convex combination of control points 
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Properties of Bezier Curves 
 C(t) is polynomial of degree n 

 C(t)  CH(P0,…,Pn) 

 C(0) = P0 and C(1) = Pn 

 C'(t) is a Bezier curve of one degree less 

 C'(0) = n(P1P0)   and  C'(1) = n(PnPn-1) 

 

 C(t) is affine invariant and variation diminishing 
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../Zachi/bezier.mov
http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/cagd/chap4fig2.html
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Properties of Bezier Curves 

 Questions: 

 

 

What is the shape of Bezier curves whose control points lie 
on one line? 

 

 

 

 

 

How can one connect two Bezier curves with C0  continuity? 
C1 ? C2 ?  

14 

Drawbacks of Bezier Curves 
 Degree corresponds to number of control points 

Global support: change in one control point affects the entire 

curve 

For large sets of points – curve deviates far from the points 

 Cannot represent conics exactly.  Most noticeably 

circles 

Can be resolved by introducing a more powerful representation 

of rational curves. 

For example, a 90 degrees arc as a rational Bezier curve: 
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B-Spline Curves 

 Idea: Generate basis of functions with local support 

 

 

 

 

 

 For each parameter value only a finite set of basis 
functions is non-zero 

 The parametric domain is partitioned into sections at 
integer parameter values (called knots). 
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Cubic B-Spline Basis 
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Cubic B-Spline Basis 
 For any t  [3, n]: 

      

 For any t  [3, n] at most four basis functions are non 

zero 

 Any point on a cubic B-Spline is a convex combination 

of at most four control points  
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 B-Splines do not interpolate control points 

in particular, the uniform cubic B-spline curves do not interpolate 

the end points of the curve. 

 

Ways to force endpoint interpolation: 

Let P0 = P1 = P2 (same for other end) 

Add a new control point (same for other end) P-1 = 2P0 – P1 and a 

new basis function N-1(t). 

Boundary Conditions for  

Cubic B-Spline Curves 
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Local Control of B-spline Curves 

Control point Pi  

affects C(t) only for 

t(i,i+4) 

demo 
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Properties of B-Spline Curves 
   

 

 For n control points, C(t) is a piecewise polynomial of 

degree 3, defined over t[3, n) 

                                   

 

 C(t) is affine invariant and variation diminishing 

 

Questions: 
 What is C(i) equal to? 

 What is C’(i) equal to? 

 What is the continuity of C(t) ?  Prove ! 
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From Curves to Surfaces 

 A curve is expressed as inner product of coefficients 

Pi and basis functions 

 

 

 Treat surface as a curve of curves. Also known as 

tensor product surfaces 

 Assume Pi is not constant, but are functions of a 

second, new parameter v: 
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From Curves to Surfaces (cont’d) 
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http://staff.www.ltu.se/~peppar/presentations/bibdc961114/misc_applets/ParamCurve/
http://www.math.psu.edu/dlittle/java/parametricequations/beziersurfaces/index.html
../Applets/applets/bezpatch/html/index.html
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Isoparametric Curves 
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Surface Constructors 

 Construction of the geometry is a first stage in any 

image synthesis process 

 Use a set of high level, simple and intuitive, surface 

constructors:  

Bilinear patch 

Ruled surface 

Boolean sum 

Surface of revolution 

Extrusion surface 

Swept surface 

27 

Bilinear Patches 

 Bilinear interpolation of 4 3D points - 2D analog of 1D 

linear interpolation between 2 points in the plane 

Given P00, P01, P10, P11 the bilinear surface for u,v[0,1] 

is: 
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P10 
P11 

P00 

P10 

P01 

x 

y 

Questions: 

What does an isoparametric curve of a bilinear patch look like ? 

Can you represent the bilinear patch as a Bezier surface ? 

When is a bilinear patch planar ? 

00 01 10 11
( , ) (1 )(1 ) (1 ) (1 )P u v u v P u vP u v P uvP       
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Given two curves a(t) and b(t), the corresponding 

ruled surface between them is:  

 

 

 

 

 

 

The corresponding points on a(u) and b(u) are connected by 

straight lines 

Questions:  

When is a ruled surface a bilinear patch? 

When is a bilinear patch a ruled surface? 

Ruled Surfaces 

S(u,v) = v a(u) + (1-v)b(u) 

a(u) b(u) 

u0 

u1 

u0 

u1 

Ruled Surfaces 

30 



CS5620 

Intro to Computer Graphics 

Copyright     

C. Gotsman, G. Elber, M. Ben-Chen 

Computer Science Dept.,  Technion 

Geometric Modeling II 

Page 6 

Bridge of Strings 
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Boolean Sum 

Given four connected curves i  i=1,2,3,4,  Boolean sum 

S(u, v) fills the interior.   
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Boolean Sum (cont’d) 

 S(u,v) interpolates the four 

     i  along its boundaries. 
 

 For example, consider the 

    u = 0 boundary: 
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Surface of Revolution 
 Rotate a, usually planar, 

    curve around an axis  

 

 Consider curve  

       (t) = (x(t), 0, z(t))  

   and let Z be the axis of  

   revolution.  
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Surfaces of Revolution 
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Extruded Surface 

 Extrusion of a, usually  

    planar, curve along a  

    linear segment.  

 

Given curve (t) and 

    vector 
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Sweeped Surface 
 Rigid motion of one (cross section) curve along another 

(axis) curve: 

 

 

 

 

 

 

 

 The cross section may change as it is swept 

 

Question:  Is an extrusion a special case of a sweep? 

 a surface of revolution? 


