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Objective

Methods and algorithms to mathematically model shape

of real world objects
_ - _ H

- m MeshMixer
Maya
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: ZBrush

Volumetric Representation

Voxel-based

Advantages: simple and robust Boolean operations, in/out

points surface volume telsts, can represent and model thg interior of the objrj,-clt.
Disadvantages: memory consuming, non-smooth, difficult
to manipulate.

Use set of volumetric primitives AT Operations performed
m Box, sphere, cylinder, cone, etc... recursively
For constructing complex objects Final object stored as
use Boolean operations sequence (tree) of
= Union operations on
= Intersection primitives
m Subtraction Common in CAD
m Complement packages —

m mechanical parts fit well
into primitive based
framework

Can be extended with
free-form primitives
Demo
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Curve Design

Surface Representation

Explicit form: z = z(x, y)
Implicit form: f(x, y, z2) =0
Parametric form: S(u, v) = [x(u, v), y(u, v), z(u, V)]

Example — origin centered sphere of radius R:
Explicit:
z(x,y) = +\/mu 7= —\/m
Implicit:
X’ +y*+2°-R*=0
Parametric :

Parametric Curves

Analogous to trajectory of particle in space.
Single parameter t € [T,,T,] — like “time”.
position = p(t) = (x(t),y(t)),

tangent velocity = v(t) = (X'(t),y’(t))
curvature = k(t) = 1/r(t)

Circle:
m X(t) = cos(t), y(t) = sin(t) t € [0,2m) |lv(D)]l=1
m X(t) = cos(2t), y(t) = sin(2t) t  [0,%) ||v(t)
m x(t) = (1-2)/(1+2), y(t) = 2U(1+2) t e

(X(t).y(®).
V(1) = (X(0,y (1)

Mathematical Continuity

C,(t) & Cy(t), t € [0,1] - parametric curves

Level of continuity of the curves at C,(1) and C,(0) is:
m CLC,(1) #C,(0) (discontinuous)
m C% C,(1) = C,(0) (positional continuity)
m Ck k>0 : continuous up to ki derivative

cPW=c,"(), 0<j<k
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From Functions to Curves

Fit function independently for x(t) and y(t) to obtain C(t)

X

N
e
[ te[0,1]

[=(8), w(0)] = [~13 = 22 4 3t, 164> + 1562

Geometric Continuity

Mathematical continuity is sometimes too strong
May be relaxed to geometric continuity
m G k<0:Same as Ck
m Gk k=1:C(1) =aC',(0)
m GK k>0 : There is a reparameterization of C,(t) & C,(t), where

the two are Ck
}:Zv Cs

C

E.g.

m C,(t)=[cos(t),sin(t)], te[-n/2,0]
C,(t)=[cos(t),sin(t)], te[0,m/2]
Cs(t)=[cos(2t),sin(2t)], te[0,n/4]

B C,(t) & C,(t) are C! (& G) continuous

m C,(t) & C4(t) are G! continuous (not C*)
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Rules of the game
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Goal:
m Using a small set of control points the user can control a curve

Setup: B ={M, (), M, (1), M, (1), M, ()} ={L t,t*,°}

m Looking for a curve P(t) = (x(¢t), y(t))

m Define P(t) = X; ¢;B;(t), where B;(t) is a polynomial

m Use control points information (location, derivatives) to compute
the coefficients c;

1 For example: P(t;) = P;, where P; is the control point

Basis for cubic polynomials on [0,1]:

Choices:
m Which basis functions?
1 What properties should they have?
1 Required curve properties - required basis properties 3t +4t2—7t—-1=3M ;) +2M, (1) —7M, (t) — M, (t)
® What information from points?

Basis for cubic polynomials on [0,1]
Can interpolate any set of 4 given values p;

B—{L,(0,LO. LOLOY
L= ] &

im0 (=)
l<L ) =4,
E.g. given values on 0, 1/3, 2/3, 1:
P(t) = PO)Lo (1) + p(L/ 3L, (1) + p(2/3)L, (1) + P Ly(1)
Any cubic can be expressed using the Lagrange basis:

3% +4t* — 7t —1=—L (t) - 2.78L, (t) — 3L, (t) — L,(t)

demo

Interpolants based on Lagrange polynomials are not always “nice”

il

Cubic Hermite Basis

Basis for cubic polynomials on [0,1]

_ Hi(t):i,j=0,1
Lagrange basis ’

(order 7)

Such that:

\ Ho® [1 [0 o [o |
Non oscillating basis [l Ho® [0 o 1 fo |
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http://www.ibiblio.org/e-notes/Splines/Lagrange.htm
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Hermite Cubic Basis Hermite Cubic Basis

The four cubics which satisfy these conditions are Let's solve for Hy,(t) as an example.
Hoo(t) = at® + bt? + ct + d

Hoo (t) =t*(2t—3) +1 Ho, () =—t*(2t-3)
should satisfy the following four constraints:

Hyo(t) =t(t—1)° H,, (1) =t*(t-1)

Obtained by solving four linear equations in four Hyp(0) =1=d,
unknowns for each basis function Hp@)=0=a+b+c+d,

, Hy '(0)=0=c,
Prove: Hermite cubic R e s Hy ') =0=3a+2b+c.
polynomials are linearly . : :

independent Four linear equations in four unknowns.

Hermite Cubic Basis (cont’d)

Let C(t) be a cubic polynomial defined as the linear
combination:

C(t) = R Hy () + BHy, (t) + ToH o (1) + T H,, (1)

ThenC(0) =P, C(1)=P,, C’(0)=T, C'(1)=T,
To generate a curve through P, & P, with slopes T, &
T,, use

C(X) =PRyHyo (X)+ BHg (X) + ToHyo () + T,H, (X)

demo 27
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