Intro to Computer Graphics

Geometric Modeling I

Geometric Modeling
 Part I

Copyright
C. Gotsman, G. Elber, M. Ben-Chen Computer Science Dept., Technion

JACOBS
TECHNION-CORNELL INSTITUTE

Page 1

Intro to Computer Graphics

Geometric Modeling I

Volumetric Representation Voxel-based

Advantages: simple and robust Boolean operations, in/out tests, can represent and model the interior of the object.
Disadvantages: memory consuming, non-smooth, difficult to manipulate.

Copyright
C. Gotsman, G. Elber, M. Ben-Chen Computer Science Dept., Technion

JACOBS
TECHNION-CORNELL INSTITUTE

Mathematical Continuity
$C_{1}(t) \& C_{2}(t), t \in[0,1]$ - parametric curves
Level of continuity of the curves at $C_{1}(I)$ and $C_{2}(0)$ is:

- $C^{-1}: C_{1}(1) \neq C_{2}(0)$ (discontinuous)
- $C^{0}: C_{1}(1)=C_{2}(0)$ (positional continuity)
- $C^{k}, k>0$: continuous up to $k^{\text {lh }}$ derivative

$$
C_{1}^{(j)}(1)=C_{2}^{(j)}(0), \quad 0 \leq j \leq k
$$

17

From Functions to Curves

Fit function independently for $x(t)$ and $y(t)$ to obtain $C(t)$

Geometric Continuity

Mathematical continuity is sometimes too strong
May be relaxed to geometric continuity

- $G^{k}, k \leq 0$: Same as C^{k}

■ $G^{k}, k=1: C_{1}^{\prime}(1)=\alpha C_{2}^{\prime}(0)$

- $G^{k}, k \geq 0$: There is a reparameterization of $C_{1}(t) \& C_{2}(t)$, where the two are C^{k}
E.g.
- $C_{1}(t)=[\cos (t), \sin (t)], t \in[-\pi / 2,0]$
$C_{2}(t)=[\cos (t), \sin (t)], t \in[0, \pi / 2]$
$C_{3}(t)=[\cos (2 t), \sin (2 t)], t \in[0, \pi / 4]$
- $C_{1}(t) \& C_{2}(t)$ are $C^{1}\left(\& G^{1}\right)$ continuous
- $C_{1}(t) \& C_{3}(t)$ are G^{1} continuous (not C^{1})

Copyright
C. Gotsman, G. Elber, M. Ben-Chen Computer Science Dept., Technion

TECHNION-CORNELL INSTITUTE

Intro to Computer Graphics

Geometric Modeling I

Polynomial Curve Fitting
Rules of the game
Goal:

- Using a small set of control points the user can control a curve

Setup:

- Looking for a curve $P(t)=(x(t), y(t))$
- Define $P(t)=\sum_{i} c_{i} B_{i}(t)$, where $B_{i}(t)$ is a polynomial
- Use control points information (location, derivatives) to compute the coefficients c_{i}
1 For example: $P\left(t_{j}\right)=P_{j}$, where P_{j} is the control point
Choices:
\square Which basis functions?
1 What properties should they have?
1 Required curve properties \rightarrow required basis properties
- What information from points?

Interpolants based on Lagrange polynomials are not always "nice"

Any cubic can be expressed using the Lagrange basis:
$3 t^{3}+4 t^{2}-7 t-1=-L_{0}(t)-2.78 L_{1}(t)-3 L_{2}(t)-L_{3}(t)$ demo

Basisis funcilions stiould be nori-negalive

Cubic Hermite Basis
Basis for cubic polynomials on $[0,1]$ $H_{i j}(t): i, j=0,1$
Such that:

	$H(0)$	$H(1)$	$H^{\prime}(0)$	$H^{\prime}(1)$
$H_{00}(t)$	1	0	0	0
$H_{01}(t)$	0	1	0	0
$H_{10}(t)$	0	0	1	0
$H_{11}(t)$	0	0	0	1

Copyright
C. Gotsman, G. Elber, M. Ben-Chen Computer Science Dept., Technion

Intro to Computer Graphics

Geometric Modeling I

Hermite Cubic Basis (cont'd)
Let $C(t)$ be a cubic polynomial defined as the linear combination:
$C(t)=P_{0} H_{00}(t)+P_{1} H_{01}(t)+T_{0} H_{10}(t)+T_{1} H_{11}(t)$

Then $C(0)=P_{0}, C(1)=P_{1}, \quad C^{\prime}(0)=T_{0}, C^{\prime}(1)=T_{l}$

To generate a curve through P_{0} \& P_{1} with slopes T_{0} \&
T_{1}, use
$C(x)=P_{0} H_{00}(x)+P_{1} H_{01}(x)+T_{0} H_{10}(x)+T_{1} H_{11}(x)$
demo

