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ABSTRACT
Recent years have seen an increased deployment of FPGAs
as programmable accelerators for improving the performance
and energy efficiency of compute-intensive applications. A
well-known“secret sauce”of achieving highly efficient FPGA
acceleration is to create application-specific memory archi-
tecture that fully exploits the vast amounts of on-chip mem-
ory bandwidth provided by the reconfigurable fabric. In par-
ticular, memory banking is widely employed when multiple
parallel memory accesses are needed to meet a demanding
throughput constraint.

In this paper we propose TraceBanking, a novel and flexi-
ble trace-driven address mining algorithm that can automat-
ically generate efficient memory banking schemes by analyz-
ing a stream of memory address bits. Unlike mainstream
memory partitioning techniques that are based on static
compile-time analysis, TraceBanking only relies on simple
source-level instrumentation to provide the memory trace
of interest without enforcing any coding restrictions. More
importantly, our technique can effectively handle memory
traces that exhibit either affine or non-affine access patterns,
and produce efficient banking solutions with a reasonable
runtime. Furthermore, TraceBanking can be used to process
a reduced memory trace with the aid of an SMT prover to
verify if the resulting banking scheme is indeed conflict free.
Our experiments on Xilinx FPGAs show that TraceBanking
achieves competitive performance and resource usage com-
pared to the state-of-the-art across a set of real-life bench-
marks with affine memory accesses. We also perform a case
study on a face detection algorithm to show that TraceBank-
ing is capable of generating a highly area-efficient memory
partitioning based on a sequence of addresses without any
obvious access patterns.

1. INTRODUCTION
With the general-purpose CPU performance scaling signif-

icantly slowing in the past decade, heterogeneous computer
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architectures that integrate specialized accelerators are gain-
ing popularity to achieve improved performance and energy
efficiency. Along the line, field-programmable gate arrays
(FPGAs) have evolved into an attractive option for fulfilling
the role of application-specific hardware acceleration, owing
to the many recent technological advances on FPGA hard-
ware capabilities as well as the software tooling support for
high-level design entries.

An FPGA-based hardware accelerator is typically highly
parallelized and/or deeply pipelined in order to achieve a
desirable throughput. As a result, multiple parallel accesses
to a single on-chip memory are often required to provide
the necessary data bandwidth to sustain the high through-
put of the accelerator. However, the embedded memory
blocks available on modern FPGA devices (e.g., BRAMs)
only provide a very limited number of ports for concurrent
reads/writes.1 Simply replicating the memory blocks would
not be feasible due to the steep area overhead and potential
memory coherence overhead resulting from write operations.

A more viable solution is memory banking, which parti-
tions a memory block into several smaller banks; thus, con-
current memory accesses are distributed to different banks,
avoiding or minimizing banking conflicts. Since each mem-
ory bank only holds a subset of the original memory con-
tents, memory banking usually yields a significantly lower
storage overhead compared to memory duplication. Nev-
ertheless, additional banking logic is still required to or-
chestrate the data movement between banked memories and
compute units in the accelerator. For non-expert FPGA de-
signers, devising a minimum-conflict banking scheme with
low hardware overheads is certainly a challenging task. While
commercial high-level synthesis (HLS) tools provide some
basic support for array partitioning [8], the users remain re-
sponsible for manually specifying the banking scheme via
vendor-specific pragmas or directives. For this reason, there
is an active body of HLS research tackling the problem of
automatic array partitioning (i.e., memory banking) given
a throughput constraint that is usually specified in terms of
pipeline initiation interval (II) [6, 12, 14, 16, 17].

In this paper, we also focus our study on automatic mem-
ory banking, and propose TraceBanking, a trace-based bank-
ing algorithm that is very different from the existing meth-
ods. Specifically, TraceBanking mines a stream of mem-
ory address bits to determine a banking scheme that mini-
mizes the number of access conflicts and simplifies the bank-
ing logic. Unlike mainstream techniques that are mostly

1Even for ASICs, it is not feasible to have a large number of
memory ports due to the excessive area and power overhead [15].



based on static compiler analysis, TraceBanking only relies
on simple source-level instrumentation to provide the mem-
ory trace of interest without enforcing any coding restric-
tions (such as static control parts often required by polyhe-
dral analysis [3]). The major technical contributions of our
work are threefold:

(1) We offer a fresh look at memory banking, by waiving
the requirements of using static compile-time analysis. We
show that from a trace of memory addresses, we can iden-
tify a set of “interesting” address bits that form the basis of
the hardware-efficient memory banking function. In addi-
tion, our technique is able to form banking functions that
do not belong to the solution space of the existing linear-
transformation-based techniques.

(2) We propose a two-step heuristic to solve the trace-
based memory banking problem. This heuristic is not only
able to exploit regular memory access patterns, but can also
generate efficient solutions for applications with irregular
memory accesses.

(3) We propose an SMT-based checker that can formally
verify if a memory banking solution is free of access conflicts
under all possible execution traces. This allows the usage
of a reduced (or incomplete) memory trace to significantly
speed up TraceBanking, but without the risk of accepting an
inferior banking solution. We believe that this formal veri-
fication technique is also useful for validating the soundness
of existing memory banking algorithms, even though they
are designed to be correct by construction.

The rest of this paper is organized as follows: Section 2
presents related work in memory banking; Section 3 formu-
lates the trace-based memory banking problem; Section 4
provides motivational examples to illustrate the intuition
behind our work; Section 5 describes our address mining
algorithm in detail; Section 6 introduces the SMT-based
banking solution checker; Section 7 reports the experimental
results on commonly used benchmarks with affine memory
accesses, which is followed by a case study on a face detec-
tion application with irregular memory accesses in Section 8;
and Section 9 concludes this paper with discussion on future
work.

2. RELATED WORK
There is a recent line of research that investigates the

problem of automatic array partitioning in the context of
HLS [20]. Initial efforts focus on one-dimensional arrays and
attempt to find a proper cyclic partitioning with optimal
scheduling to ensure conflict-free parallel data accesses [7,
11]. More recent proposals such as [16, 17] generalize these
results to handle nested loops and multi-dimensional arrays.

Notably, linear transformation is extensively used among
the existing array partitioning techniques. For example, the
LTB approach [17] searches for a coefficient vector ~α to con-
struct a cyclic banking function bank(~x) = (~α ·~x)%N , given
the number of banks N and the affine memory access pat-
tern. Meng et al. proposed a fast algorithm to generate
the LTB coefficient vector ~α according to the topology of
the memory access pattern in multi-dimensional memory
space [12]. The GMP approach is a generalization of LTB,
which can generate block-cyclic banking function in the form
of bank(~x) = b(~α · ~x)/Bc%N [16]. More recently, Cilardo et
al. proposed a lattice-based banking algorithm using poly-
hedron analysis [6].
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Figure 1: Hardware template for memory banking.

The aforementioned techniques all employ static compile-
time analysis and are only effective with affine data access
patterns. To our best knowledge, we are the first to intro-
duce a comprehensive trace-based banking algorithm that
is not limited to affine memory accesses. Along the lines
of trace-based memory optimization, one relevant proposal
is [4], which attempts to partition an array of data struc-
tures into distinct arrays by leveraging hints from software
memory traces. However, this technique does not directly
tackle memory banking for multi-dimensional arrays.

Besides memory partitioning, parallel data accesses can
be further facilitated by creating data reuse buffer that ex-
ploits locality in memory access patterns. For many image
processing and signal processing applications, data reuse is
a more hardware-efficient solution due to the regular mem-
ory access patterns in stencil-like operations. Along these
lines, a recent work by Su et al. introduced an efficient
method of combining linear reuse analysis and cyclic mem-
ory partitioning to generate application-specific reuse-chains
and memory-banking [14]. In this work, however, we focus
on memory banking without data reuse; nevertheless, we
believe that our trace-based approach can also be extended
to generate data reuse buffers and will explore this topic in
future work.

3. PROBLEM FORMULATION
In this section we provide the definitions and formulate

the trace-based memory banking problem. An example of
the hardware architecture under discussion, shown in Fig-
ure 1, contains a set of compute units and memory banks
connected by a crossbar. The number of compute units is
denoted as K, and the number of memory banks is denoted
as N . For simplicity, we assume that each compute unit
only has one memory load port, and each memory bank
only has one read port. Our problem formulation as well as
the proposed technique can be generalized to handle multi-
bank and multi-port memories. In the following, we first
define several important concepts before formulating the ac-
tual optimization problem.



Definition 1. Memory Trace: A memory trace T is a
sequence of addresses that are grouped into L lists, where
all addresses in the same list need to be accessed in parallel.
Each of these lists is called a step. Each step contains K
addresses which are issued by the compute units. In the
following discussions, we refer to the l-th step in memory
trace T as T [l], and the memory operation requested by the
k-th compute unit in step l as T [l][k]. If compute unit k does
not issue any memory request in step l, T [l][k] is marked as
invalid.

Definition 2. Memory Banking: A memory banking
solution of a trace T consists of a banking function bank(A)
and an offset function offset(A). bank(A) maps address A
to a memory bank ID, while offset(A) determines the intra-
bank position. A memory banking solution can be fully
represented by a set of binary variables {bA,n | A ∈ T, 0 ≤
n < N,n ∈ N}, where bA,n evaluates to one if and only if
address A is mapped to bank n, otherwise evaluates to zero.

Definition 3. Banking Conflict: A banking conflict
occurs when two different addresses in the same step are
mapped to the same memory bank.

Definition 4. Mux Size: The mux size of a memory bank
n, Mn, refers to the number of compute units which access
bank n in the memory trace. Mn can be represented by
binary variables {bA,n} using the following equation:

Mn =

K−1∑
k=0

L−1∨
l=0

bT [l][k],n

With the above definitions, we can formulate the memory
banking problem as an integer linear programming (ILP)
problem:
Problem: Given a memory trace T , find a mapping func-

tion bank(A) to optimize the following objective function,
which minimizes memory access conflicts as the primary goal
and reduces muxing overhead as the secondary goal.

Objective : α · Conflicts+ β ·Muxing

= α ·
L−1∑
l=0

∑
∀Ai,Aj∈T [l]

sAi,Aj + β ·
N−1∑
n=0

Mn

subject to

i, j ∈ [0,K − 1], i 6= j, sAi,Aj =

N−1∑
n=0

(bAi,n · bAj ,n).

Here the addresses Ai and Aj refer to the i-th and j-th
address in step T [l], respectively. The binary variable sAi,Aj

equals to one if and only if addresses Ai and Aj are mapped
to the same bank, otherwise equals to zero (we omit the
linearization of non-linear terms due to page limit).

4. MOTIVATIONAL EXAMPLES
We use two examples to illustrate the intuition behind

TraceBanking. We start with the very simple example in
Figure 2, where Figure 2(a) shows a simple loop kernel con-
taining two memory accesses per iteration, and Figure 2(b)
shows the associated (truncated) memory trace. From Fig-
ure 2(b), it is not difficult to tell that the two addresses in
each iteration always differ in the least significant bit (LSB).
We refer to such bit as a mask bit. Informally, we define

int A[SIZE+1];
for (int i=0; i<SIZE; i++)
#pragma HLS pipeline II=1
foo(A[i], A[i+1]);

(a) Loop Kernel

Step addr0 addr1

0 000000 000001
1 000001 000010
2 000010 000011
3 000011 000100
... ... ...

(b) Memory Trace

Figure 2: Simple loop example — (a) Pipelined loop kernel
with two memory accesses in each cycle. (b) Memory trace
of the loop kernel.

int A[Rows][Cols];
for (int i=1; i<Rows-1; i++)
for (int j=1; j<Cols-1; j++)
#pragma HLS pipeline II=1
foo(A[i-1][j-1], A[i-1][j+1],

A[i+1][j-1], A[i+1][j+1]);

(a) Loop Kernel (b) Mem Pattern

Step addr0 addr1 addr2 addr3

0 000|000 000|010 010|000 010|010
1 000|001 000|011 010|001 010|011
... ... ... ... ...
5 000|101 000|111 010|101 010|111
... ... ... ... ...

Cols-1 001|000 001|010 011|000 011|010
... ... ... ... ...

(c) Sample memory trace
i / j 0 1 2 3 4 5 6 7
0 0 1 2 3 0 1 2 3
1 0 1 2 3 0 1 2 3
2 1 2 3 0 1 2 3 0
3 1 2 3 0 1 2 3 0
4 2 3 0 1 2 3 0 1
5 2 3 0 1 2 3 0 1
6 3 0 1 2 3 0 1 2
7 3 0 1 2 3 0 1 2

(d) GMP solution

i / j 0 1 2 3 4 5 6 7
0 0 0 1 1 0 0 1 1
1 0 0 1 1 0 0 1 1
2 2 2 3 3 2 2 3 3
3 2 2 3 3 2 2 3 3
4 0 0 1 1 0 0 1 1
5 0 0 1 1 0 0 1 1
6 2 2 3 3 2 2 3 3
7 2 2 3 3 2 2 3 3

(e) An alternative solution

Figure 3: Bicubic interpolation — (a) Pipelined loop ker-
nel with four memory accesses in each cycle. (b) Memory
access pattern of the loop kernel in two-dimensional mem-
ory space. (c) Memory trace generated by concatenating
array indexes: Addresses are formed by concatenating the
two-dimensional array indexes i and j (for simplicity, i and
j are both truncated to three bits). (d) GMP banking solu-
tion [16]. (e) An alternative solution generated by selecting
mask bits.

the mask bits as a subset of address bits that can differen-
tiate all memory addresses included in the same step. We
argue that the mask bits provide important hints for finding
a memory banking solution. In this particular case, if we
partition array A based on the value of the LSB, we end up
with a cyclic banking scheme that enables the loop to be
fully pipelined.

Figure 3 shows another (and perhaps more interesting)
example from bicubic interpolation [1]. In this case, the
innermost loop has four memory accesses per iteration to
a two-dimensional array. The memory access pattern is
illustrated in Figure 3(b) and the corresponding address
stream is shown in Figure 3(c). Existing techniques, such



as GMP [16], analyze the symbolic expression of memory
accesses and search for appropriate coefficients to construct
a banking function in the form of bank(i, j) = b(α0i +
α1j)/Bc%N . Figure 3(d) shows the resulting 4-bank parti-
tioning scheme, where α0 = 1, α1 = 2, and B = 2.

Figure 3(e) shows an alternative banking scheme, which
is not in the solution space of the GMP approach.2 By
examining the memory trace in Figure 3(c), we can identify
two mask bits: the second-to-last bit of i, plus the second-to-
last bit of j. These two bits combined can differentiate the
four memory accesses belonging to the same iteration. As
a result, we can divide the original array into four memory
banks according to the values of the two mask bits and arrive
at the alternative scheme in Figure 3(e).

These two examples demonstrate the possibility of per-
forming memory banking based on a stream of memory ad-
dresses. Although these examples both have affine memory
access patterns, TraceBanking is also capable of generating
memory partitioning for applications with irregular mem-
ory accesses. Regardless of the memory access pattern, it
is important to identify the mask bits that form the basis
of banking. The value of mask bits is referred to as mask
ID. In the following sections, we will discuss how Trace-
Banking identifies mask bits and derives efficient banking
accordingly.

5. TRACEBANKING ALGORITHM
A straightforward method to optimize the objective func-

tion formulated in Section 3 is to use an ILP solver. How-
ever, ILP solvers are not scalable in general. Therefore, there
is a need for heuristics which can find an optimal mapping
between addresses and banks with a reasonable execution
time.

In this section, we introduce TraceBanking algorithm, a
flow of heuristics to solve the problem formulated in Sec-
tion 3. Specifically, TraceBanking takes the number of avail-
able banks as a constraint and finds an optimized mapping
by solving two sub-problems: (1) Finding a set of promising
address bits to form mask bits, and (2) Finding a mapping
between the generated mask IDs and available banks.

The flow of our algorithm is shown in Figure 4. The raw
memory trace is first compressed, and a search is performed
to find a feasible set of mask bits. Then, a graph will be
generated based on the discovered mask bits. The gener-
ated graph will be colored such that each color represents a
distinct memory bank. Since only the mask bits are used in
the banking function, TraceBanking can potentially gener-
ate more area-efficient hardware to calculate bank IDs.

5.1 Finding Masks Bits
TraceBanking finds a set of bits from the address to form

a mask in the first step. At the beginning, raw trace is pre-
processed to remove redundant information, i.e. memory ac-
cesses with the same address in the same step; because hav-
ing multiple accesses with the same address can be satisfied
in the same cycle with no overhead. Then, the raw memory
trace is compressed by initial-compression, which combines
steps with identical accesses into a single step. A weight
property is added to each step indicating its frequency in
the raw trace. The resultant compressed trace is referred to
as Tc. Figure 6(a) shows the compression process for our

2We omit the formal proof due to space limit.
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Figure 4: General structure of the proposed flow.

Algorithm 1 findMasksBits

Input : N – number of available banks;
Tc – Compressed memory trace;

for nbits← dlog2(NA)e to address size do
mask ← all possible mask combinations with size nbits
while mask 6= null do
numconflicts ← calculateConflicts(Tc, mask)
if numconflicts 6 minconflicts then

/* Possible Solution */

minconflicts ← numconflicts

/* Test graph colorability */

G ← constructGraph(Tc, mask)
if χ(G) 6 minχ then

minχ ← χ(G)
end
if minconflicts = 0 and minχ 6 N then

break
end

end
mask ← next(mask)

end

end

Figure 5: The first heuristic in our flow to find mask bits.

bicubic example; no compression can be performed since no
identical steps exist in the raw trace.

After cleaning up and compressing the trace, TraceBank-
ing performs a multi-objective exhaustive search using the
findMasksBits algorithm in Figure 5. This algorithm takes
the available number of banks, N , as well as the compressed
memory trace, Tc, as inputs. It evaluates any candidate
mask using two objectives: mask IDs’ conflicts and conflict
graph colorability.

The search starts with masks that includes dlog2(NA)e
bits, where NA is the maximum number of memory accesses
in all steps in the compressed memory trace. It tries all
possible combinations of dlog2(NA)e bits; each combination
constructs a unique mask which maps addresses to mask IDs.
Going through the compressed memory trace, the algorithm
evaluates mask IDs conflicts by counting the number of times
when two addresses in the same step have the same mask
ID.

After finding a mask that has the lowest number of mask
IDs conflicts, the algorithm constructs a conflict graph —
every node in the graph represents a mask ID; edges be-
tween nodes indicate mask IDs that appeared together in
at least one step, and the edges’ weights represent the fre-
quency. Thus, the problem is transformed to a graph col-
oring problem. The algorithm calculates a lower bound for
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Figure 6: Bicubic example being processed throughout our algorithm — (a) Initial part of the flow where the raw memory
trace is compressed and preprocessed; in this example, no compression nor preprocessing is possible. (b) The first heuristic
of the flow conducting a search for mask bits; underlining shows the bits considered for masking and conflicts are highlighted
with red colored mask bits. For masks with no conflicts, the heuristic checks colorability by max-clique. Then, the heuristic
takes the mask with minimum conflicts and minimum max-clique (#C symbolizes number of conflicts for each search branch).
For bicubic, the mask with no-conflicts and a max-clique of at most N , 4, is 010 010. (c) Finally, the second heuristic
mask-compresses the trace and colors the generated graph. It is obvious that for bicubic the graph is rather simple to color
as it is only a clique of size 4.

Algorithm 2 mapMaskIDsToBanks

Input : N – number of available banks;
Tc – Compressed memory trace;
mask – Initial Mask;

do
/* Perform mask-compression */

Tmc ← maskCompression(Tc, mask)
/* Construct a graph */

G← constructGraph(Tmc)
/* Create a seed using greedy coloring */

S ← greedyGraphColoring(G, N)
/* Color G using evolutionary algorithm */

numconflicts,mapping ← eaGraphColoring(S, N)
/* Ending conditions */

if bits remaining(mask) = 0 then
break

else if numconflicts 6= 0 then
mask ← performBestFirstSearch(Tc, mask)

end

while numconflicts 6= 0;

Figure 7: The second heuristic in our flow to map mask
IDs to banks.

the colorability of the conflict graph by finding the maximum
clique; where graphs with maximum clique size greater than
the number of banks, N , cannot be colored with N colors.
Using bicubic as an example, Figure 6(b) shows the resulting
graph; it is obvious that the graph has a maximum clique of
4; therefore, the first step concludes with the mask 010 010.

5.2 Mapping Mask IDs to Banks
The second step, with its algorithm shown in Figure 7,

takes the mask found by findMasksBits and finds bank
assignments for mask IDs such that the number of poten-
tial conflicts is minimized. To reduce complexity and re-

dundant work, the algorithm further compresses the trace
by applying mask-compression, which is similar to initial-
compression explained earlier except that the addresses are
replaced with their corresponding mask IDs. After that,
the algorithm will construct a conflict graph from the mask-
compressed trace.

To find a coloring for the generated graph, the algorithm
reduces the problem to maximum coloring.3 The number
of banks represents the number of colors available for col-
oring. The algorithm then generates a colored seed, S, us-
ing multiple order-based greedy heuristics [2, 10]. If the
seed is not conflict-free, TraceBanking attempts to mini-
mize the number of conflicts using an evolutionary algo-
rithm [10]. In each evolutionary step, TraceBanking per-
forms a set of heuristics that showed efficiency in coloring
memory-accesses graphs [10]. Once a coloring for a conflict
graph is found, the evolutionary algorithm concludes with
banking function bank(A) constructed from the coloring.

If the algorithm cannot find a conflict-free coloring in a
bounded number of evolutionary steps, it is assumed that
the graph is uncolorable. Then, TraceBanking proceeds to
perform a best-first search. The search will modify the mask
by adding one extra bit to it. It is reasonable to assume
that address bits that are part of the final mask have an
additive effect in reducing conflicts when considered; as a
result, the best-first search tests the colorability of remaining
bits by adding them to the mask in isolation. Then, the
search includes the bit that yields a graph with the minimum
number of conflicts permanently to the mask. Since this is a
rough assumption, TraceBanking might use more bits than
theoretically needed to find a feasible banking.

Taking the bicubic example from before, the algorithm
will take the mask found by findMasksBits and its corre-
sponding conflict graph. Then, it will attempt to color the
four-node conflict graph shown in Figure 6(c). Because the

3In this paper we strictly target conflict-free solutions. However,
TraceBanking is easily extended to adapt conflict-less solutions.



graph is actually a clique of four, it will be colored with four
different colors, as shown in Figure 6(c). The resulting col-
ored graph is conflict-free. Therefore, the algorithm finishes
and produces the solution in Figure 3(e).

5.3 Offset Generation
After finding the mask bits and generating the banking

function bank(A), we need to find an offset function offset(A)
to transform an address A to a corresponding intra-bank off-
set. An intuitive method to generate the offset function is
to simply scan every data element in the data domain and
assign consecutive integers to data elements in each bank.
Without any constraints on the offset function, this integer
counting method is effective for both regular and irregular
banking solutions. In addition, this method is optimal in
terms of storage overhead since the data elements in each
bank are guaranteed to have consecutive intra-bank offsets.

5.4 Uncovering Closed-Form Representations
The banking and offset functions obtained from Sections 5.2

and 5.3 are represented in the form of look-up tables by de-
fault. For applications with regular memory access patterns,
it is possible to convert the look-up tables generated by
TraceBanking into equivalent closed-form equations, which
essentially uncovers and exploits the regularity in the origi-
nal application.

Our key idea is to decompose the look-up table into multi-
ple stages of smaller look-up tables, and use a simple search
to map the sub-tables into equations. The composition of
memory addresses is retrieved from source-level instrumen-
tation. An example is shown in Figure 8. The original 5-bit
mask shown in Figure 8(a) is divided into two disjoint sub-
masks: i-Mask and j-Mask — according to the corresponding
array indices. By grouping the entries with the same i-Mask
ID, the original banking solution shown in Figure 8(a) is
decomposed into two levels, where the first level is used to
determine the look-up table for the second level. Figure 8(b)
shows how to index the decomposed look-up tables, where
the i-Mask ID is used to index the first-level table and j-
Mask ID is needed to index the second-level table and re-
trieve the actual bank ID. As illustrated in Figure 8(b), each
second-level look-up table can be represented by a modulus
operation. By searching for coefficients to represent the re-
lationship between i-Mask ID and the constants in the equa-
tions (highlighted in bold in Figure 8(b)), we can represent
the original banking solution with one closed-form equation
shown in Figure 8(b). Clearly, this approach can easily be
generalized to arrays with higher dimensions. We also use a
similar method to uncover the closed-form equation for an
offset function, if such representation exists.

According to our experiments on a set of benchmarks with
affine memory accesses, all of the results generated by Trace-
Banking can be represented by our equation template which
is generalized from block-cyclic partitioning. Some of our so-
lutions fall into the category of the cyclic partitioning scheme
mentioned in the LTB approach [17]. Other solutions are not
in the solution space of block-cyclic partitioning. Nonethe-
less, they can be efficiently represented with a few number
of mask bits (e.g., bicubic solution in Figure 3(e)).

6. SMT-BASED VERIFICATION
The previous discussion in Section 5 assume that the in-

put memory trace to TraceBanking is complete. In other

Mask ID Bank ID i-Mask ID j-Mask ID
0 B0 0 0
1 B1 0 1
2 B2 0 2
3 B3 0 3
4 B1 1 0
5 B2 1 1
6 B3 1 2
7 B0 1 3
… … … …

Address: i (6 bit) | j (6 bit)
Original Mask:     000111 | 000011
Partitioned Mask:  i-Mask: 000111;  j-mask: 000011

L0

L1

…

(a) Banking solution in a look-up table

i-Mask ID 2nd level Table
0 L0
1 L1
2 L2
3 L3
4 L0
5 L1
6 L2
7 L3

Example:  i-Mask ID = 3, j-Mask ID = 2

First-level Table

B0 B1 B2 B3

B1 B2 B3 B0

B2 B3 B0 B1

B3 B0 B1 B2

Second-level Tables

L0

L1

L2

L3i-Mask ID = 3

j-Mask ID = 2
Result: Bank = 1

L0[j-Mask ID] = (j-Mask ID+0) % 4

L1[j-Mask ID] = (j-Mask ID+1) % 4

L3[j-Mask ID] = (j-Mask ID+3) % 4

bank = (i-Mask ID + j-Mask ID) % 4

L2[j-Mask ID] = (j-Mask ID+2) % 4

(b) Multi-level look-up table and closed-form solution

Figure 8: Example of mapping banking solution into
closed-form equations — (a) Mask bits and the banking
solution: An address bit noted as ’1’ is a mask bit, while
an address bit noted as ’0’ is not. The mask bits are di-
vided into two parts, i-Mask and j-Mask, according to the
concatenation of array indices. (b) i-Mask is used to index
the first-level table, and j-Mask is used to index the corre-
sponding second-level table. Each second-level table can be
represented with a closed-form equation. Constants in bold
indicate the relationship between bank ID and i-Mask ID.

words, the input trace captures all memory accesses from
the entire software execution. In this case, our solution is
supposed to be sound in terms of guaranteeing no banking
conflicts. When the given memory trace is incomplete or
input-dependent, it is necessary to have a formal mecha-
nism to verify if the resulting solution remains conflict-free
under all possible scenarios.

To this end, we propose an SMT-based checker to vali-
date the soundness of the solution with the aid of a simple
compiler analysis. The checker takes the memory banking
solution from TraceBanking, and the address expressions of
the loop kernel from compiler analysis. With this infor-
mation, we can formulate the SMT problem as shown in
Figure 9(a). The integer variables for the SMT problem
correspond to loop induction variables in the original appli-
cation. We represent the banking solution as a function of
array indices, and expressions of array indices as functions
of loop induction variables. Then, we specify the iteration



Define loop induction variables as SMT variables:
int ~i
Define banking function:

int B(
−→
idx)

/*definition of the banking function*/
Define expressions of array indices:
int[ ] idx0(~i )
/*represent array indices in the 1st load instruction*/

int[ ] idx1(~i )
/*represent array indices in the 2nd load instruction*/
...
/*define the total number of load instructions*/
const int instr cnt = K
Construct iteration domain D:
assert ((i[0] > 0) and (i[1] > 0) and ...)
Constraint for having at least one conflict:
assert

∨
∀~i∈D

∨
∀a,b∈[0,K−1],a6=b

B(idxa(~i )) = B(idxb(~i ))

(a) General SMT formulation

Define loop induction variables as SMT variables:
int i, j
Define banking function:
int B(i, j)
/*select the mask bits from indices*/
return (i & 0x2) ‖ ((j & 0x2) >> 1)
Construct iteration domain D:
assert ((i > 1) and (j > 1) and
(i < Rows-1) and (j < Cols-1))
Constraint for having at least one conflict:
assert ( (B(i-1, j-1) = B(i-1, j+1)) or
(B(i-1, j-1) = B(i+1, j-1)) or
(B(i-1, j-1) = B(i+1, j+1)) or
(B(i-1, j+1) = B(i+1, j-1)) or
(B(i-1, j+1) = B(i+1, j+1)) or
(B(i+1, j-1) = B(i+1, j+1)))

(b) Example of Bicubic interpolation

Figure 9: SMT formulation of the banking solution checker
— (a) General formulation. (b) Example of Bicubic inter-
polation.

domain as a constraint. Additionally, we add one constraint
of having at least one banking conflict in the whole iteration
domain. If the SMT problem is proven to be unsatisfiable,
there is no memory access conflict in all iterations and the
banking solution is valid.

The example shown in Figure 9(b) illustrates how the
SMT-based checker validates the banking solution for bicu-
bic interpolation shown in Figure 3(e): the loop induction
variables i and j are used as SMT variables; and the banking
function is represented symbolically. The constraints specify
boundaries for the SMT variables, and compare every pair
of addresses from the same iteration to check for conflicts.

As a formal verification technique, the SMT-based checker
is also useful for validating the soundness of existing memory
banking algorithms to detect any bugs in compiler analysis
and code transformation, even though they are designed to
be correct by construction.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 10: Memory access patterns of benchmarks —
(a) BICUBIC, (b) DECONV, (c) DENOISE-UR, (d) MO-
TION C, (e) MOTION LV, (f) SOBEL, (g) STENCIL3D.

7. EXPERIMENTAL RESULTS
In our experiments, memory traces are generated by source-

level instrumentation of the loop kernels. The addresses in
the memory traces are constructed by concatenating multi-
dimensional array indices. The core algorithm of Trace-
Banking processes the memory trace and generates bank-
ing and offset functions. This algorithm is implemented in
C. We use Vivado Design Suite 2016.2 from Xilinx [19] for
high-level synthesis (HLS), logic synthesis and simulation.
The target FPGA device is Xilinx Virtex-7. The memory
banking flow takes in the memory trace and generates solu-
tions in the form of look-up tables or close-form equations.
We use Z3, an SMT theorem prover, to verify the generated
solutions [9]. Each verified banking solution as well as the
corresponding application are implemented as a synthesiz-
able HLS code.

We adopt six different loop kernels from the GMP work [16].
In addition, we add Stencil3D benchmark from MachSuite [13],
which accesses a three-dimensional array, to stress the ro-
bustness and scalability of our approach. The memory ac-
cess patterns of these loop kernels are shown in Figure 10
— the solid dots represent the data elements being accessed
in each iteration of the loop kernels. We substitute the pro-
cessing phase of these loop kernels with a simple summation
to better compare the overhead of different memory bank-
ing solutions. We also implemented the GMP method [16]
as the baseline. All the designs are pipelined with II of one
for maximum throughput. The input size of the designs is
64 × 48 (5 × 64 × 48 for Stencil3D), and the data size is
8-bit. We employ efficient algorithms from [18] and imple-
ment our own modulus functions to minimize area. These
customized modulus functions are used in both the baseline
and our approach.

7.1 Area Comparison
Table 1 shows comparison with the baseline, where the

minimum number of banks is used. Both GMP and our ap-



Table 1: Timing and resource usage comparison with baseline using GMP [16], where the minimum number of memory
banks is used — target clock period = 5ns; BRAM = # of BRAMs; Slice = # of slices; LUT = # of lookup-tables; FF = # of
flip-flops; DSP = # of DSPs; CP = achieved clock period.

Benchmark # Accesses Method # Banks Mask Width BRAM Slice LUT FF DSP CP(ns)

BICUBIC 4
Baseline 4 - 4 74 217 163 0 3.89

TraceBanking 4 2 4 74 (+0.0%) 212 (-2.3%) 184 (+13%) 0 (+0.0%) 3.66

DECONV 5
Baseline 5 - 5 185 531 383 10 3.52

TraceBanking 5 12 5 182 (-1.6%) 541 (+1.9%) 383 (+0.0%) 10 (+0.0%) 3.37

DENOISE-UR 8
Baseline 8 - 8 180 616 391 0 4.15

TraceBanking 8 4 8 188 (+4.4%) 623 (+1.1%) 427 (+9.2%) 0 (+0.0%) 3.62

MOTION C 4
Baseline 4 - 4 76 186 153 0 3.58

TraceBanking 4 2 4 68 (-11%) 193 (+3.8%) 190 (+24%) 0 (+0.0%) 3.65

MOTION LV 6
Baseline 6 - 6 146 425 392 6 3.31

TraceBanking 6 6 6 146 (+0.0%) 425 (+0.0%) 392 (+0.0%) 6 (+0.0%) 3.31

SOBEL 9
Baseline 9 - 9 405 1296 692 27 3.93

TraceBanking 9 12 9 350 (-14%) 1059 (-18%) 719 (+3.9%) 27 (+0.0%) 3.96

STENCIL3D 7
Baseline 7 - 14 322 966 700 7 3.82

TraceBanking 7 15 14 308 (-4.3%) 932 (-3.5%) 624 (-11%) 7 (+0.0%) 3.74

Average -3.8% -2.4% +5.6% +0.0%

Table 2: Timing and resource usage comparison with baseline using GMP [16], where the number of memory banks is
restricted to be a power-of-two — target clock period = 5ns; BRAM = # of BRAMs; Slice = # of slices; LUT = # of
lookup-tables; FF = # of flip-flops; DSP = # of DSPs; CP = achieved clock period.

Benchmark # Accesses Method # Banks Mask Width BRAM Slice LUT FF DSP CP(ns)

DECONV 5
Baseline 8 - 8 129 418 278 0 3.63

TraceBanking 8 4 8 125 (-3.1%) 411 (-1.7%) 302 (+8.6%) 0 (+0.0%) 3.11

MOTION LV 6
Baseline 8 - 8 117 369 237 0 3.56

TraceBanking 8 3 8 119 (+1.7%) 391 (+6.0%) 282 (+19%) 0 (+0.0%) 3.77

SOBEL 9
Baseline 16 - 16 328 1114 525 0 4.34

TraceBanking 16 4 16 340 (+3.7%) 1129 (+1.3%) 472 (-10%) 0 (+0.0%) 3.89

STENCIL3D 7
Baseline 8 - 8 195 649 443 0 3.87

TraceBanking 8 6 8 201 (+3.1%) 655 (+0.9%) 450 (+1.6%) 0 (+0.0%) 3.70

Average +1.4% +1.6% +4.8% +0.0%

Table 3: Execution time of TraceBanking on Motion LV
with different array sizes.

Array Size 12×12 32×24 64×48 128×96 320×240 640×480

Runtime (s) 0.0096 2.19 4.88 6.94 12.87 33.38

proach can generate valid banking solutions with the min-
imum number of memory banks. Our approach is able to
reduce the number of slices by 3.8% on average. One of the
reasons is that our banking function does not always use all
the bits in the address or array indices, which in turn reduces
the complexity of the banking logic. For example, in Mo-
tion C, we are able to save 11% of slices with a 2-bit mask.
Another reason is that our approach is able to discover ad-
ditional banking solutions that are not in the search space
of the GMP method. For example, in Sobel, our design uses
all the 12 index bits but still saves 14% of slices compared to
the baseline; while the GMP solution has to perform mod 9

operations due to its block-cyclic nature, our solution alter-
nates among three consecutive bank IDs in each row of the
image, thus only requires mod 3 operations which is more
area-efficient.

As pointed out by [16], an important design trade-off be-
tween logic complexity and storage overhead in memory par-
titioning is to enforce the number of memory banks to be a

power-of-two instead of the minimum. Therefore, we con-
duct this experiment for the four benchmarks whose number
of banks is not a power-of-two and compare our results with
the baseline. Detailed experiment results are shown in Ta-
ble 2. Comparing with the corresponding entries in Table 1,
the designs in Table 2 generally have less area even though
they use more memory banks and a more complex crossbar,
because banking functions are significantly simplified when
the number of banks is a power-of-two. For GMP designs,
multiplication and division become simple shifting opera-
tions, while modulus operations are just selecting LSBs. For
our designs, the resource saving comes from the reduction in
mask width. Compared with baseline, our designs use a neg-
ligible 1.4% more slices. In general, the hardware generated
by our trace-based memory banking approach is comparable
with GMP in terms of area and timing.

7.2 Scalability
TraceBanking is able to generate competitive memory bank-

ing solutions from memory traces. However, using a com-
plete memory trace may be expensive when the memory
trace is large. Table 3 shows how the execution time of
TraceBanking scales with an increasing array size. For ap-
plications with affine memory accesses, we can apply trace
reduction to reduce the runtime. The general idea is to use



Table 4: Execution time of TraceBanking with reduced
memory trace — Initial mask refers to the mask found by
Section 5.1, while the Final mask refers to the mask found
by Section 5.2.

Benchmark
Reduced Array Mask Width

Runtime (s)
Size Initial Final

BICUBIC 8 × 8 2 2 0.0093

DENOISE 10 × 10 4 8 3.45

DENOISE2 16 × 16 4 4 0.017

MOTION C 8 × 8 2 2 0.0094

MOTION LV 12 × 12 4 4 0.0096

SOBEL 18 × 18 6 10 5.94

STENCIL3D 5 × 14 × 14 6 11 4.37

a partial memory trace which covers an adequate number
of steps. Because of memory access pattern redundancy in
the trace, the generated banking scheme is likely to comply
with banking schemes generated from a full trace. Since the
banking scheme generated from a partial trace is not guar-
anteed to be valid, we use the SMT-based checker proposed
in Section 6 to validate it. If the validation fails, we revert
to using the complete memory trace.

We perform experiments with reduced memory traces for
all the benchmarks listed in Table 1. For the size of the re-
duced trace, we use an empirical value of 2×#Banks in each
dimension of the array. For example, if the loop kernel con-
ducts Sobel edge detection on an VGA image (640 × 480),
rather than iterating through the whole image, we execute
the loop kernel on an 18×18 sub-image and use this reduced
trace as the input to TraceBanking. For all the benchmarks
listed in Table 1, TraceBanking is able to generate solutions
which are proven to be valid using the reduced traces as
inputs. Moreover, these solutions are identical to the ones
generated from complete traces. The execution time of the
SMT-based checker is less than a second. As shown in Ta-
ble 4, the execution time of TraceBanking is reduced signifi-
cantly by using partial traces without sacrificing the quality
of the solutions.

A critical observation from Table 4 is that, in most bench-
marks, the final solution is either in the beginning or at the
very end of the search space. TraceBanking exploits the
aforementioned observation in pruning the search space by
performing two simultaneous searches: forward search and
backward search. Forward search starts from the mask with
minimum number of bits upward to the mask with maximum
number of bits, stopping with the first mask that yields no
conflicts. On the other hand, backward search starts from
the mask with the maximum number of bits downward to
the mask with minimum number of bits, stopping when no
bit can be removed without causing conflicts.

8. CASE STUDY: HAAR FACE DETECTION
In this section, we use Haar face detection [5] as a case

study to show the efficacy of TraceBanking on applications
with non-affine memory accesses. The Haar algorithm uses
cascaded classifiers to detect human faces rapidly and ro-
bustly. Thousands of weak classifiers are integrated into a
Haar system, and each of them has a distinct memory access
pattern. A code snippet of the loop kernel in Haar algorithm
is shown in Figure 11. The array window is a 25 × 25 im-

pixel window[25][25];
pixel coord[12];
int filter_no;

CLASSIFIER:
for (filter_no=0; filter_no<2913; filter_no++){
#pragma HLS pipeline II=1
// read array indexes from look-up tables
int x0 = rectangles_array0[filter_no];
int y0 = rectangles_array1[filter_no];
int w0 = rectangles_array2[filter_no];
...
// access 8 data elements from array
coord[0] = window[y0][x0];
coord[1] = window[y0][x0+w0];
...
// if condition met, access 4 more elements
if ( (w2!=0) && (h2!=0) ) {
coord[8] = window[y2][x2];
...

}
else {
coord[8] = 0;
...

}
// process data
foo(coord);

}

Figure 11: Loop kernel of Haar face recognition.

age buffer and is steadily shifted in from the input image.
Therefore, it is implemented with discrete registers. In each
iteration, the loop kernel reads pixels into the array coord

and process them in the function foo(). There are 2913 clas-
sifiers in total. The constant arrays rectangles_array[]

store the constants needed to compute the array indices in
each iteration. There is an if statement inside the loop ker-
nel. When the condition is met, the loop kernel accesses 12
pixels from the window array in that iteration; otherwise, 8
pixels are accessed.

In order to maximize throughput, we need to fully pipeline
the CLASSIFIER loop in Figure 11, where each classifier re-
quires eight or 12 parallel accesses to the image buffer. Exist-
ing techniques cannot generate an efficient banking solution
for this problem due to two reasons: (1) The 2913 classifiers
have more than 2000 different memory access patterns in to-
tal, and (2) The array indices are non-affine without any lin-
ear relationship with the iteration variable filter_no. With
TraceBanking, we are able to generate a conflict-free bank-
ing solution to partition the image buffer window[25][25]

into 28 memory banks using the whole address as mask bits.
The execution time is less than a second. Because the win-

dow array is a shifting window implemented using discrete
registers, in this scenario, the memory banks are actually
register banks.

Our baseline is a straightforward design that uses 12 in-
stances of 625-to-1 multiplexer. We compare our design with
the baseline and the result is shown in Table 5. The Trace-
Banking design in Table 5 refers to the memory banking
design generated by our approach, and the Full Mux design
refers to the baseline. For these two designs, we only extract
the loop kernel part shown in Figure 11 to better compare
the banking hardware overhead.



Table 5: Timing and resource usage comparison of the two
designs — target clock period = 5ns; BRAM = # of BRAMs;
Slice = # of slices; LUT = # of lookup-tables; FF = # of
flip-flops; DSP = # of DSPs; CP = achieved clock period;
Latency = latency of the loop kernel.

Implementation BRAM Slice LUT FF DSP CP(ns) Latency

TraceBanking 34 4915 8266 12559 6 4.52 2923

Full Mux 22 21275 53553 23785 3 9.22 2919

Table 5 compares the Full Mux design with the Trace-
Banking design. Our TraceBanking design reduces Slice,
LUT and Flip-Flop usage by 76.9%, 84.6% and 47.2%, re-
spectively. Meanwhile, clock period is improved by 51.0%.
BRAM usage increases because of the overhead in storing
look-up tables for banking and offset functions. The reduc-
tion in logic resource usage results from the simplified mux-
ing network in the TraceBanking design. In the TraceBank-
ing design, two levels of multiplexers are used to connect
the registers with the compute units, and each multiplexer
has less than 30 inputs. In contrast, the Full Mux design
uses 12 instances of 625-to-1 multiplexers, which consumes
a lot more area. Even worse, the Full Mux design is ex-
tremely hard to route and unable to meet the 5ns timing
target. Therefore, even though the Full Mux design has
similar latency with the TraceBanking design, the total ex-
ecution time of the loop kernel is much worse. Clearly, the
banking scheme generated by TraceBanking helps improve
both area and performance of the design, which contains
very irregular memory accesses.

9. CONCLUSION AND FUTURE WORK
In this work, we propose TraceBanking, a memory bank-

ing approach using trace-based address mining. By analyz-
ing the input memory trace of an application, we select the
important address bits which can guide our banking deci-
sion, and apply a graph coloring algorithm to generate ef-
ficient banking solutions. We also propose an SMT-based
checker to validate our solution. Experiments show that
TraceBanking can generate comparable hardware with the
state-of-the-art partitioning algorithm for applications with
affine memory access patterns. In addition, a case study on
Haar face detection demonstrates that TraceBanking can
generate valid and efficient banking solutions for applica-
tions with non-affine memory accesses.

Our work opens a new path in automatically generating
parallel hardware architecture using memory trace analysis,
and we prove that this compute-intensive task can be accom-
plished within a reasonable amount of time. The execution
time of our approach can be further reduced by launching
parallel threads to exploit the heavy parallelism in the best-
first search.

Furthermore, we believe our approach can be extended
to generate other specialized parallel architectures, such as
data reuse buffers commonly used for stencil-like applica-
tions. Additionally, trace analysis provides an opportunity
for automatically generating a specialized on-chip caching
system for applications with non-affine memory accesses, or
even data-driven applications whose memory access pattern
can not be statically determined.
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