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ABSTRACT
While graph neural networks (GNNs) have gained popularity for
learning circuit representations in various electronic design automa-
tion (EDA) tasks, they face challenges in scalability when applied
to large graphs and exhibit limited generalizability to new designs.
These limitations make them less practical for addressing large-
scale, complex circuit problems. In this work we propose HOGA,
a novel attention-based model for learning circuit representations
in a scalable and generalizable manner. HOGA first computes hop-
wise features per node prior to model training. Subsequently, the
hop-wise features are solely used to produce node representations
through a gated self-attention module, which adaptively learns
important features among different hops without involving the
graph topology. As a result, HOGA is adaptive to various structures
across different circuits and can be efficiently trained in a distributed
manner. To demonstrate the efficacy of HOGA, we consider two
representative EDA tasks: quality of results (QoR) prediction and
functional reasoning. Our experimental results indicate that (1)
HOGA reduces estimation error over conventional GNNs by 46.76%
for predicting QoR after logic synthesis; (2) HOGA improves 10.0%
reasoning accuracy over GNNs for identifying functional blocks
on unseen gate-level netlists after complex technology mapping;
(3) The training time for HOGA almost linearly decreases with an
increase in computing resources. Source code of HOGA is freely
available at: github.com/cornell-zhang/HOGA.

1 INTRODUCTION
Recent years have seen a surge of interest in machine learning
(ML) for electronic design automation (EDA), which holds great
potential in achieving faster design closure andminimizing the need
for extensive human supervision [9]. In particular, graph neural
networks (GNNs) have become increasingly popular in the EDA
community due to their ability to encode graph-structured data
such as gate-level netlists into compact representations, which can
be used for a multitude of downstream EDA applications, including
quality of results (QoR) prediction and functional reasoning [13, 18].

However, scaling GNN training to large graphs is a notoriously
challenging problem, which poses a serious concern on the prac-
tical benefit of GNNs on large-scale EDA problems. On the one
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Figure 1: Comparison of HOGA and prior GNNs — (a) An
example graph for illustration; (b) GNN computation graph;
(c) Computation graph of our proposed approach, HOGA.

hand, unlike common datasets on social networks and molecular
graphs, which consist of either a few large graphs or a large num-
ber of small graphs, the circuit datasets may contain numerous
large graphs. For instance, the OpenABC-D benchmark provides
870k gate-level netlists, where each netlist consists of up to 240k
logic gates [5]. Thus, training GNNs on such a large-scale circuit
dataset is even more challenging than other graph-based applica-
tions. On the other hand, modern GNN models are built upon a
message-passing paradigm, which learns representations through
a recursive node-wise aggregation scheme shown in Figure 1(b).
As a consequence, it is nontrivial to perform efficient distributed
GNN training due to the node dependencies in a graph structure.

Apart from the scalability challenge, it is also underexplored
how to make GNNs generalizable across different circuit designs.
Although there are many customized GNNs previously proposed
for various EDA applications, their model backbones mainly follow
classic GNNs such as GCN [10] and GraphSAGE [8], which are
not necessarily suitable for circuit problems. Consider a task of
identifying functional blocks within circuits [18]. As distinct func-
tional blocks may have different depths, the number of hops to be
considered varies across nodes, which cannot be easily captured by
common GNNs. Moreover, the high-order structures of functional
blocks are also important yet ignored by the aforementioned GNN
models. As a result, existing GNNs for EDA tasks often struggle
to learn the intrinsic and critical information from complex circuit
graphs, resulting in limited generalizability to unseen designs.

In literature, improving the scalability and enhancing the gener-
alizability of GNNs on circuits are largely viewed as two orthogonal
directions and seldomly explored together. Previous GNNs either
incur massive communication overhead among GPUs, or rely on
heuristic graph sampling algorithms that may lose critical structural
information [14], which in turn degrades the model generalizability.
In the context of learning generalizable GNNs for circuit problems,
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Wang et al. [17] leveraged graph contrastive learning to pretrain
GNNs and adopted multiple neighbor aggregation functions to
learn the functionalities of logic gates, which comes with additional
computational costs and thus worsens the model scalability.

Motivated by the limitations of conventional GNNs on circuit
designs, we propose a novel hop-wise attention approach, named
HOGA, to improve both the scalability and generalizability of cir-
cuit representation learning. As shown in Figure 1(c), HOGA adopts
a hop-wise aggregation scheme, which precomputes the hop-wise
features and only uses those features to learn node representations
through a gated self-attention module. Since the final representa-
tion per node depends solely on its own hop-wise features, there are
no dependencies between different nodes during training, making
it easy to scale HOGA training in a distributed manner. Moreover,
the gated self-attention module enables HOGA to adaptively cap-
ture critical high-order structures from different hops per node,
rendering it generalizable across different circuit designs.

Notably, HOGA is a flexible approach for learning circuit rep-
resentations, which can be integrated with other customization
techniques previously proposed for various downstream EDA tasks.
To demonstrate the viability and flexibility of HOGA, we consider
two representative circuit problems: (1) QoR prediction – We fo-
cus on predicting the optimized gate count after logic synthesis
on the OpenABC-D benchmark, which is generated from various
circuit designs as well as synthesis recipes, and is one of the largest
open-sourced circuit datasets; (2) Functional reasoning – We follow
the most challenging setting in Gamora [18] by identifying func-
tional blocks on gate-level netlists after technology mapping. Our
experiments show that HOGA not only outperforms prior GNNs
on unseen designs, but is also efficient for distributed training. We
summarize our main technical contributions as follows:
• To the best of our knowledge, we are the first to introduce a
scalable and generalizable model for circuit representation learning,
which is achieved by a novel hop-wise graph attention scheme.
• By precomputing hop-wise features, HOGA avoids recursive
neighbor aggregation, which enables HOGA to learn each node
representation independently and facilitates massive parallelization
for distributed training. As a result, the training time of HOGA
almost linearly decreases with an increase in computing resources.
•Owing to the proposed gated self-attention module, HOGA is able
to adaptively learn critical and high-order circuit structures, leading
to 46.76% error drop and 10.0% accuracy improvement for QoR
prediction and functional reasoning on new designs, respectively.

2 PRELIMINARY AND MOTIVATION
2.1 Graph Neural Networks at Scale
GNNs have emerged as a promising technique that encodes circuit
graphs into compact representations, which can then be utilized for
addressing a wide spectrum of EDA problems. Specifically, given
a circuit graph G = (V, E), GNNs update initial node features
{𝑥 (0)
𝑖

| 𝑖 ∈ V} based on a node-wise aggregation scheme as follows:

𝑚
(𝑙 )
𝑖

= 𝑓 (𝑙 ) ({𝑥 (𝑙−1)
𝑗

| 𝑗 ∈ N (𝑖)}), 𝑥 (𝑙 )
𝑖

= 𝑔 (𝑙 ) (𝑚 (𝑙 )
𝑖
, 𝑥

(𝑙−1)
𝑖

) (1)

where 𝑥 (𝑙 )
𝑖

denotes the node feature vector at the 𝑙-th layer, N(𝑖)
represents the set of neighbors of node 𝑖 , 𝑓 can be any permutation-
invariant function (e.g., mean-pooling), and the goal of function 𝑔

is to update node representations based on the aggregated features
from neighbors. After stacking 𝐿 GNN layers, the output features
{𝑥 (𝐿)
𝑖

| 𝑖 ∈ V} serve as the final node representations. However,
let 𝑑 be the average node degree, there are 𝑂 (𝑑𝐿) nodes required
to obtain 𝑥 (𝐿)

𝑖
, which increases exponentially with the number of

layers and is known as the “neighbor explosion” issue. Besides,
the graph dependencies also incur significant communication over-
head and work imbalance, hindering efficient distributed GNN
training. To tackle both challenges, numerous efforts have been
devoted to improve GNN training efficiency by adopting different
sampling strategies [3, 8, 20]. While these methods demonstrate
promising results on social networks, we argue that they are un-
suitable for circuits as the sampling algorithms may entirely break
the design functionality and lead to poor accuracy. This is empiri-
cally confirmed in Section 4.3. In contrast, we introduce a hop-wise
aggregation scheme that independently learns each node represen-
tation based on its own hop-wise features, which renders our model
embarrassingly parallel and greatly facilitates distributed training.
2.2 Generalizable Graph Learning in EDA
Since realistic circuit designs may originate from distinct domains,
generalization capability is crucial for deploying graph learning
models on circuits. To this end, Ustun et al. proposed a customized
GNN model by distinguishing predecessors and successors in a
graph, which demonstrates promising generalizability on learning
operation mapping patterns [15]. Later, Zhang et al. [21] and Guo
et al. [7] introduced customized GNNs tailored for power inference
and timing prediction tasks respectively, via sequentially updating
node representations. More recently, Wu et al. presented a multi-
task graph learning framework for functional reasoning. While
these methods showcase promising results on the respective tasks,
their GNN backbones are built upon the conventional message-
passing paradigm, which cannot capture critical high-order struc-
tures formed by multiple nodes. Notably, many functional blocks
(e.g., full adders) are essentially high-order structures, which are
crucial for many circuit problems such as functional reasoning [18].
Therefore, the aforementioned methods still cannot capture the in-
trinsic circuit information, leading to either restrictions to specific
tasks or limited generalizability to complex circuit designs.

Although Wang et al. attempted to improve GNN generalizabil-
ity by adopting the notion of graph contrastive learning [17], it
involves nontrivial computational costs and thus worsens the GNN
scalability. In this work, we aim to devise a graph learning model
that is both scalable and generalizable for circuit designs by using
a gated self-attention module on hop-wise features per node.

3 THE PROPOSED APPROACH
Problem formulation. Given a graph adjacency matrix 𝐴 and a
node feature matrix 𝑋 , our goal is to build a model M for learning
high-quality node representations 𝑌 = M(𝐴,𝑋 ), which can be
utilized for a broad spectrum of circuit problems.

Figure 2(a) gives an overview of HOGA that consists of two
major phases. During the first phase, HOGA computes hop-wise
features by iteratively multiplying the adjacency matrix with the
node feature matrix, as described in Section 3.1. Note that this step
can be finished in advance, allowing HOGA training with complex-
ity independent of the graph structure. The second phase trains



Less is More: Hop-Wise Graph Attention for Scalable and Generalizable Learning on Circuits DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Linear Projections

softmax(QKT) V

Q K VU

LayerNorm & ReLU

Hop-Wise Feature Sequence

Attentive Readout

H

! "! "!!

!

A
B
C
D

A
B
C
D

A B C D

Gated 
Self-Attention

Gated 
Self-Attention

Gated 
Self-Attention

Gated 
Self-Attention

GPU:0

GPU:1

GPU:2

GPU:3

Phase1: Hop-Wise Feature Generation Phase2: Distributed Training on Gated Self-Attention Module

Hop-Wise Feature Sequence

A

D

B

C

(a) An overview of HOGA (b) Gated self-attention module
Figure 2: (a) An overview of the two major phases of HOGA; (b) Our introduced gated self-attention module.

a gated self-attention module to capture high-order interactions
among hop-wise features, as illustrated in Section 3.2. Consequently,
HOGA is generalizable to different circuit designs while simultane-
ously benefiting from high parallelism for distributed training.

3.1 Hop-Wise Feature Generation
As depicted in Figure 1(b), traditional message-passing GNNs recur-
sively aggregate features from neighbors, which leads to their poor
scalability on large graphs. In contrast, we adopt a coarse-grained
message-passing scheme based on hop-wise feature aggregation.
To this ends, our first step is to generate hop-wise features.

Given the adjacency matrix 𝐴 ∈ R𝑛×𝑛 and node feature matrix
𝑋 ∈ R𝑛×𝑑 , where 𝑛 and 𝑑 represent the number of nodes and the
feature dimension respectively, we first normalize the adjacency
matrix: 𝐴 = 𝐷− 1

2𝐴𝐷− 1
2 , where 𝐷 is the node degree matrix. Next,

we generate hop-wise features by iteratively computing Equation
(2), where 𝑋 (0) = 𝑋 and 𝐾 denotes the number of hops.

𝑋 (𝑘 ) = 𝐴𝑋 (𝑘−1) , 𝑘 = 1, 2, ..., 𝐾 (2)
After obtaining hop-wise features 𝑋 (0) , 𝑋 (1) , ..., 𝑋 (𝐾 ) , we stack

them to construct a third-order tensor X ∈ R𝑛×(𝐾+1)×𝑑 such that:
X𝑖 = [𝑋 (0)

𝑖
, 𝑋

(1)
𝑖

, ..., 𝑋
(𝐾 )
𝑖

]𝑇 , 𝑖 = 1, 2, ..., 𝑛 (3)
Consequently, for each 𝑖 ∈ {1, 2, ..., 𝑛}, X𝑖 comprises up to 𝐾-hop
features of node 𝑖 , which are then independently used to learn the
corresponding node representation 𝑌𝑖 . Hence, there are no depen-
dencies between different nodes, making it easy to scale HOGA
through distributed training. It is noteworthy that the time required
for generating hop-wise features is generally negligible compared
to the overall training time, as empirically confirmed in Section 4.2.

While there are a few prior arts (e.g. SIGN [6]) augmenting node
features by adopting a similar approach to Equation (2), they simply
train a multi-layer perceptron (MLP) model on augmented features.
In contrast, we consider learning node representations through a
hop-wise feature aggregation scheme, which is built upon a novel
gated self-attention module introduced in the following section.

3.2 Hop-Wise Gated Attention
Since HOGA takes X𝑖 ∈ R(𝐾+1)×𝑑 as input and produces a rep-
resentation 𝑌𝑖 ∈ R𝑑 for every node 𝑖 independently, we omit the
node index (𝑖) in the ensuing discussion, by simply denoting X𝑖 as

𝐻 and 𝑌𝑖 as 𝑦 for clarity. A straightforward way of producing 𝑦 is
to accumulate hop-wise features in 𝐻 , i.e., 𝑦 =

∑𝐾
𝑘=0 𝐻𝑘 . However,

this approach has two flaws: (1) it fails to capture high-order fea-
ture interactions among different hop neighbors, resulting in its
limited expressivity of learning high-order circuit structures. (2) it
uniformly combines features from different hops and thus cannot
identify and focus on important hop-wise features per node. To
address those limitations, let us first consider a simple gated layer:

𝑈 = 𝐻𝑊𝑈 ,𝑉 = 𝐻𝑊𝑉 , �̂� = 𝑈 ⊙ 𝑉 (4)
where𝑊𝑈 ,𝑊𝑉 ∈ R𝑑×𝑑 are trainable weight matrices, and ⊙ de-
notes the element-wise product. We can derive from Equation (4)
that �̂�𝑘 captures the second-order interaction (𝐻𝑘𝑊𝑈 ) ⊙ (𝐻𝑘𝑊𝑉 )
for every hop 𝑘 ∈ {0, 1, ..., 𝐾}. However, this also means Equation
(4) fails to capture interactions among different hop-wise features,
i.e., (𝐻𝑘𝑊𝑈 )⊙(𝐻 𝑗𝑊𝑉 ) with𝑘 ≠ 𝑗 . To tackle this issue, we introduce
a gated self-attention layer in the following:

𝑆 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇 ), �̂� = 𝑈 ⊙ (𝑆𝑉 ) (5)
where 𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 ,𝑊𝑄 ,𝑊𝐾 ∈ R𝑑×𝑑 are trainable weight
matrices, and 𝑆 is the self-attention matrix widely used in Trans-
former [16]. Based on Equations (4) and (5), we can derive that
�̂�𝑘 = (𝐻𝑘𝑊𝑈 ) ⊙ (∑𝐾𝑗=0 𝑆𝑘,𝑗𝐻 𝑗𝑊𝑉 ) = ∑𝐾

𝑗=0 𝑆𝑘,𝑗 (𝐻𝑘𝑊𝑈 ) ⊙ (𝐻 𝑗𝑊𝑉 ),
which captures second-order interactions on different hop-wise fea-
tures. By stacking more layers, the output �̂� naturally captures
higher-order feature interactions from different hops, which corre-
spond to higher-order structures on the input circuit graph.

Implementation details. To improve the training stability of
HOGA, we add LayerNorm and ReLU to Equation (5) in our imple-
mentation, i.e., �̂� = ReLU(LayerNorm(𝑈 ⊙ (𝑆𝑉 ))). After obtaining
�̂� = [�̂�0, �̂�1, ..., �̂�𝐾 ]𝑇 ∈ R(𝐾+1)×𝑑 , we adopt an attentive readout
scheme to produce the final node representation 𝑦:

𝑐𝑘 =
𝑒𝑥𝑝 (𝛼𝑇 (�̂�0 | |�̂�𝑘 ))∑𝐾
𝑗=1 𝑒𝑥𝑝 (𝛼𝑇 (�̂�0 | |�̂� 𝑗 ))

, 𝑦 = �̂�0 +
𝐾∑︁
𝑘=1

𝑐𝑘�̂�𝑘 (6)

where 𝛼 ∈ R2𝑑 is a trainable vector, | | denotes the concatenation
operator, and 𝑐𝑘 represents an attention score to measure the im-
portance of the 𝑘-hop feature �̂�𝑘 to the final node representation 𝑦.
In this way, HOGA can identify and adaptively aggregate critical
features from different hops to produce high-quality node repre-
sentations, which are then used for downstream circuit tasks.
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3.3 Complexity analysis of HOGA
Suppose we consider ℎ feature dimensions and 𝐾 hops. The com-
plexity of hop-wise feature generation is 𝑂 (𝐾ℎ |E |). Besides, the
gated self-attentionmodule has a complexity of𝑂 (𝐾ℎ2 |V|+𝐾2ℎ |V|)
for linear projections and computing Equation (5). Therefore, the to-
tal complexity of HOGA is𝑂 (𝐾ℎ |E | +𝐾ℎ2 |V| +𝐾2ℎ |V|) = 𝑂 ( |E | +
|V|), which is linear with respect to the number of nodes/edges.

4 EXPERIMENT
4.1 Experimental Setup
We evaluate HOGA on two tasks: (1) QoR prediction.We focus on
the OpenABC-D benchmark for predicting the optimized gate count
in And-Inverter-Graphs (AIGs) after logic synthesis optimization
through ABC [2]. Notably, OpenABC-D consists of 870, 000 AIGs
that are generated by running various synthesis recipes on IPs from
MIT LL labs CEP [4], OpenCores [12], and IWLS [1]. To demonstrate
the generalizability of our approach, we train HOGA on the top
20 designs in Table 1 and evaluate it on the rest of the designs; (2)
Functional reasoning.We follow Gamora [18] to identify adder
blocks by predicting the sum and carry-out nodes in AIGs of carry-
save array (CSA) and Radix-4 Booth multipliers. As technology
mapping can largely increase functional reasoning complexity [11,
19], we consider the most challenging scenario in Gamora, where
AIGs are generated by ABC with complex ASAP 7nm technology
mapping, and we only train HOGA on an 8-bit multiplier design
and perform inference on multipliers with bitwidth up to 768.

Note that the authors of OpenABC-D and Gamora have proposed
their own GNN-based models for the aforementioned tasks. To
ensure a fair comparison, we only replace their GNN blocks with
HOGA and keep other model components the same as shown in
Figures 3(b) and 3(c). In regard to HOGA hyperparameter settings,
we adopt Adam optimizer with a learning rate of 0.0001, a hidden
dimension of 256, and fix the number of gated self-attention layer
to 1. Besides, we set the number of hops 𝐾 as 5 for experiments on
OpenABC-D and 8 onGamora, which captures the information from
the same number of hops as the baseline GNNs in both tasks. We
leverage DistributedDataParallel in PyTorch for distributed training
on HOGA. All experiments are conducted on a Linux machine with
an Intel Xeon Gold 5218 CPU and 4 RTX A6000 GPUs.

Table 1: Statistics of OpenABC-D benchmark — The top and
bottom designs are used for training and test, respectively.

IP Design Nodes Edges Category

spi 4219 8676 Communication
i2c 1169 2466 Communication
ss_pcm 462 896 Communication
usb_phy 487 1064 Communication
sasc 613 1351 Communication
wb_dma 4587 9876 Communication
simple_spi 930 1992 Communication
pci 19547 42251 Communication
dynamic_node 18094 38763 Control
ac97_ctrl 11464 25065 Control
mem_ctrl 16307 37146 Control
des3_area 4971 10006 Crypto
aes 28925 58379 Crypto
sha256 15816 32674 Crypto
fir 4558 9467 DSP
iir 6978 14397 DSP
idft 241552 520523 DSP
dft 245046 527509 DSP
tv80 11328 23017 Processor
fpu 29623 59655 Processor
wb_conmax 47840 97755 Communication
ethernet 67164 144750 Communication
bp_be 82514 173441 Control
vga_lcd 105334 227731 Control
aes_xcrypt 45840 93485 Crypto
aes_secworks 40778 84160 Crypto
jpeg 114771 234331 DSP
tiny_rocket 52315 108811 Processor
picosoc 82945 176687 Processor

4.2 Evaluation on QoR Prediction
Our baseline is a 5-layer GCN, as previously used for the OpenABC-
D benchmark [5]. Besides, we choose mean absolute percentage
error (MAPE) as the evaluation metric, which is defined as MAPE =
1
𝑔

∑𝑔
𝑖=1 |

𝑦𝑖−�̂�𝑖
𝑦𝑖

| × 100%, where 𝑦𝑖 and 𝑦𝑖 denote the ground truth
and model prediction on the 𝑖-th sample (graph), respectively. Ta-
ble 2 indicates that both HOGA models significantly outperform
GCN across all test designs. In particular, HOGA-5 improves the
estimation error over GCN on vga_lcd by a margin of 46.76%. The



Less is More: Hop-Wise Graph Attention for Scalable and Generalizable Learning on Circuits DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Table 2: Comparison of HOGA and GCN for QoR prediction — We choose mean absolute percentage error (MAPE) as the
evaluation metric (Lower score is better). HOGA-2 and HOGA-5 indicate 𝐾 = 2 and 𝐾 = 5 in HOGA, respectively.

wb_conmax ethernet bp_be vga_lcd aes_xcrypt aes_secworks jpeg tiny_rocket picosoc Average Training Time
GCN 24.66% 19.20% 39.53% 52.35% 21.41% 23.93% 22.11% 19.89% 10.51% 26.0% 11.9 hours (1.0×)
HOGA-2 7.33% 6.51% 17.81% 9.31% 5.79% 10.17% 3.87% 6.70% 2.91% 7.8% 3.8 hours (↓ 3.1×)
HOGA-5 4.53% 4.21% 4.76% 5.59% 6.57% 8.42% 5.65% 3.88% 1.90% 5.0% 11.2 hours (↓ 1.1×)
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Figure 4: GCN andHOGA-5 predictions vs. ground truth—The ground truth value is preprocessed in theOpenABC-D benchmark.

superiority of HOGA is further demonstrated in Figure 4, where the
QoR predictions by HOGA-5 are highly correlated with the ground
truth. In contrast, the GCN model fails to accurately predict the
actual QoR values on those unseen designs. Moreover, by compar-
ing HOGA-5 and HOGA-2, we can see the trade-off between the
accuracy and training time of HOGA. Notably, HOGA-2 not only
improves the average estimation error over GCN by 18.2%, but also
achieves a notable 3.1× training speedup on a single GPU.
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Figure 5: Multi-GPU training time of HOGA on OpenABC-D.

It is noteworthy that HOGA can be easily accelerated through
distributed training, owing to its high parallelism for learning node
representations. As shown in Figure 5, the training time of HOGA
almost linearly decreases when the number of GPU devices is in-
creased. As a result, it takes only 3.5 (1.1) hours to train HOGA-5

(HOGA-2) on the OpenABC-D benchmark. Notably, the first phase
of HOGA for generating hop-wise features takes 13minutes, which
is negligible compared to the overall training time. We believe that
HOGA can be further accelerated if more computing resources are
available, rendering it applicable to industrial-scale applications.
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Figure 6: Functional reasoning on AIG-based CSA and Radix-
4 Booth multipliers with 7nm technology mapping.

4.3 Evaluation on Functional Reasoning
To further demonstrate the generalization capability, we evaluate
HOGA on the functional reasoning task [18] by identifying root
nodes of XOR and majority (MAJ) operations in AIG-based mul-
tipliers, which correspond to sum and carry-out of adder blocks,
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Figure 7: Visualization on hop-wise attention scores per node in the AIG-based 768-bit Radix-4 Booth Multiplier — Rows and
columns in each heatmap denote nodes and their hop-wise neighbors, respectively.

respectively. More concretely, there are 4 node categories for clas-
sification: (1) MAJ nodes; (2) XOR nodes; (3) nodes shared by MAJ
and XOR; (4) other plain nodes such as PI/PO. Apart from choosing
GraphSAGE in Gamora as our baseline, we also consider Graph-
SAINT [20], a popular sampling-based GNN model, and SIGN [6]
that adopts an MLP model on hop-wise features. Note that all base-
lines as well as HOGA are trained on an AIG-based 8-bit multiplier
and evaluated on multipliers with bitwidths ranging from 64 to 768.

As shown in Figure 6, all baselines perform poorly on CSA mul-
tipliers, which indicates their limited generalizability to complex
designs. In addition, GraphSAINT performs even worse than Graph-
SAGE on Booth multipliers, indicating sampling-based GNNs are
not suitable for circuit graphs, as analyzed in Section 2.1. While
SIGN achieves reasonable accuracy on Booth multipliers, it still
largely lags behind HOGA on CSA multipliers. We attribute it to
our proposed gated self-attention module, which adaptively learns
high-order features from different hops per node. This is further
confirmed in Section 4.4. As a result, HOGA largely surpasses base-
line models on both CSA and Booth multiplier circuits, with a 10.0%
accuracy improvement on the 768-bit CSA multiplier. More impor-
tantly, Figure 6 illustrates that the accuracy of HOGA exhibits a
rising trend as the bitwidth of test multipliers increases, which is
crucial for accurate reasoning on large-scale Boolean networks.

4.4 Visualization on HOGA Attention Scores
For the sake of clear visualization, we randomly sample 100 nodes
per classification category from the AIG of 768-bit Booth multiplier,
based on which four heatmaps are drawn in Figure 7. Notably, the
rows and columns in each heatmap correspond to nodes and their
hop-wise neighbors, respectively. Each element in a heatmap row
represents the hop-wise attention score 𝑐𝑘 defined in Equation (6),
which is used to adaptively combine important hop-wise features.
Figure 7 clearly shows that HOGA is able to identify critical features
from different hop 𝑘 for learning the underlying Boolean functions.
Notably, since we use a single gated self-attention layer, each �̂�𝑘
in Equation (6) captures second-order interactions among hop-
wise features, corresponding to second-order graph structures. As a
consequence, HOGA skips odd-hop neighbor features and primarily
focuses on �̂�𝑘 with 𝑘 ∈ {2, 4, 6} for learning MAJ/XOR functions, as
indicated by the attention scores shown in the first three heatmaps.
As for the last heatmap, the attention scores of HOGA are relatively
random since those nodes are PI/PO or plain AND gates, whose
Boolean functions are not meaningful for this task.

5 CONCLUSION
This work introduces HOGA, a hop-wise attention approach for
scalable and generalizable circuit representation learning. HOGA
precomputes hop-wise features that are then fed into a gated at-
tention module for capturing critical circuit structures. Our results
showcase that HOGA not only comfortably scales to large-scale
circuits via distributed training, but also outperforms conventional
GNNs for generalizing to unseen and complex circuit designs.
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