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ABSTRACT 

In this paper we discuss optimizing the interconnect 

power of designs implemented in FPGA platforms. In 

particular, we reduce the glitch power on interconnects 

associated with the output of functional units in a design. 

The idea is to activate unused flip-flops to block the 

propagation of glitches, which takes advantage of the 

abundant flip-flops in modern FPGA structures. Since the 

activation of additional flip-flops may cause data hazard 

problems, we develop several effective behavioral synthesis 

techniques to prevent such data hazards. We also study the 

optimality of our techniques. The experimental results show 

that on average, our methods lead to a 28% reduction in 

dynamic power in the Xilinx Virtex-II platform.  

1. Introduction 
Power efficiency is becoming a forefront concern of 

FPGA designs in nanometer-scale technologies. The research 

in [14][20] has shown that interconnect resources dominate 

the power consumption in modern FPGA designs. In 

particular, interconnect could dissipate at least 60% of the 

total power in the Xilinx Virtex-II family [20]. Therefore, 

reducing interconnect power is important for FPGA designs 

to achieve power efficiency.  

 

Figure 1: Generic structure of the FSMD model. 

A synchronous design can be implemented with the 

architecture of finite state machine with data path (FSMD). 

Figure 1 shows the generic structure of FSMD. The data path 

contains arithmetic functional units as well as registers which 

serve to temporally store computation results between 

functional units. We use the term boundary output signal to 

refer to the interconnect at the boundary of the data path 

(bold line in Figure 1), which is between the output of 

functional units and the input of registers.  

It is important to note that a boundary output signal may 

have multiple fanouts; i.e., a functional unit is connected to 

several registers, as shown in Figure 2(a). This occurs 

commonly if during resource binding, multiple operations 

are bound to the same functional unit, and those operations 

produce results with overlapped lifetimes.  

We observed that, when using an FPGA to implement 

designs, if we insert a single register at a multi-fanout 

boundary output signal, as shown in Figure 2(b), the power 

consumption on the boundary output signal could 

significantly decrease. This is because large glitches which 

originally propagate through the whole boundary output 

signal now occur only in the interconnect with an extremely 

small capacitance C between the inserted register and the 

functional unit. We call such an additional register a firewall 

register due to its ability to filter out unwelcome glitches. 

 

Figure 2: The insertion of a firewall register. 

Interconnect capacitance C in Figure 2(b) can be much 

smaller than the capacitance of the whole boundary output 

signal if we implement it using FPGA. Figure 3 shows a 

typical FPGA structure. A basic logic element (e.g., a Logic 

Element in Altera Stratix FPGAs or a Slice in Xilinx Virtex 

series FPGAs) contains a LUT as well as a flip-flop, so that 

the output of a logic gate (implemented in LUTs) can be 

configured as either an unregistered mode or a registered 

mode. Precisely, if a logic gate is connected to only one 

register, it can be implemented in the registered mode. 

Inserting a firewall register to a functional unit creates such a 

situation to benefit the registered mode. Therefore, 

capacitance C in Figure 2(b) indicates the interconnect 

capacitance between the LUT and the local flip-flop inside a 

basic logic element, which is much smaller than the 

capacitance of the inter-block programmable interconnect.  

The insertion of firewall registers is not trivial because a 

firewall register delays data propagation from a functional 



unit to its original registers for one clock cycle, thus possibly 

causing data hazard problems. We observed that the hazard 

problem can be solved by scheduling and binding operations 

in a particular way. Therefore, in this paper we propose 

novel scheduling and binding methods to generate 

functionally correct, low-power RTL designs with firewall 

registers. 

 

Figure 3: Firewall register implemented in a modern FPGA. 

We intend to insert firewall registers to those functional 

units generating large glitches at the output. This implies that 

our method needs an accurate glitch estimation to guide the 

insertion. Considering that the occurrence of glitches is 

sensitive to component delays, we suggest to use our 

behavioral synthesis method for data intensive designs, 

which are mainly composed of arithmetic functional units 

serving as IPs. Those IP blocks have pre-determined circuit 

structure so the glitch information is predictable in the 

behavioral synthesis stage. Our problem formulation 

considers power models [7][12][19][21] for each arithmetic 

module as the input.  

In our experiments, we applied our method to a set of 

data intensive designs, and obtained, on average, 28% power 

reduction with 4% area overhead. The small area overhead 

implies that the additional control circuit for firewall 

registers is insignificant. Also, the leakage power is not 

impacted much because leakage is roughly proportional to a 

design’s area.  

Similar to our idea, pipelining [15][18][22] and retiming 

[13][17] also adopt flip-flops to block the propagation of 

glitches for power minimization. However, all of them 

assume that an RTL design is given so they cannot change 

the computation sequence as scheduling does. This makes 

the previous methods hard to solve the data hazard problem 

encountered in our problem formulation. They focus on 

activating unused flip-flops in a local scale, particularly, 

within a functional unit. Still, one can apply both our method 

and previous methods in different stages of design flow for 

low power.  

Our major contributions are 1) to expend the solution 

space of low-power implementation by proposing an 

additional dimension of using/not using firewall register, and 

2) to provide methods to guide the insertion of firewall 

registers in the behavioral synthesis stage. We have 

incorporated our techniques into a behavioral synthesis tool, 

xPilot, introduced in [8]. 

2. Data Hazard Problems 
Inserting firewall registers may impact the correctness of 

a design’s function. In fact, as we will discuss later, there 

exists a certain scheduling and binding condition where the 

use of firewall register will cause functional errors. 

Therefore, if we want to take advantage of firewall register, 

we must avoid scheduling and binding a design in that way. 

In this section we discuss the scheduling and binding pattern 

to be avoided.  

A design’s function can be represented as a data-flow 

graph (DFG). A DFG is a directed acyclic graph (DAG), 

where every node represents an operation, such as an 

addition or a multiplication, and every directed edge (u, v) 

represents a dataflow indicating that operation u produces 

values to be consumed by v. After scheduling, we can derive 

a scheduled DFG, where every operation is scheduled to 

execute at one or more consecutive control steps (c-steps). 

To maintain a design’s functionality after inserting 

firewall registers, we have to guarantee that for every 

dataflow (u, v), consuming operation v correctly read results 

from producing operation u.  Figure 4(a) shows a partial 

scheduled DFG, where operations u and v form a dataflow (u, 

v) and are bound to functional units p and q, respectively. 

Note that the use of the firewall register will delay the data 

transfer from functional unit p to register r by one c-step. In 

case functional unit q intends to fetch from register r a value 

that is still stored at the firewall register, a functional error 

occurs. We need to carefully deal with this condition when 

using firewall registers. 

We can just “forward” the results from the firewall 

register to functional unit q as shown in Figure 4(b), which is 

traditionally called forwarding. Forwarding can absolutely 

resolve the functional error problem if the consuming 

operation v is executed in a single c-step. In this case, the 

firewall register is required to keep the target results for only 

one c-step during operation v’s reading.  However, if the 

consuming operation v is a multi-cycle operation, the 

firewall register must keep the target results for several c-

steps until operation v finishes the reading. In case the 

firewall register cannot keep the target results long enough, a 

functional error still occurs. We elaborate this issue using an 

example. 

Figure 5 shows a partial scheduled DFG, where dataflow 

(u, v) are bound to functional units p and q, respectively. In 

addition, operation w is also bound to functional unit p, 

sharing the same functional unit with the producing 

operation u. Note that the consuming operation v is a two-

cycle operation and will read results through forwarding 

during c-steps i and i+1, so the firewall register must keep 

the producing operation u’s results during the two c-steps. 

However, at the end of c-step i, functional unit p will finish 

the computation of operation w and store its results to the 

firewall register, which, accidentally, overwrites the result 

that is still forwarded to functional unit q. Formally speaking, 

a write-after-read (WAR) hazard occurs on the firewall 

register. 



Note that we cannot attach two firewall registers to 

functional unit p to store lifetime-overlapping results from 

operations u and w, because this way the two firewall 

registers will not be implemented in local flip-flops, making 

no power reduction as shown in Figure 3.  On the contrary, 

because we can attach “original” registers, such as register r 

in Figure 4(a), as many as possible to store lifetime-

overlapping results, it is impossible for original registers to 

involve WAR hazards.  

 

Figure 4: Forwarding. 

We formally describe the conditions to induce a WAR. 

Assume that an operation v is a non-pipelined multi-cycle 

operation and is executed at k consecutive c-steps, which are 

labeled by consecutive integers {i, i+1, …, i+k-1}.  

Lemma 1: Inserting a firewall register for a dataflow (u, 

v) causes a WAR hazard if and only if: (1) operations u and v 

are scheduled at consecutive c-steps, and (2) there exists an 

operation w such that w and u are bound to the same 

functional unit, and w produces results between c-step i and 

i+k-2. 

Proof: Figure 5 shows a simple instance verifying this 

lemma. Q.E.D.  

 

Figure 5: Dataflow (u, v) with a WAR hazard after firewall 

register insertion. 

To maintain a design’s function, we cannot apply firewall 

registers to dataflows satisfying Lemma 1. However, this will 

reduce the opportunity of using firewall registers for low 

power, so we should carefully perform scheduling and 

binding to avoid such conditions.  

3. Binding with Firewall Register Insertion 

Support 
In this section we discuss how to perform resource 

binding to avoid the conditions in Lemma 1. Our idea can be 

briefly illustrated with the example in Figure 5. Since 

operations u and w are bound to the same functional unit p, 

according to Lemma 1, a hazard on dataflow (u, v) appears. 

If we can separately bind operations u and w to two 

functional units, Lemma 1 will become unsatisfied.  

Traditionally, binding achieves power optimization by 

minimizing the switching activities of resources 

[1][5][6][16]. In this research we perform a low-power 

binding by considering both the switching activity and the 

insertion of firewall registers simultaneously. The problem 

formulation is described as follows. 

Given: (1) A scheduled DFG G=(V, E); (2) a set of 

resources R; (3) switching activity suw on u à w, where u, w 

∈ V; (4) power models for each type of resource. 

Goal: Generate a functional unit binding {B: v to r | for 

all v, where v ∈ V and r ∈ R}, and for every r ∈ R determine 

whether it is protected by a firewall register. The objective is 

to minimize the power of the functional units. 

In our problem formulation, the resource number is a 

constraint. Therefore, although our method seems to increase 

the usage of resources due to binding operations to separate 

resources, our method will not use more resources than 

conventional binding approaches. However, the resource 

constraint limits how much our binding can avoid Lemma 1. 

The looser the resource constraint, the more the dataflows to 

be protected by firewall register. 

3.1 Network Flow Formulation 
We adopt network flow formulation to solve the binding 

problem. We will show that, through proper network 

construction and an optimal min-cost flow algorithm, we can 

derive an optimal solution for the goal. The outline of our 

algorithm is shown as follows. 

Algorithm: 

(1) Build a graph H representing the compatible 

information among operations in V. 

(2) Assign cost and capacity constraints to the edges in 

H. 

(3) Solve the min-cost flow problem on H with a set of 

equal integral flow constraints. 

(4) Derive a binding solution with firewall register 

insertion based on the solution in step (3). 

We first introduce several notations in our formulation. 

In a DFG, G=(V, E), different types of operations (e.g., 

addition and multiplication) are bound separately. We use Vf 

to denote the set of operations in type f. For two operations u 

and w of type f, if their corresponding lifetimes do not 

overlap, we call u and w compatible with each other. Two 

compatible operations can be bound to a single functional 

unit.  Next we define two operations to be FR-compatible as 

follows.  

Definition 1: Two operations u and w of type f is FR-

compatible if and only if (1) they are compatible, and (2) 

when they are bound together to a functional unit, the 

functional unit can be protected by a firewall register; i.e., 

the conditions in Lemma 1 do not occur.  

For example, in Figure 5 operations u and w are not FR-

compatible because binding them to the same functional unit 

forbids inserting a firewall register to that functional unit.  

We intend to build a graph H = (s, t, VH, EH, C, Kl, Ku) 

based on the compatibility information among operations. 



First there are source node s and sink node t in H. Next, VH is 

the node set of the network. For each operation v ∈ Vf there 

are six corresponding nodes in VH, as shown in Figure 6. We 

denote the six nodes as {vFRin, vFRout, vPin, vPout, vXin, vXout}, 

where nodes vFRin and vFRout are responsible for the situation 

of associating a firewall register, vPin and vPout are responsible 

for the situation without firewall registers, and vXin and vXout 

are responsible for the exclusive constraint that operation v is 

either with a firewall register or not.  

 

Figure 6:  The six corresponding nodes in H of operation v. 

EH is the edge set of the network. The edges in EH can be 

classified into three categories. 

(1) The internal edges among the six corresponding 

nodes of an operation v, as shown in Figure 6. 

(2) If two operations u and w are compatible and u 

comes before w, edge (uPout, wPin) is in EH. 

(3) If two operations u and w are FR-compatible and u 

comes before w, edge (uFRout, wFRin) is in EH. 

C is the cost assigned to the edges in EH, which is set in 

the following way. 

C(uPout, wPin) = powerprimitive(suw) 

C(uFRout, wFRin) = powerFR(suw) 

C(x, y) = 0 for any other edge (x, y) in EH. 

In this formulation the dynamic power is affected by the 

switching activity as well as whether a functional unit is 

protected by a firewall register. There must be two power 

models for each type of functional unit. Power model 

powerFR(suw) is used to calculate the power for the case of 

binding operations u and w together with a firewall register; 

powerprimitive(suw) is for the case of binding operations without 

a firewall register. Both the models take switching activity as 

input. There have been plenty of papers [7][12][19][21] 

discussing how to derive power models for behavioral 

synthesis. Especially those methods can take glitches into 

account when characterizing the power for pre-designed IP 

blocks. Then we assign the calculated power values to the 

corresponding edges in H as the cost.   

Finally, Kl is the lower bound flow capacity, which is set 

to 0 for every edge in EH; Ku is the upper bound flow 

capacity, which is set to 1. 

We use an example to illustrate the construction of H. 

Figure 7(a) shows a scheduled DFG containing three 

operations {1, 2, 3} with the same type. The constructed 

network for those operations is shown in Figure 7(b). Note 

that operations 1 and 2 are compatible but not FR-

compatible so there exists edge (1Pout, 2Pin) but no (1FRout, 

2FRin).  In addition, operations 2 and 3 are both compatible 

and FR-compatible so both edges (2Pout, 3Pin) and (2FRout, 

3FRin) exist.  

        

Figure 7:  Network construction. 

3.2 Obtaining Binding from Network Flow 

Solution 
If the resource constraint of resource type f is Nf, we 

solve the min-cost Nf-flow problem on the constructed 

network H. Then we use the solution (network flows) to 

perform binding and firewall register insertion 

simultaneously, which will be discussed in this section.  

All the operations visited by a flow will be bound to a 

single functional unit with or without a firewall register. 

Precisely, if a flow goes through edge (uFRout, wFRin), 

operations u and w will be bound together with a firewall 

register. If a flow goes through edge (uPout, wPin), operations 

u and w will be bound without a firewall register.  However, 

if the condition occurs that a flow go through edge (uFRout, 

xFRin) and then (xPout, wPin), i.e., operations u and x are bound 

with a firewall register but operations x and w not, we cannot 

decide whether the functional unit associated with operations 

u, x, and w is protected by a firewall register.  To avoid such 

a situation, for each operation u we require that edges (uFRin, 

uXin) and (uXout, uFRout) have the same flow and also edges 

(uPin, uXin) and (uXout, uPout) have the same flow. With these 

constraints, we guarantee that a flow always stays at either 

the primitive part or the firewall register part of edges. We 

call a unit flow satisfying the above constraints a valid flow. 

For example, in Figure 7(b) the highlighted path indicates a 

valid flow.  

After applying a min-cost Nf-flow algorithm to the 

network, we can derive a set of valid flows, and then 

construct the corresponding binding result. Since we use the 

power as the cost in the network, a min-cost algorithm leads 

to a binding solution with the lowest power. 

3.3 Solving Network Flow Problem with Equal 

Integral Flow Constraints  
As research [6] mentioned, the min-cost flow can be 

solved by the shortest path based algorithm [1]. However, 

different from the general characteristics of networks, 

network H in our formulation requires that the flows on 

certain edges are equal. The min-cost flow problem with 

equal integral flow constraints is a difficult problem (NP-

hard) [2]. To trade off solution quality with runtime, we can 

use heuristic algorithms, such as the one presented in [3], 

where the authors used a Lagrangian relaxation technique to 

speed up the min-cost equal-flow problem. 



4. Scheduling with Firewall Register Insertion 

Support 
In this section we discuss how to perform scheduling to 

avoid the conditions in Lemma 1. Our idea can be briefly 

illustrated with the example in Figure 5, which shows a data 

hazard on dataflow (u, v).  If we can schedule the two 

operations u and v in a nonconsecutive way, like in Figure 8, 

Lemma 1 will never be satisfied. We define the slack of an 

edge (u, v) as the distance between operations u and v in 

terms of c-step. If the slack is zero, operations u and v are 

executed at consecutive c-steps; if the slack is a positive 

value, the two operations are separated by at least one c-step. 

Our goal is to assign positive slacks to many edges to avoid 

the situation in Lemma 1.  

The problem formulation is as follows. 

Given: (1) A DFG G; (2) A latency constraint T in 

number of c-steps and a set of optional scheduling 

constraints, including data dependency, throughput, and 

relative timing [9]. 

Goal: Generate a scheduled DFG G’ without violating T 

and all the given scheduling constraints; in the meantime, the 

number of dataflows (or edges in G’) with hazards is 

minimized. 

Since the assignments of slacks are constrained by the 

overall latency constraint, we have to intelligently budget 

and distribute time slacks to the non-critical edges of the 

given DFG. This problem is traditionally called the timing 

budgeting problem. The previous research [10] has well 

studied this problem and provided an optimal solution. 

 

Figure 8: The use of slack for avoiding a hazard. 

5. Experimental Results 
We incorporated our scheduling and binding techniques 

into the behavioral synthesis tool, xPilot, introduced in [8]. 

In this section we will compare the power efficiency of the 

RTL designs generated by the conventional behavioral 

synthesis [8] and by our firewall-register-supporting (FR-

supporting) behavioral synthesis. 

The experimental flow is as follows. We first performed 

both the behavioral synthesis methods under the same 

resource and timing constraints. Next, we implemented each 

RTL design into a real FPGA device using Xilinx ISE in 

version 8.1.03i. The target FPGA is mainly device XC2V500 

in Xilinx’s Virtex-II family while we use XC2V1500 for 

benchmark CHEM due to its large size. All multiplications 

are implemented using the dedicated multiplier blocks of an 

FPGA device, and the target clock period is 15ns. After 

deriving the post-place-and-route implementations, we 

randomly simulated them to obtain switching activities and 

then used xPower [23] to compute a circuit’s dynamic power. 

We have to emphasize that the power and area reported in 

the experimental results are extracted from the post-place-

and-route implementations in order to reflect the real 

situations.  

We used a set of data intensive benchmarks to test our 

methods.  The experimental results are shown in Table 1. 

Column 1 presents the name of a benchmark. Columns 2 and 

3 show the resource constraints of adders/subtractors 

(ADD/SUB) and multipliers (MUL), respectively. Here the 

resource constraints are 20% of the total number of the 

operations in a DFG.  Columns 4 to 6 show the results from 

the conventional synthesis flow presented in [8]. Columns 7 

to 9 present the results from the conventional flow with 

firewall register insertion; i.e., we still use the conventional 

scheduling and binding algorithms but additionally insert 

firewall registers. Finally Columns 10 to 12 show the results 

from our FR-supporting flow.  

Let us consider benchmark DIF as an example. The RTL 

from the conventional flow physically needs 788 flip-flops 

and 987 slices. Note that the number of flip-flops includes 

those in slices and dedicated multiplier blocks. The dynamic 

power is 174mW. After the insertion of firewall registers at 

the RTL, the flip-flop usage increases to 852 and the slice 

usage increases to 988, but the power decreases to 155. In 

other words, with an 8% increase of flip-flops and a 0.1% 

increase of slices, the power can be decreased by 11%. 

Furthermore, if we apply the FR-supporting flow to generate 

an RTL, with a 16% increase of flip-flops and a 4% increase 

of slices, the power can be reduced by 28%.   

On average, the conventional flow with firewall registers 

achieves a 16% reduction of dynamic power while 

introducing a 1% increase of slices (area overhead). This 

shows that for those designs, the insertion of firewall 

registers can effectively reduce the dynamic power.  In 

addition, on average the FR-supporting flow achieves a 28% 

reduction of dynamic power while introducing a 4% increase 

of slices.  This shows that our FR-supporting scheduling and 

binding algorithms can further enhance the insertion of 

firewall registers, thus leading to larger power reduction.  

Our method is based on the assumption that a firewall 

register must be implemented by local flip-flops; otherwise, 

no power can be saved when glitches still propagate through 

programmable interconnect with large capacitance. Note that 

we can do nothing in high level synthesis to control the 

placement of firewall registers while this is controlled by 

FPGA placer. Fortunately, using Xilinx ISE placer in the 

experiments, we checked the layouts of some designs and 

found that all firewall registers are implemented as local flip-

flops by this tool.  Secondly, according to the experimental 

results, the use of firewall registers does not increase the 

usage of slices much, suggesting that the firewall registers 

are implemented in local flip-flops rather than occupying 

spare slices. The slice increase is due to additional control 

circuit for firewall registers. We believe that other synthesis 

tools should produce the same results since the use of local 

flip-flops is good for delay, power, and routing congestion.  



Note that the use of firewall registers would not 

adversely impact the timing of a design. Firstly, after 

inserting a firewall register to a functional unit, because the 

firewall register is implemented in local flip-flops with tiny 

interconnect capacitance, this causes shorter critical paths 

within the functional unit than those in the original design. 

Therefore, no setup time violation can occur under the use of 

firewall registers. Secondly, because there is no 

combinational logic between the firewall register and the 

original registers, hold time violation may occur in this place. 

This issue can be automatically handled by the synthesis 

tools, which will route wires or add buffers to increase the 

propagation delay. 

We do not show leakage power here because the FPGA 

chip we used has no “turn-off” mechanism to shut down the 

leakage of unused components. Therefore, the leakage power 

is a constant in every result. However, we think the leakage 

overhead should be small in our method considering that the 

leakage is roughly proportional to the area. 

6. Conclusions 
In this paper we propose the concept of firewall registers 

to block the propagation of glitches on boundary output 

signals. To resolve the WAR hazard problem caused by the 

insertion of firewall registers, we also propose an FR-

supporting behavioral synthesis flow. The experimental 

results show that the reduction in dynamic power is around 

28%.  
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Table 1: Experimental results. 

Conventional flow [8] 
Conventional flow [8] with 

firewall register insertion 
FR-supporting flow 

Design 
ADD 

/SUB 
MUL 

FF Slice 
Power 

(mW) 
FF Slice 

Power 

(mW) 
FF Slice 

Power 

(mW) 

ARAI 6 1 676 833 146 772 828 128 788 919 119 

DIF 6 2 788 987 174 852 988 155 916 1029 126 

DIT 7 3 932 1214 199 1012 1173 202 1076 1296 140 

LEE 6 4 1028 1126 174 1092 1132 158 1172 1156 115 

MCM 13 6 1652 2085 241 1956 2261 243 1940 2225 220 

WANG 5 4 836 998 204 916 1025 144 980 1065 133 

CHEM 33 33 5076 6063 719 5892 6126 553 5716 5330 556 

DIR 11 12 1732 2091 275 2084 2156 195 2100 2152 160 

HONDA 9 10 1364 1768 223 1668 1741 175 1668 1764 166 

PR 5 3 548 859 137 612 872 101 676 850 86 

Avg.   1 1 1 1.13 1.01 0.84 1.18 1.04 0.72 
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