
Behavior-Level Observability Don’t-Cares and Application
to Low-Power Behavioral Synthesis

Jason Cong
Computer Science
Department, UCLA

cong@cs.ucla.edu

Bin Liu
Computer Science
Department, UCLA
bliu@cs.ucla.edu

Zhiru Zhang
AutoESL Design

Technologies, Inc.
zhiruz@autoesl.com

ABSTRACT
Many techniques for power management employed in advanced
RTL synthesis tools rely explicitly or implicitly on observability
don’t-care (ODC) conditions. In this paper we present a system-
atic approach to maximizing the effectiveness of these techniques
by generating power-friendly RTL descriptions in a behavioral syn-
thesis tool. We first introduce the concept of behavior-level obser-
vability and investigate its relation with observability under a given
schedule, using an extension of Boolean algebra. We then propose
an efficient algorithm to compute behavior-level observability on
a data-flow graph. Our algorithm exploits knowledge about select
and Boolean instructions, and allows certain forms of other knowl-
edge, once uncovered, to be considered for stronger observability
conditions. We also describe a behavioral synthesis flow where
behavior-level observability is used to guide the scheduler toward
maximizing the likelihood that execution of power-hungry instruc-
tions will be avoided under a latency constraint. Experimental re-
sults show that our approach is able to reduce total power, and it
outperforms a previous method in [15] by 17.7% on average, on
a set of real-world designs. To the best of our knowledge, this is
the first work to use a comprehensive behavioral-level observability
analysis to guide optimizations in behavioral synthesis.

Categories and Subject Descriptors
D.2.8 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Experimentation

1. INTRODUCTION
With power dissipation an increasingly critical issue in VLSI de-

sign, a number of techniques for power reduction have been devel-
oped in advanced RTL synthesis tools. While some techniques try
to replace power-hungry devices with their power-efficient coun-
terparts, other orthogonal approaches reduce power by avoiding
unnecessary operations, using techniques such as operand isola-
tion and clock gating. Observability don’t-care (ODC) conditions,
originally introduced by the logic synthesis community (for exam-
ple, [1]), play an important role in the identification of unnecessary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’09, August 19–21, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-684-7/09/08 ...$10.00.

operations in a Boolean network. Isolation cells can be inserted
at inputs of a functional unit when its result is not observable [2].
For clock gating, the simplest approach is based on stability con-
ditions [3]: when a register is accepting a value equal to the one
already stored in it, its clock can be gated. However, it is recog-
nized that exploiting ODC conditions in clock gating can lead to
significantly more power reduction by avoiding unobservable value
changes in registers [3–7].

The problem of ODC computation in a sequential RTL model
has been approached in a number of ways. Some prior work views
the circuit as a finite-state machine (FSM) and calculates the exact
ODC condition for every bit using formal methods [5,6]. However,
the number of states in an FSM can be exponential in terms of the
number of registers. Thus, the exact approach can be prohibitively
expensive for moderately large designs. Methods developed in
practical systems are often conservative but more scalable, without
a thorough analysis of the FSM. The work in [2] assumes that every
value stored in a register is observable and only performs analysis
on combinational parts of the circuit. The approach in [4] relies
on special patterns in the hardware-description language (HDL) to
compute ODC conditions, and thus the quality of result depends
on the HDL coding style. The algorithm in [7] detects ODC con-
ditions based on datapath topology, using backward traversal and
levelization techniques. A more recent work [3] shows that more
ODC conditions can be uncovered in the results of [7] by propagat-
ing ODC conditions that are already utilized in other parts of the
design (possibly discovered manually by the designer). All these
methods are reported to be very effective in practice. However, it is
not clear how much opportunity for power optimization still exists
due to obvious pessimism when computing ODC conditions.

Even with a powerful tool that could calculate the exact ODC
condition for every signal in an RTL description efficiently, huge
opportunities remain unexploited at a higher level where there is
freedom in choosing a good RTL structure among many alterna-
tives of the same functionality. A motivating example is shown in
Figure 1, where different schedules with the same latency imply
different opportunities for avoiding operations. Note that there is
a select instruction in the code (corresponding to a multiplexor in
the circuit), and thus the evaluation of some values are not neces-
sary depending on which value is selected as the output. In the first
schedule, two multiplications v1 and v2 are always executed. In
the second one, when v7 is evaluated as false in the first cycle, v9
will be equal to v3, and values including v1, v2, v5 and v6 are not
needed because they will not influence the output. By scheduling
instructions intelligently and exploiting ODC conditions in the re-
sulting RTL design, we can effectively restructure the control flow
and get different equivalent C codes as shown on the right side; the
resulting implementation can have very different power under the
same performance constraint. A powerful behavioral synthesis tool
could explore such higher-level opportunities to generate and redis-
tribute ODC conditions, whereas an RTL synthesis tool is unable to

explore this design space — it can only take advantage of available
ODC conditions for a fixed schedule.
// A data-flow graph in C syntax.
int module(int a, int b, int c, int d) {
int v1 = a * a;
int v2 = b * b;
int v3 = c * d;
int v4 = a + b;
int v5 = v1 + v2;
bool v6 = (v5 == 100);
bool v7 = (a == c);
bool v8 = v6 & v7;
int v9 = v8 ? v3 : v4;
return v9;

}

// First schedule.
int module(int a, int b,

int c, int d) {
if (a * a + b * b == 100) {
int v3 = c * d;
if (a == c)
return v3;

}
return a + b;

}

// Second schedule.
int module(int a, int b,

int c, int d) {
if (a == c) {
int v3 = c * d;
if (a * a + b * b == 100)
return v3;

}
return a + b;

}

Figure 1: Two schedules of a data-flow graph and the implied
control flows when ODC is exploited.

The work in [8] introduced the concept of behavior-level obser-
vability and use behavior-level ODC to strengthen conditions for
operand isolation and clock gating. However, the algorithm did
not capture opportunities for control-flow restructuring (like shown
in Fig. 1), and was not used to guide architectural exploration in
behavioral synthesis. One common problem associated with opti-
mization at a higher level is that an accurate estimation model is
often absent. Fortunately, such problem does not exist for ODC-
based power optimization. In fact, all data flows and executing
conditions can be analyzed statically in a behavior description and
optimized during scheduling. The behavioral synthesis tool can ex-
plicitly specify the optimized ODC condition for every register in
the RTL description it generates, so that an RTL synthesis tool us-
ing low-cost ODC analysis algorithms like [2–7] can work without
losing opportunities for power optimization.

Our behavioral synthesis tool first optimizes the input behavioral
description using compiler transformations [9], and translates the
optimized code into a control-data-flow graph (CDFG). The sched-
uler decides the control step at which each instruction executes.
The result of scheduling can be interpreted as a finite-state ma-
chine with datapath (FSMD) [10], which is then translated to an
RTL model through a binding process.

In the scheduling process of transforming a CDFG into an FSMD,
behavior-level observability conditions are translated into FSMD-
observability conditions (observability under a given schedule, more

Figure 2: Overview of our behavioral synthesis system.

precisely defined in Section 3). In the example in Figure 1, a
behavioral-level observability condition for v1 is v6∧ v7∧ v8; i.e.,
v1 is only observable when v6, v7 and v8 are all true. However, the
evaluation of v1 can never be avoided in the first schedule, because
v6∧ v7∧ v8 is always unknown when v1 is evaluated and conser-
vative decisions have to be made to guarantee correctness. The
second schedule is better in the sense that we could avoid evaluat-
ing v1 when v7 is known to be false — because v6∧v7∧v8 will be
false then even when v6 and v8 are not yet evaluated. Here we say
the FSMD-observability condition of v1 is v7. Clearly, different
schedules imply different ODC conditions on the FSMD, and it is
not always possible to postpone every instruction until its behavior-
level observability condition is known, due partly to performance
constraints.

The problem of minimizing the cost of executing unnecessary
instructions can be described as follows: given a CDFG and profil-
ing information, as well as the cost (average power) for executing
each instruction, find a schedule so that the expected total cost is
minimized, subject to data-dependency constraints and a latency
constraint.

In this work, we present a systematic approach to solve the prob-
lem in a behavioral synthesis tool, as shown in Figure 1. We de-
velop a method to identify conditionally unnecessary evaluations,
and show how such information can be used to guide the scheduler
to generate power-friendly RTL models. The contribution of this
paper can be summarized as follows.

• We develop an algebra that generalizes observability in a
Boolean network to an arbitrary function and enables ob-
servability analysis at a higher level of abstraction. Based
on this algebra, we formally introduce several observability
measures and explain their relations using the algebra.

• We describe an efficient algorithm to compute behavior-level
observability. The algorithm is optimal for acyclic code as-
suming that inputs and all instructions other than and/or/not/
select are viewed as black boxes. The algorithm also pro-
vides a mechanism to allow available knowledge about in-
puts and instructions to be considered.

• We present a behavioral synthesis flow for power optimiza-
tion by minimizing the number of unnecessary evaluations,
guided by behavioral-level observability, and demonstrate the
effectiveness of our approach. To the best of our knowledge,
this is the first time that behavioral synthesis is guided by
a comprehensive observability analysis for power optimiza-
tion.

2. AN ALGEBRA OF OBSERVABILITY

2.1 Observability
The observability of a function f (x,y) with respect to part of its

variables x is a Boolean-valued function of the rest variables y; the
observability is true for values of y which makes it possible that
changes in x are observable.

DEFINITION 1 (OBSERVABILITY). For a function z = f (x,y) :
X×Y→ Z, where x ∈ X, y ∈ Y, an observability function of f
with respect to x is a function OX f : Y→{0,1}, so that OX f (y)⇒
∃x1,x2 ∈ X, f (x1,y) 6= f (x2,y).

For example, an observability function of the program in Fig. 1
with respect to v3 is v8.

2.2 Observability with Care Set
Knowledge about possible combinations of variable values can

be applied to strengthen observability conditions.

DEFINITION 2 (CARE SET). For the function f as described
in Definition 1, a care set about y, M, is a subset of Y. Let F be the
set of functions X×Y→ Z∪{Φ}. An apply operator with care set
M about y, K Y

M : F → F , is defined as

K Y
M f (x,y) =

{
f (x,y), y ∈M,

Φ, otherwise.

Informally, after applying the care set, the resulting function is in-
dependent of the input when the input is not in the care set.

THEOREM 1. (OX f (y)∧y ∈M) is an observability function of
K Y

M f (x,y) with respect to x.

Informally, by combining the observability of f with respect to x
and the assertion that y∈M, we get the observability of K Y

M f with
respect to x. This provides a way to obtain stronger observability
conditions under a given care set. For the example function in Fig.
1, with the knowledge that v8⇔ v6∧ v7, we can improve the ob-
servability function with respect to v3 from v8 to v6∧ v7∧ v8.

2.3 Projection of Observability
When only part of the variables are used for observability com-

putation, we usually need to make conservative decisions about
other invisible variables by using a necessary condition of the exact
observability.

DEFINITION 3 (PROJECTION). For a Boolean-valued function
h(y1,y2) : Y1×Y2→{0,1}, the projection of h onto Y1 is a func-
tion PY1 h : Y1→{0,1}, so that

PY1 h(y1) =
{

1 if ∃y2 ∈ Y2,h(y1,y2)
0 otherwise.

Informally, PY1 h(y1) is the strongest necessary condition for h(y1,y2)
with respect to y1. Examples of the projection operation are de-
scribed in Section 3.

THEOREM 2. For g : Y1×Y2×Y3→{0,1},

PY1(PY1×Y2 g)⇔PY1 g.

Proofs for most theorems shown above are omitted due to page
limitation. The above algebra is a generalization of observability
in Boolean networks, and it provides mathematical foundation for
observability computation in arbitrary functions, such as a program
used in behavioral synthesis.

3. OBSERVABILITY IN A PROGRAM
Consider a program g, let x ∈ X be the values under considera-

tion, let V be the set of all the other values in g, among which B∈B
is the set of Boolean values and C = V −B ∈ C. Let OUT ∈OUT
be the set of output values. We view the program as a function
g : X×B×C→OUT.

DEFINITION 4 (BL-OBSERVABILITY). For the program g as
described above, a behavioral-level observability condition of g
with respect to x is BLOx ≡ OXg.

For behavioral synthesis, the target hardware architecture typically
evaluates a Boolean function as the predicate for an operation [11].
So we can further distinguish between Boolean and non-Boolean
values, and only use values in B to compute observability by pro-
jecting BLOx onto B. Conservativeness is introduced in the process
because we can only obtain a necessary condition after projection.

DEFINITION 5 (B-BL-OBSERVABILITY). A behavioral-level
observability condition using only Boolean values (B-BL-observability
condition) of g with respect to x is a function BBLOx : B→ {0,1},
BBLOx ≡PBBLOx.

For a given schedule s of program g, let As(x) be the set of values
available when value x is evaluated (i.e., the set of values generated
by operations scheduled to finish before the evaluation of x starts),
we define FSMD-observability as follows.

DEFINITION 6 (FSMD-OBSERVABILITY). An FSMD-obser-
vability condition of g with respect to x under a given schedule s,
FSMDOs

x : As(x)→{0,1}, FSMDOs
x ≡PAs(x)BLOx.

DEFINITION 7 (B-FSMD-OBSERVABILITY). An FSMD-ob-
servability condition using only Boolean values (B-FSMD-obser-
vability) of g with respect to x under a given schedule s is a function
BFSMDOs

x : As(x)∩B→{0,1}, BFSMDOs
x ≡PAs(x)∩BFSMDOs

x.

Using Theorem 2, we have

THEOREM 3. BFSMDOs
x⇔PAs(x)∩BBBLOx.

Figure 3: Relations between observabilities.

The conceptual difference between BLO, BBLO, FSMDO and
BFSMDO lies in the set of values that are used to evaluate ob-
servability. All values in the program can be used for behavioral-
level analysis, while only available values are meaningful when the
schedule is fixed. Theoretically, both Boolean and non-Boolean
values can be used, while in practice most architectures support
only a Boolean expression as the predicate of an instruction.

Theorem 3 uncovers relations between BLO, BBLO, FSMDO,
and BFSMDO. Accordingly, different flows for computing BFSMDO
— the one that can be implemented in a predicated architecture —
are possible.

4. OBSERVABILITY ANALYSIS
In our behavioral synthesis flow, we are most interested in BBLO

and BFSMDO. Our flow is illustrated as the bold path in Figure 3:
starting from an inexact BLO, applying care sets generated from
certain instructions, projecting BLO to BBLO (trivial in our case)
and further to BFSMO under a give schedule.

4.1 Computing BL-Observability
In general, analyzing the exact observability condition requires

nontrivial computational effort. For efficiency, we can simplify the
problem by only exploiting knowledge about certain important in-
structions while treating all other instructions as black boxes. We
divide instructions into two categories. (1) Observability-propagating
instructions: For such an instruction I, we always have BLOI ⇒
BLOsrci(I),∀i, where srci(I) refers to the ith operand of I. Typi-
cal observability-propagating instructions include xor, add, etc. (2)
Observability-masking instructions: For such an instruction I, it
is possible to have one or more of its inputs to be unobservable
while its output is observable. Here we consider the following
observability-masking instructions. A select instruction takes three
operands, where the first one is a Boolean value used to decide
whether the second or the third operand is used as the result.

BLOI ⇒ BLOsrc1(I)

BLOI ∧ src1(I)⇒ BLOsrc2(I)

BLOI ∧ src1(I)⇒ BLOsrc3(I)

For a Boolean and instruction I,

BLOI ∧ src2(I)⇒ BLOsrc1(I)

BLOI ∧ src1(I)⇒ BLOsrc2(I)

The situation with a Boolean or instruction is similar to that of a
Boolean and instruction. Other instructions not discussed above,
including bitwise and/or for non-Boolean values, are regarded as
observability-propagating instructions. This leads to non-minimum
BLO, but it allows analysis at a higher level of abstraction effi-
ciently.

For a data-flow graph without loops, the code region can be
viewed as a combinational circuit. The BLO can be analyzed us-
ing a backward propagation process like that used in combinational
Boolean networks. For instructions generating outputs, such as re-
turn and store, the BLO conditions are set to their executing con-
ditions (predicates); for all other instructions, the BLO conditions
are set to false initially. Instructions are then examined in reverse
topological order of the data-flow graph, and the BLO condition of
each instruction is propagated to its source operands, using rules
derived above. The algorithm is shown in Algorithm 1.

Table 1: BL-observability by Algorithm 1.
value BLO value BLO

a v6∨ v7∨ v8 b v7∨ v8
c v6∨ v8 d v8

v1 v7 v2 v7
v3 v8 v4 v8
v5 v7 v6 v7
v7 v6 v8 true
v9 true

By applying this algorithm, we can get the BLO for instructions
in the example code as shown in Table 1. However, the resulting
BL-observability condition can be further strengthened by exploit-
ing care sets. Our method exploits care sets from Boolean instruc-
tions and/or/not. For the example code, we have v8 ⇔ v6∧ v7,
or equivalently, v6v7v8∨ (v6∨ v7)v8. Using Theorem 1, BLOx ∧

Algorithm 1 BLO computation for a data-flow graph.
for all instruction I do

if I directly generates output then
BLOI = predicate(I)

else
BLOI = f alse

end if
end for
for all instruction I in reverse topological order do

if I is select then
BLOsrc1(I) = BLOsrc1(I) ∨BLOI

BLOsrc2(I) = BLOsrc2(I) ∨BLOI ∧ src1(I)
BLOsrc3(I) = BLOsrc2(I) ∨BLOI ∧ src1(I)

else if I is Boolean and then
BLOsrc1(I) = BLOsrc1(I) ∨BLOI ∧ src2(I)
BLOsrc2(I) = BLOsrc2(I) ∨BLOI ∧ src1(I)

else if I is Boolean or then
BLOsrc1(I) = BLOsrc1(I) ∨BLOI ∧ src2(I)
BLOsrc2(I) = BLOsrc2(I) ∨BLOI ∧ src1(I)

else
for all source operand of I, src j(I) do

BLOsrc j(I) = BLOsrc j(I) ∨BLOI

end for
end if

end for

(v6v7v8∨ (v6∨ v7)v8) is a stronger BL-observability with respect
to x. The results after applying the care set about all Boolean in-
structions are illustrated in Table 2.

Table 2: BL-observability after applying care sets.
value BLO value BLO

a v6v7v8∨ (v6∨ v7)v8 b v6v7v8+(v6∨ v7)v8
c v6v7v8∨ v6v7v8 d v6v7v8

v1 v7(v6v8∨ v6v8) v2 v7(v6v8∨ v6v8)
v3 v6v7v8 v4 (v6∨ v7)v8
v5 v7(v6v8∨ v6v8) v6 v7(v6v8∨ v6v8)
v7 v6(v7v8∨ v7v8) v8 v6v7v8∨ (v6∨ v7)v8
v9 v6v7v8∨ (v6∨ v7)v8

Note that the BL-observability computed using Algorithm 1, and
the knowledge exploited are both about Boolean values in the pro-
gram. It is obvious that Algorithm 1 is the best BL-observability
using black-box models for observability-propagating instructions
without exploiting knowledge about correlations between Boolean
variables. Since all of the observability-masking instructions we
consider only use Boolean values for BLO, the expression does not
actually change after projection to BBLO. Under the black-box
model, correlations between Boolean values are caused by Boolean
operators and/or/not, and all such correlations can be captured by
visiting each Boolean instruction in the program, so that no smaller
care set is possible without exploiting other instructions. Thus, the
resulting BBLO is optimal assuming the black-box model.

While we consider the black-box model necessary to enable anal-
ysis at a higher level, certain knowledge about instructions, once
uncovered, can be employed to strengthen BL-observability and its
projections. Our algorithm allows the use of care sets implied by
Boolean relations to strengthen the observability condition. For
example, (x == 3) implies (x < 10). Although capturing exact
relations between Boolean values is nontrivial, at least some knowl-
edge can be discovered and exploited. Such techniques have been
developed in predicated compilation [12], and can be directly ap-
plied in our algorithm.

4.2 Computing Observability on FSMD
According to Theorem 3, under a fixed schedule, BFSMDO can

be computed from BBLO using projection. Obviously, for an in-

struction I, BFSMDOI can be used to strengthen its predicate to
avoid unobservable computation in hyperblocks [13]. It might be
tempting to use the strongest BFSMDOI in the predicate. However,
this can lead to an unnecessary increase of predicate complexity,
because BFSMDOI itself may contain redundancy. For example,
BFSMDOv9 = v6v7v8∨ (v6∨ v7)v8, which is always true for the
program. In this case, logic simplification should be performed
subject to known assertions, using techniques in logic synthesis [1].

Although knowledge introduced earlier might be simplified out
later, some knowledge is useful to attain a tighter observability
condition after projection. Consider the example data-flow graph
in Figure 1, after applying the care set, BBLOv3 = v6v7v8. For
the second schedule, we can project BBLOv3 = v6v7v8 on {v7}
and get BFSMDOv3 = v7. If the naive algorithm is used, we get
BBLOv3 = v8, and BFSMDOv3 = true after projection, and thus
lose an opportunity for avoiding the evaluation of v3.

Up to now, we have described a systematic way to obtain BFSMDO.
However, the manipulation of logic expressions, the simplification
step in particular, is nontrivial. The BDD-based method can be
very efficient using smart strategies, but the exact method is still
not scalable in general. Thus, we try to manage the complexity by
changing the way care set is applied. We only use the backward
propagation algorithm to compute the naive BL-observability. If
a Boolean value (or its complement) in the BL-observability of an
instruction is evaluated later than the instruction, we try to replace
the Boolean value (or its complement) with its necessary condition
involving Boolean values evaluated earlier. Obviously, this does
not increase the chance that an instruction is executed unnecessar-
ily under a given schedule. For the example design in Figure 1,
we have v8→ v6, v8→ v7. When BBLOv3 = v8 is projected onto
{v7}, it is replaced with v6v7, leading to BFSMDOv3 = v7 after
projection.

5. ODC OPTIMIZATION IN SCHEDULING
Considering the fact that only Boolean values already evaluated

can be used in B-FSMD-observability, the impact of scheduling on
ODC-based power management is obvious. To our knowledge, the
work in [14] presents the first algorithm designed to create more
opportunities for ODC-based power management. This method
works as a post-processing step on an existing schedule: it exam-
ines multiplexors (select instructions) one by one and tries to move
the instruction by computing the Boolean operand earlier if pos-
sible. Authors of [14] noticed that their results depended on the
order in which multiplexors were examined, and used reverse topo-
logical order in their implementation. [15] proposes an improved
optimization technique using priority and soft dependency edges.
Both [14] and [15] use a very simple method for observability anal-
ysis, and the method can only identify a small amount of behavior-
level ODC conditions for two reasons. First, the method focuses
exclusively on select instructions (multiplexors), without consid-
ering other observability-masking instructions such as and/or. Al-
though the method can possibly be extended by viewing and/or as
degenerated select, it still cannot capture the information that either
operand can mask the observability of the other. Such informa-
tion is essential for control-flow restructuring when the scheduler
exploits different possible speculation/predication schemes under
a latency constraint. Second, the analysis method used in [14, 15]
does not take advantage of relations between Boolean values, while
our method considers opportunities for avoiding the execution of
an instruction even when the Boolean value that directly controls
observability is not evaluated (Figure 1).

Information about B-BL-observability can be used to guide op-
timization techniques for scheduling developed in [14, 15]. In our
implementation, we use the method in [15], with improved prior-
ity computation that considers more opportunities for ODC-based
power optimizations. The algorithm can be briefly described as fol-

lows: soft dependency edges are added between a Boolean-valued
instruction B (like cmp/and/or/not) and a normal instruction I whose
BL-observability condition contains the Boolean value generated
by B. The power saving with each soft dependency edge is esti-
mated using profiling information and the power consumption of
one instruction of each type. The algorithm adds soft dependency
edges in descending order of estimated power saving under a la-
tency constraint, and finishes when no additional soft dependency
edges are feasible.

6. EXPERIMENTAL RESULTS
We have implemented the proposed method in the AutoPilot be-

havioral synthesis system [16]. The system accepts C/C++ as input
description, transforms the code using the LLVM compiler fron-
tend [17], and performs scheduling and binding before generat-
ing RTL model in VHDL or Verilog. The generated RTL code
is fed to the Magma Talus RTL-to-GDSII toolset [18] to gener-
ate gate-level netlist. Gate-level simulation is performed using the
Aldec Riviera simulator [19] to obtain power dissipation. All de-
signs are implemented using a TSMC 90nm library in the experi-
ments. Power management is implemented using automatic clock
gating by Talus. Further power savings can be potentially achieved
with additional low-power techniques (e.g., input isolation, feeding
sleep vectors for leakage reduction).

We evaluate our approach on a set of arithmetic and multimedia
designs, as described in Table 3. We compare the results obtained

Table 3: Benchmark characteristics.
Name Description

cordic efficient trigonometric function evaluation
dfmul double-precision floating-point multiplier
addr address translation for MPEG4 decoder

edgeloop kernel part of a H.264 deblocker
boxmuller random number generation

in three modes: (1) baseline: traditional scheduling without consid-
ering observability; (2) the method described in [15]; (3) the pro-
posed method. Results on estimated area, timing and power after
logic synthesis are reported in Table 4.

From the results, we can see that using observability in the sched-
uler helps to reduce power by an average of 26.2% compared to a
traditional scheduler, and by 17.7% compared to the same sched-
uler with a simpler observability analysis used in [14, 15]. For a
design with very simple control flow (like cordic, which does not
contain nested if-then-else), our approach and [15] lead to the same
result. For designs with more complex control flow, our approach
can be significantly better. There is a trend for a slight area increase
with our approach as well as [15]; this is because more logic con-
ditions need to be evaluated in order to decide the observability of
operations.

7. RELATED WORK
One might think that after partial dead code elimination in the

predicated form [20, 21], the predicate of every instruction is equal
to its BL-observability condition because no redundant instruction
will be executed along every control path. However, this is not
true. Consider two Boolean values used in an and instruction, the
BLO condition for either instruction could contain a term about the
other. If BLO conditions are applied as predicates, there will be a
cyclic dependency between the two instructions, and the code be-
comes illegal. Thus, from the perspective of BL-observability, one
can always find instructions that are unnecessarily executed (un-
observable), even after thorough optimization. Since execution of
unnecessary instructions cannot be avoided completely, optimizers
should try to minimize the cost of unnecessary execution.

Table 4: Experimental results.
name baseline [15] this work

area period power area period power % area period power %

cordic 3001 2.72 0.202 3104 2.73 0.185 91.6% 3104 2.73 0.185 91.6%
dfmul 121546 3.25 3.11 122430 3.31 2.77 89.1% 124001 3.22 1.89 60.8%
addr 4892 2.35 0.353 5020 2.33 0.291 82.4% 5100 2.36 0.246 69.7%

edgeloop 43046 1.99 4.25 46320 2.01 3.74 88.0% 46125 1.98 3.08 72.5%
boxmuller 72127 3.50 2.83 72165 3.51 2.60 91.9% 72258 3.49 2.20 77.7%

Area is in µm2, period is in ns, and power is in mW. The % column is the comparison of power to baseline.

Notably, using BL-observability to guide scheduling gives us
opportunities to unify speculative scheduling and control flow re-
structuring, as shown in Figure 1. Previous efforts using predi-
cates in hyperblock scheduling also allow speculative scheduling
through predicate promotion [13], and have the ability to simplify
program decision logic using knowledges about relation between
predicates [12], but a post-processing pass like predicated partial
dead code elimination is needed to strengthen some predicates af-
ter scheduling to fully realize the equivalent transformation. BL-
observability could provide more information to the scheduler than
predicate, and can be helpful when various tradeoffs are performed
by the scheduler under tight constraints like worst-case latency.

Let us, again, consider the example code in Figure 1. In prac-
tice, a deliberate designer may optimize the design to one in Fig-
ure 4, where a redundant Boolean value is introduced in the hope
that it can be used in observability computation for further avoid-
ing multiplications. A technique to add such Boolean guards has
been developed in [22] for embedded compilers. We believe that
this technique could increase the effectiveness of our approach.
int module(int a, int b, int c, int d) {
if (a == c) {

if (((a ^ b) & 0xFFFFFFFB) == 0xA)
if (a * a + b * b == 100)
return c * d;

}
return a + b;

}

Figure 4: An even better implementation.

8. CONCLUSION
In this paper we have proposed an algebra about observability,

based on which observability is computed and optimized in a sys-
tematic way in behavioral synthesis for low power design. Exper-
imental results show that our approach is effective. The analysis
using our theory also reveals opportunities in compiler optimiza-
tion for ODC optimization; we leave it for future work.

Acknowledgments
This work is partially supported by SRC under Task 1879 and NSF
under grant CNS-0725354.

9. REFERENCES
[1] G. De Micheli, Synthesis and Optimization of Digital Circuits.

McGraw-Hill, New York, 1994.
[2] M. Münch, B. Wurth, R. Mehra, J. Sproch and N. Wehn,

“Automating RT-level operand isolation to minimize power
consumption in datapaths,” in Proc. DATE, 2000, pp.624–633.

[3] R. Fraer, G. Kamhi and M. K. Mhameed, “A new paradigm for
synthesis and propagation of clock gating conditions,” in Design
Automation Conf., 2008, pp. 658–663.

[4] M. Onishi, A. Yamada, H. Noda and T. Kambe, “A method of
redundant clocking detection and power reduction at RT level
design,” in Proc. Int. Symp. Low Power Electron. Design, 1997, pp.
131–136.

[5] L. Benini and G. De Micheli, “Automatic synthesis of low power
gated-clock finite-state machines,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 15, pp. 630–643, June 1996.

[6] L. Benini, G. De Micheli, E. Macii, M. Poncino and R. Scarsi,
“Symbolic synthesis of clock-gating logic for power optimization of
synchronous controllers,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 4, no. 4, pp. 351–375, 1999.

[7] P. Babighian, L. Benini and E. Macii, “A scalable algorithm for RTL
insertion of gated clocks based on ODCs computation,” IEEE Trans.
on Comput.-Aided Des Integr. Circuits Syst., vol. 24, pp. 29–42, Jan.
2005.

[8] Q. Wang and S. Roy, “RTL power optimization with gate-level
accuracy,” in Proc. Int. Conf. Computer-Aided Design, 2003, pp.
39–45.

[9] S. S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufmann. 1997.

[10] D. Gajski, N. Dutt, A. Wu and S. Lin, High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic
Publishers, 1992.

[11] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D.
Cronquist and M. Sivaraman, “PICO-NPA: high-level synthesis of
nonprogrammable hardware accelerators,” J. VLSI Signal Process.
Syst., vol. 3, no. 2, pp. 127–142, 2002.

[12] D. I. August, J. W. Sias, J.-M. Puiatti, S. A. Mahlke, D. A. Connors,
K. M. Crozier and W. W. Hwu, “The program decision logic
approach to predicated execution,” in Proc. the 26th Annual Int.
Symp. Computer Architecture, 1999, pp. 208–219.

[13] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank and R. A.
Bringmann, “Effective compiler support for predicated execution
using the hyperblock,” in Proc. the 25th Int. Symp.
Microarchitecture, 1992, pp. 45–54.

[14] J. Monteiro, S. Devadas, P. Ashar and A. Mauskar, “Scheduling
techniques to enable power management,” in Proc. Design
Automation Conf., 1996, pp. 349–352.

[15] C. Chen and M. Sarrafzadeh, “Power-manageable scheduling
technique for control dominated high-level synthesis,” in Proc.
Design Automation & Test in Europe, 2002, pp. 1016–1020.

[16] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang and J. Cong,
“AutoPilot: a platform-based ESL synthesis system,” in High-Level
Synthesis: From Algorithm to Digital Circuit, ed. P. Coussy and A.
Morawiec, Springer Publishers, 2008.

[17] C. Lattner and V. Adve, “LLVM: a compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
Code Generation and Optimization, 2004, pp. 75–86.

[18] http://www.magma-da.com.
[19] http://www.aldec.com.
[20] R. Bodík and R. Gupta, “Partial dead code elimination using slicing

transformations,” in Proc. ACM SIGPLAN 1997 Conf. Prog. Lang.
Design Impl., pp. 159–170.

[21] S. Ryoo, S. Ueng, W. W. Hwu, “P3DE: profiled-directed predicated
partial dead code elimination,” Presented at 5th workshop on EPIC
Architecture and Compiler technology, March, 2006.

[22] M. A. Ghodrat, T. Givargis and A. Nicolau, “Short-circuit compiler
transformation: optimizing conditional blocks,” in Proc. ASPDAC,
2007, pp. 504–510.

