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Decentralized Equalization with Feedforward
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Abstract—Linear data-detection algorithms that build on zero
forcing (ZF) or linear minimum mean-square error (L-MMSE)
equalization achieve near-optimal spectral efficiency in massive
multi-user multiple-input multiple-output (MU-MIMO) systems.
Such algorithms, however, typically rely on centralized processing
at the base-station (BS) which results in (i) excessive interconnect
and chip input/output (I/O) data rates and (ii) high computational
complexity. Decentralized baseband processing (DBP) partitions
the BS antenna array into independent clusters that are asso-
ciated with separate radio-frequency circuitry and computing
fabrics in order to overcome the limitations of centralized process-
ing. In this paper, we investigate decentralized equalization with
feedforward architectures that minimize the latency bottlenecks
of existing DBP solutions. We propose two distinct architectures
with different interconnect and I/O bandwidth requirements that
fuse the local equalization results of each cluster in a feedforward
network. For both architectures, we consider maximum ratio
combining, ZF, L-MMSE, and a nonlinear equalization algorithm
that relies on approximate message passing, and we analyze
the associated post-equalization signal-to-noise-and-interference-
ratio (SINR). We provide reference implementation results on a
multi graphics processing unit (GPU) system which demonstrate
that decentralized equalization with feedforward architectures
enables throughputs in the Gb/s regime and incurs no or only a
small performance loss compared to centralized solutions.

Index Terms—Data detection, decentralized baseband process-
ing, linear and nonlinear equalization, general-purpose comput-
ing on graphics processing units (GPGPU), massive MU-MIMO.

I. INTRODUCTION

MASSIVE multi-user (MU) multiple-input multiple-output
(MIMO) is widely believed to be a key technology for

next-generation wireless systems [2]–[4]. By equipping the
infrastructure base-stations (BSs) with hundreds or thousands
of active antenna elements and serving tens or hundreds
of user equipments (UEs) simultaneously and in the same
frequency band, massive MU-MIMO promises orders-of-
magnitude improvements in spectral efficiency and energy
efficiency compared to traditional, small-scale MIMO [5], [6].
However, the large number of antennas at the BS causes
significant challenges when implementing this technology. One
of the most prominent challenges is the excessively high amount
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of fronthaul data that must be transferred from the radio-
frequency (RF) antenna units at the BS antenna array to the
baseband processing unit (BBU) [7]–[10]. For example, the
fronthaul data rates (from RF chains to the BBU) exceed
200 Gbit/s for a massive MU-MIMO system with 128 BS
antennas, each using two 10 bit analog-to-digital converters
(for in-phase and quadrature components) operating at 80 MS/s
sampling rate. Such high data rates not only exceed the
bandwidth of existing high-speed interconnect standards, such
as the common public radio interface (CPRI) [11], but will also
approach the limits of existing chip input/output (I/O) interfaces
in terms of bandwidth and power dissipation [12]. Furthermore,
traditional data-detection algorithms that achieve near-optimal
spectral efficiency in the MU-MIMO uplink [5], such as
zero-forcing (ZF) and linear minimum mean-square error (L-
MMSE)-based equalization, rely on centralized processing in
a single computing fabric, which results in excessively high
complexity for large antenna arrays [8], [13].

A. Decentralized Baseband Processing

In order to mitigate the bandwidth and computing bottlenecks
of centralized massive MU-MIMO architectures, existing
testbeds either distribute the most critical baseband process-
ing tasks in the frequency domain or use maximum ratio
combining (MRC). Concretely, the testbeds described in [14]–
[17] parallelize the key baseband processing tasks across
the subcarriers of orthogonal frequency-division multiplexing
(OFDM)-based systems. While this approach enables high
parallelism, it requires that each frequency cluster obtains data
from all BS antennas, which alone does not enable one to
scale such systems to thousands of antenna elements [8]. In
contrast to frequency parallelization, MRC enables antenna
parallelization that divides array into independent clusters [2],
[18]; this approach significantly reduces the interconnect
bandwidth between the RF chains and the BBUs. MRC,
however, suffers from low spectral efficiency for realistic
antenna configurations and high-rate modulation and coding
schemes [5]. Consequently, realizing massive MU-MIMO in
practice requires solutions that reduce the interconnect and chip
I/O bandwidth as well as the baseband processing complexity
per computing fabric, without sacrificing spectral efficiency.

Decentralized baseband processing (DBP) has been proposed
in [8] to alleviate the fronthaul and I/O bandwidth bottlenecks,
and enables parallel baseband processing across BS antennas
on multiple computing fabrics, such as application-specific
integrated circuits (ASICs), field-programmable gate arrays
(FPGAs), or graphics processing units (GPUs) [19], [20],
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while achieving high spectral efficiency. The idea of DBP
is to partition the BS antenna array into C independent
clusters, each associated with local computing fabrics that
carry out the necessary RF and baseband processing tasks in
a decentralized and parallel fashion. The algorithms proposed
in [8] perform linear equalization and precoding in an iterative
manner by exchanging consensus information among the
clusters. However, implementation results on a GPU cluster
revealed that the transfer latency of such consensus-sharing
methods are limiting the achievable throughput. To avoid this
drawback, references [1], [7], [12], [21] recently proposed
feedforward architectures that minimize the transfer latency.

B. Contributions

We propose two distinct feedforward architectures for
partially decentralized (PD) and fully decentralized (FD)
equalization, which mitigate the interconnect, I/O, latency,
and computation bottlenecks. For both of these architectures,
we investigate the efficacy of MRC, ZF, L-MMSE, and a
nonlinear equalization method that builds upon the large-MIMO
approximate message passing (LAMA) algorithm [22]. Our
main contributions can be summarized as follows:
• We develop a framework that enables a precise analysis of

the post-equalization signal-to-noise-and-interference-ratio
(SINR) of decentralized equalization with feedforward
architectures in the large-system limit.

• We show that the PD feedforward architecture achieves
the same SINR performance as centralized solutions for
equalization with MRC, ZF, L-MMSE, and PD-LAMA.

• We show that the FD feedforward architecture is able
to provide near-optimal SINR performance, but further
reduces the interconnect and I/O bandwidths.

• We analyze optimal antenna partitioning strategies that
maximize the SINR for the FD architecture.

• We conduct error-rate simulations for a realistic 3GPP
long-term evolution (LTE)-like massive MU-MIMO sys-
tem that support our theoretical findings.

• We provide reference throughput and latency results for
linear and nonlinear equalization in centralized, PD, and
FD architectures on a multi-GPU system.

Our results demonstrate that feedforward equalization enables
throughputs in the Gb/s regime for massive MU-MIMO systems
with hundreds of antenna elements, and incurs no or only a
small loss in post-equalization SINR and error-rate performance
compared to that of centralized solutions.

C. Relevant Prior Art

Decentralized baseband processing (DBP) for massive MI-
MIMO systems has been proposed in [8] together with
consensus-sharing equalization and precoding algorithms. Dis-
tributed processing across antenna elements is also a critical
component of coordinated multipoint (CoMP) [23] and cloud
radio access networks (CRANs) [24] for multi-cell transmission.
While all these architectures and algorithms are able to reduce
the raw baseband data rates and mitigate the computation
bottlenecks, their performance has not been analyzed and the

achievable throughput suffers from high interconnect latency
caused by iterative exchange of consensus information. To
avoid the consensus sharing among clusters, we focus on
decentralized feedforward architectures that minimize the
transfer latency and enable a theoretical performance analysis.

Feedforward architectures for decentralized massive MU-
MIMO equalization have been proposed in [1], [7], [12], [21].
The present paper extends our theoretical results from [1] and,
in contrast to [7], [12], [21], provides two distinct architectures
and a corresponding SINR analysis for a range of linear and
nonlinear equalization algorithms. In addition, we provide
reference implementation results on a GPU cluster to assess
the throughput and latency of our architectures and algorithms.

The post-equalization SINR performance of centralized
linear equalization algorithms, such as MRC, ZF, and L-MMSE,
has been analyzed in [25]–[28] in the large-system limit. We
will investigate the SINR performance of these algorithms
for the two proposed decentralized feedforward architectures,
and also investigate the efficacy of nonlinear equalization for
decentralized massive MU-MIMO architectures.

Nonlinear equalization for massive MU-MIMO systems via
approximate message passing (AMP) has been studied in [22],
[29], [30]. A distributed version of AMP has been proposed
in [31] for compressive sensing applications [32], [33]. The
key differences of our nonlinear equalization algorithm to these
results are as follows: (i) We consider decentralized feedforward
architectures; (ii) the methods in [22], [29], [30] are centralized;
(iii) the distributed AMP-based method in [31] requires iterative
consensus sharing; (iv) we analyze the post-equalization SINR
and error-rate performance in massive MU-MIMO systems.

D. Notation

Lowercase and uppercase boldface letters designate vectors
and matrices, respectively; uppercase calligraphic letters denote
sets. The transpose and Hermitian of the matrix A are
represented by AT and AH, respectively. The M ×N all-zeros
matrix is 0M×N and the M -dimensional identity matrix is IN .
The kth entry of a vector a is ak. We define 〈x〉 = 1

N

∑N
k=1 xk.

The circularly-symmetric multivariate complex-valued Gaussian
probability density function (pdf) with covariance K is denoted
by CN (0,K). EX [·] and VarX [·] represent the mean and
variance with respect to the random variable X , respectively.

E. Paper Outline

The rest of the paper is organized as follows. Section II intro-
duces the system model and the two feedforward architectures.
Section III and Section IV investigate equalization algorithms
for the PD and FD architecture, respectively. Section V provides
theoretical and simulative results for the proposed methods.
Section VI details the multi-GPU implementation and provides
throughput and latency results. Section VII concludes the paper.
All derivations and proofs are relegated to the appendices.

II. DECENTRALIZED EQUALIZATION ARCHITECTURES

We start by introducing the considered massive MU-MIMO
system model and the basics of equalization-based data
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(a) Partially decentralized (PD) equalization architecture.
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(b) Fully decentralized (FD) equalization architecture.

Fig. 1. Partially decentralized (PD) and fully decentralized (FD) feedforward equalization architectures for the massive MU-MIMO uplink. The antenna array
is divided in C clusters, each associated with local radio-frequency (RF) processing and channel estimation (CHEST). (a) PD performs decentralized CHEST
and preprocessing; equalization is performed in a centralized fashion and operates on a low-dimensional data (dimension is the number of UEs). (b) FD
performs CHEST, preprocessing, and equalization in a decentralized manner; the final equalization result is formed by a weighted average of local estimates.
The ⊕ operator in (a) denotes matrix/vector-additions and • in (b) denotes a weighted vector addition; see Eq. 19 in Section IV for the details.

detection. We then discuss the two feedforward equalization
architectures for DBP depicted in Fig. 1, and detail the SINR
analysis framework that we will use throughout the paper.

A. Uplink System Model and Equalization

We consider a narrowband massive MU-MIMO uplink
system in which U single-antenna UEs transmit data to a
BS with B antenna elements. To model this scenario, we use
the standard input-output relation [2]

y = Hs0 + n. (1)

Here, y ∈ CB is the receive vector at the BS, H ∈ CB×U
represents the MIMO system matrix, which we assume is
perfectly known at the BS, s0 ∈ OU contains the transmit
symbols for each UE, O is the constellation set (e.g., QPSK or
16-QAM), and n ∈ CB is i.i.d. circularly symmetric complex
Gaussian noise with variance N0 per complex entry. We assume
an i.i.d. prior p(s0) =

∏U
u=1 p(s0u) for the transmit vector and

the following distribution for each transmit symbol:

p(s0u) =
1

|O|
∑
a∈O

δ(s0u − a), (2)

where |O| is the cardinality of the constellation O and δ(·)
is the Dirac delta function. In what follows, we assume zero-
mean constellations and define the average energy per transmit
symbol as Es = E

[
|s0u|2

]
, u = 1, . . . , U .

Equalization is concerned with forming an estimate z of
the transmit signal vector s0 along with reliability estimates
for each entry in z. These two quantities are then used
to compute hard-output estimates for the transmit symbols
or bit-wise soft information in the form of log-likelihood
ratios [34], [35]. Consider a general centralized equalizer
{z,σ2} = E(y,H) that takes the received vector y and the
MIMO channel matrix H in order to compute (i) an estimate z
for the true transmit vector s0 and (ii) the associated error
variance vector σ2. The error variance vector characterizes
the post-equalization residual interference and noise variance
on each entry of the estimate z. Mathematically, this quantity
corresponds to the variances of each entry in the residual

interference and noise vector defined as e = z − s0, i.e.,
σ2 = E

[
|e|2
]

where | · |2 operates element-wise on vectors.
The literature describes a range of linear and nonlinear

equalization algorithms for small-scale and massive MU-MIMO
data detection [13], [22], [36], [37]. Linear methods, such as
MRC, ZF, and L-MMSE are among the most common algo-
rithms, mainly due to their simplicity and low computational
complexity [13]. Nevertheless, nonlinear equalizers, such as
the LAMA algorithm put forward in [22], have been shown to
(often significantly) outperform linear equalizers at the cost of
higher computational complexity [22], [30], [38].

B. Basics of Decentralized Equalization

As in [8], we partition the B BS antenna elements into C ∈
{1, 2, . . . , B} independent antenna clusters. The cth antenna
cluster is associated with Bc = wcB BS antennas so that
wc ∈ [0, 1] and

∑C
c=1 wc = 1. Each cluster contains local

RF components and only requires access to local channel
state information (CSI) acquired in a local channel estimation
(CHEST) unit. Without loss of generality, we partition the
receive vector y = [yT

1 , . . . ,y
T
C ]T, the channel matrix H =

[HT
1, . . . ,H

T
C ]T, and the noise vector n = [nT

1, . . . ,n
T
C ]T in (1).

For this antenna partitioning scheme, the input-output relation
corresponding to the local receive vector yc associated with
the cth cluster can be written as

yc = Hcs0 + nc, c = 1, . . . , C, (3)

with yc ∈ CBc , Hc ∈ CBc×U , and nc ∈ CBc . The
following subsections describe two decentralized equalization
architectures that compute estimates for the transmit vector s0
by performing local computations in each antenna cluster using
only information of the local receive vector yc and channel
matrix Hc followed by fusion of the results from all clusters.

C. Partially Decentralized (PD) Equalization Architecture

The partially decentralized (PD) equalization architecture
is illustrated in Fig. 1(a). First, each cluster c = 1, . . . , C
independently (and in parallel) preprocesses the local receive
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vector yc and channel matrix Hc by computing the U -
dimensional local MRC vector yMRC

c = HH
c yc and the U × U

local Gram matrix Gc = HH
cHc. Second, a feedforward adder

tree, indicated with the symbol ⊕ in Fig. 1(a), is used to
compute the complete MRC vector and Gram matrix as follows:

yMRC =

C∑
c=1

yMRC
c and G =

C∑
c=1

Gc. (4)

Third, we perform linear or nonlinear equalization in a
centralized unit that computes the estimate z ∈ CU and the
post-equalization error variance vector σ2 ∈ CU . The tuple
{z,σ2} is then used to compute hard- or soft-output estimates.

In Section III, we will detail MRC, ZF, L-MMSE equal-
ization, and a new LAMA-based equalization algorithm [22]
for the PD architecture, all of which directly operate on the
U -dimensional fused MRC vector yMRC and Gram matrix G.
Since the MRC vector is a sufficient statistic for the transmit
signal s0 [34], we will show that the PD equalization does not
incur a SINR performance loss compared to centralized MRC,
ZF, L-MMSE, and LAMA equalizers.

Remark 1. For the PD architecture, the local MRC vec-
tors yMRC

c , c = 1, . . . , C, have to be summed and transmitted
to the centralized equalization unit at symbol rate; in contrast,
the local Gram matrices Gc, c = 1, . . . , C, only have to be
summed and transmitted when the MIMO channel changes.

D. Fully Decentralized (FD) Equalization Architecture

The PD architecture requires a summation of both the local
MRC vectors and the local Gram matrices, which involves
potentially large amounts of data to be transmitted to the
central equalization unit, especially in channels with short
coherence time. The fully decentralized (FD) equalization
architecture illustrated in Fig. 1(b) avoids the transmission
of the local Gram matrices altogether at the cost of a (typically
small) performance loss. First, each cluster c = 1, . . . , C
independently (and in parallel) performs CHEST, preprocessing,
and equalization, i.e., directly forms a local estimate zc ∈ CU
and local post-equalization error variance vector σ2

c ∈ CU .
Second, a feedforward fusion tree, indicated with the symbol •
in Fig. 1(b), optimally combines the local estimates zc using
information from the error variance vectors σ2

c in order to
generate the final output tuple {z,σ2}.

In Section IV, we will detail the optimal fusion rule as well
as MRC, ZF, L-MMSE, and LAMA-based equalization for the
FD architecture. We will also provide an SINR performance
analysis in the large-system limit.

Remark 2. For the FD architecture, the local estimate zc,
c = 1, . . . , C, and associated error variance vectors σ2

c , c =
1, . . . , C, have to be fused and transmitted at symbol rate. In
contrast to the PD architecture, no local Gram matrices must
be summed and transmitted, which significantly reduces the
interconnect bandwidth overhead of the FD architecture.

E. Signal-to-Interference-and-Noise-Ratio (SINR) Analysis

To analyze the performance of linear and nonlinear equaliza-
tion algorithms for the PD and FD architectures, we will focus

on the large-system limit and Rayleigh-fading channels. Hence,
we will make frequent use of the following two definitions.

Definition 1 (Large-system limit). The large-system limit is
defined by fixing the system ratio β = U/B and U →∞.

Definition 2 (Rayleigh fading). A MIMO channel is Rayleigh
fading if the channel matrix H has i.i.d. circularly symmetric
complex Gaussian entries with variance 1/B per entry.

By considering the large-system limit and Rayleigh-fading
channels, Tse and Hanly have shown in [26] that linear
equalizers, such as MRC, ZF, and L-MMSE, decouple MIMO
systems into parallel and independent additive white Gaussian
noise (AWGN) channels. This means that the estimate z of
such linear equalizers can be modeled on a per-UE basis in a
statistically equivalent manner as follows:

zu = s0u + eu, u = 1, . . . , U, (5)

where eu ∈ C represents residual interference and noise.
Furthermore, the quantity eu turns out to be (i) statistically
independent of s0u and (ii) circularly symmetric complex
Gaussian with decoupled noise variance σ2, which does not
depend on the UE index u. This result also implies that all
entries of the error variance vector σ2 correspond to σ2. In
Section III and Section IV for the PD and FD architecture,
respectively, we will build upon this asymptotic analysis
framework in order to theoretically characterize the per-UE
post-equalization SINR of the decoupled system (5):

sinr ,
Es
σ2
. (6)

Numerical results that validate our asymptotic analysis in finite-
dimensional systems will be presented in Section V.

III. PARTIALLY DECENTRALIZED (PD) EQUALIZATION

We start by reviewing linear equalization algorithms for
the PD architecture depicted in Fig. 1(a), and adapt the well-
known Tse-Hanly equations [26] to analyze the associated post-
equalization SINR performance in the large-system limit. We
then present a new, nonlinear equalization algorithm that builds
upon LAMA proposed in [22], and we develop a corresponding
SINR performance analysis for the PD architecture.

A. Linear Equalization Algorithms for the PD Architecture
Since the MRC output yMRC in (4) is a sufficient statistic

for the transmit signal vector s0, a variety of optimal and
suboptimal equalization-based data detection algorithms can be
derived from this quantity [34]. For MRC-based equalization
in the PD architecture, we use (4) to form the estimate

zMRC = diag(G)−1yMRC,

where the diagonal matrix diag(G)−1 is computed in the
centralized equalization unit; see Fig. 1(a). The MRC es-
timate zMRC can then be used to perform either hard- or
soft-output data detection. For soft-output data detection, one
requires the error variance vector given by

σ2
MRC = diag

(
diag(G)−1Gdiag(G)−HN0

+
(
diag(G)−1G− IU

)(
diag(G)−1G− IU

)H
Es
)
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that contains the post-equalization SINR for each entry of zMRC.
Note that MRC-based equalization was shown to be optimal (i)
for a fixed number of UEs and infinitely many BS antennas [2],
which is equivalent to β → 0 in the large-system limit, or (ii)
in the low-SNR regime [26]. The estimate of the ZF equalizer
for the PD architecture is given by

zZF = G−1yMRC,

where the matrix G−1 is computed in the centralized equal-
ization unit. The associated error variance vector is given by

σ2
ZF = diag(G−1)N0.

For L-MMSE equalization, we have

zL-MMSE = (G + ρIU )−1yMRC.

where the matrix (G + ρIU )−1 is computed in the centralized
equalization unit. The L-MMSE regularization parameter is set
to ρ = N0/Es for complex-valued constellations (e.g., QPSK
or 16-QAM). The associated error variance vector is given by

σ2
L-MMSE = diag

(
(G + ρIU )−1G(G + ρIU )−HN0

+
(
(G + ρIU )−1G− IU

)(
(G + ρIU )−1G− IU

)H
Es
)
.

We reiterate that the MRC, ZF, and L-MMSE equalizers for
the PD architecture deliver exactly the same estimates as their
centralized counterparts—the only difference is the way the
involved quantities are computed.

As shown in [26] and outlined in Section II-E, centralized
MRC, ZF, and L-MMSE equalizers decouple MIMO systems
in the large-system limit and for Rayleigh fading channels;
this implies that the entries of the error variance vectors σ2

MRC,
σ2

ZF, and σ2
L-MMSE converge to the decoupled noise variance σ2

of the MRC, ZF, and L-MMSE equalizer, respectively. Since
linear equalizers in the PD architecture yield exactly the same
estimates as in a centralized architecture, we can directly
characterize the associated decoupled noise variance σ2

PD in
the PD architecture using the following result.

Theorem 1 ([26, Thm. 3.1]). Fix the system ratio β = U/B,
and assume the large-system limit and Rayleigh fading channels.
Then, the decoupled noise variance σ2

PD for MRC, ZF, and
L-MMSE equalization in a centralized or PD architecture, is
the solution to the following fixed-point equation

σ2
PD = N0 + βΨ(σ2

PD), (7)

where the MSE function Ψ(σ2) is given by

Ψ(σ2) = Es, (MRC)

Ψ(σ2) = σ2, (ZF)

Ψ(σ2) =
Es

Es + σ2
σ2, (L-MMSE)

for MRC, ZF, and L-MMSE equalization, respectively.

We note that the expression for the ZF equalizer only holds
for β < 1, whereas the expressions for MRC and L-MMSE
hold for general system ratios β.1 From Theorem 1, we obtain

1The asymptotic SINR performance of ZF equalization via the Moore-
Penrose pseudo inverse when β ≥ 1 was analyzed in [39].

closed-form expressions for the post-equalization sinr in (6) for
MRC, ZF, and L-MMSE equalization in the PD architecture.

Corollary 2. Assume that the conditions of Theorem 1 hold.
Then, the post-equalization sinr for MRC, ZF, and L-MMSE
equalization in the PD architecture are given by

sinrMRC
PD =

Es/N0

1 + βEs/N0
, (MRC)

sinrZF
PD =

Es
N0

(1− β), for β < 1, (ZF)

sinrL-MMSE
PD =

1

2

(√(
1− Es

N0
(1− β)

)2
+ 4

Es
N0

−
(

1− Es
N0

(1− β)
))
. (L-MMSE)

We note that in the massive MU-MIMO regime, which
corresponds to β → 0, all post-equalization SINR expressions
converge to Es/N0, which confirms the well-known fact that
MRC is optimal in this scenario [2]. It can also be shown that
sinrL-MMSE

PD bounds sinrMRC
PD and sinrZF

PD from above for all system
ratios and in all SNR regimes. Hence, L-MMSE equalization
is often the preferred choice in realistic massive MU-MIMO
systems [5], [13]. We reiterate that the SINR expressions listed
in Corollary 2 are also valid for centralized architectures.

B. LAMA for the PD Architecture

The LAMA algorithm developed in [22] is a nonlinear
equalizer is able to achieve individually-optimal performance in
the large-system limit given certain conditions on the antenna
ratio β and the noise variance N0 are satisfied. LAMA operates
directly on the input-output relation in (1) and is, hence,
designed for centralized processing. We now develop a novel
variant of LAMA that directly operates on the complete MRC
output yMRC and the Gram matrix G in (4) to enables its use in
the PD architecture. Since the antenna configuration in massive
MU-MIMO systems typically satisfies U � B, the LAMA-
PD algorithm operates on a lower dimension which reduces
complexity while delivering exactly the same estimates as the
original LAMA algorithm. We note that LAMA was derived in
the large-system limit and for Rayleigh fading channels [40],
but these assumptions are not required in practice. We next
summarize the LAMA-PD algorithm; the derivation can be
found in Appendix A-A.

Algorithm 1 (LAMA-PD). Initialize s` = ES [S] for ` =
1, . . . , U , φ(1) = VarS [S], and v(1) = 0B×0. Then, for every
iteration t = 1, 2, . . . , Tmax, compute the following steps:

zt = yMRC + (I−G)st + vt (8)

st+1 = F(zt, N0 + βφt)

φt+1 = 〈G(zt, N0 + βφt)〉

vt+1 =
βφt+1

N0 + βφt
(zt − st).
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The functions F(s`, τ) and G(s`, τ) are the message mean and
variance, respectively, operate element-wise on vectors, and
are computed as follows:

F(z`, τ) =

∫
s`

s`f(s`|ẑ`)ds` (9)

G(z`, τ) =

∫
s`

|s`|2 f(s`|ẑ`)ds` − |F(z`, τ)|2.

Here, f(s|z) is the posterior pdf f(s|z) = 1
Z p(z|s)p(s)

with p(z|s) ∼ CN (s, τ), p(s) is given in (2), and Z is a
normalization constant. The estimates and error variances of
LAMA are zt and σ2

t,LAMA = N0 + βφt, respectively.

In order to analyze the post-equalization SINR of LAMA-PD,
it is key to realize that the equalization output zt is equivalent
to that of the original centralized LAMA algorithm in [22]. As
shown in [22], LAMA (and hence LAMA-PD) decouples the
MIMO system into parallel AWGN channels. More specifically,
the equalizer output (8) of LAMA can be modeled as in (5),
where the decoupled noise variance σ2

t at iteration t can be
tracked using the state evolution (SE) framework in the large-
system limit and for Rayleigh fading channels. The following
result, with proof in [41], summarizes this SE framework.

Theorem 3 ([22, Thm. 1]). Fix the system ratio β = U/B and
the signal prior (2). Assume the large-system limit and Rayleigh
fading channels. Then, the decoupled noise variance σ2

t of
LAMA and LAMA-PD at iteration t is given by the recursion:

σ2
t = N0 + βΨ(σ2

t−1). (10)

Here, the MSE function is given by

Ψ(σ2
t−1) = ES,Z

[∣∣F(S + σt−1Z, σ
2
t−1)− S

∣∣2 ], (11)

where the function F is given in (9), S ∼ p(s) as in (2),
Z ∼ CN (0, 1), and σ2

1 is initialized by σ2
1 = N0 + βEs.

For t → ∞, the SE recursion in (10) converges to the
same fixed-point equation of linear equalizers in (7), where
the only difference is the MSE function (11). If there are
multiple fixed points, then we select the largest σ2

PD, which is,
in general, a sub-optimal solution.2 As for linear equalizers,
we can use the fixed-point equation in (7) to analyze the post-
equalization SINR performance of LAMA and LAMA-PD.
Unfortunately, there are no closed-form expressions known
for the decoupled noise variance or the SINR for LAMA and
LAMA-PD with discrete constellations, due to the specific form
of the MSE function (11). Nevertheless, we can numerically
compute (11) and, hence, analyze the SINR. A corresponding
SINR comparison with linear equalizers is given in Section V.

IV. FULLY DECENTRALIZED (FD) EQUALIZATION

We next discuss optimal fusion for linear and nonlinear
equalization in the PD architecture as depicted in Fig. 1(b).
We then analyze the post-equalization SINR of the proposed
equalizers depending on the antenna cluster allocation strategy.

2See [38] for more details on the existence of multiple fixed-points and on
conditions for which LAMA achieves individually optimal performance.

A. Optimal Fusion for the FD Architecture

As detailed in Section II-D, each cluster c = 1, . . . , C in the
FD architecture independently computes a local estimate zc
and associated error variance vector σ2

c . Then, the vectors zc
and σ2

c for c = 1, . . . , C are fused to compute the final output
tuple {z,σ2}. Since in the large-system limit and for Rayleigh
fading channels, the considered equalizers decouple MIMO
systems into parallel and independent AWGN channels (see
Section II-E), we focus on linear fusion of the local estimates,
indicated with • in Fig. 1(b). Specifically, the proposed FD
architecture computes the fused estimate z by combining the
local estimates for each UE as follows:

zu =

C∑
c=1

νc,uzc,u, u = 1, . . . , U. (12)

Here, zc,u is the local estimate for UE u at cluster c and the
weights νc,u, u = 1, . . . , U , depend on the per-cluster error
variance vector σ2

c . In what follows, we are interested in the
optimal set of weights for the following criterion.

Definition 3 (Optimal fusion). Optimal fusion for the FD
architecture maximizes the per-UE post-equalization SINR of
the final estimate zu obtained from (12) while

∑C
c=1 νc,u = 1.

In other words, optimal fusion defines a set of weights
νc,u, c = 1, . . . , C, u = 1, . . . , U , so that the decoupled noise
variances contained in σ2 associated with the fused estimate z
are minimized. The following result summarizes the optimal
fusion rule; a short proof is given in Appendix A-B.

Lemma 4. Let σ2
c,u, c = 1, . . . , C, u = 1, . . . , U , be a set of

given error variances for UE u and cluster c. Assume that
the residual interference and noise terms are zero mean and
uncorrelated among the clusters. Then, the weights that yield
optimal fusion according to Definition 3 are given by

νc,u =
1

σ2
c,u

(
C∑
c′=1

1

σ2
c′,u

)−1
, (13)

for c = 1, . . . , C and u = 1, . . . , U .

B. SINR Analysis of Optimal Fusion in the FD Architecture

We are now interested in analyzing the post-fusion SINR for
the FD architecture in the large-system limit. The following
theorem analyzes the decoupled noise variance σ2

c for each
cluster c = 1, . . . , C; the proof is given in Appendix A-C.

Lemma 5. Assume MRC, ZF, L-MMSE, or LAMA equalization
in each cluster c = 1, . . . , C. Consider the large-system limit
and Rayleigh fading channels. Then, the input-output relation of
each cluster is decoupled into parallel channels of the form (5)
with decoupled noise variance σ2

c given by a solution to the
following fixed-point equation:

wcσ
2
c = N0 + βΨ(σ2

c ).

Here, Ψ(σ2
c ) is the MSE function of the equalizer in cluster c.

This result shows that the per-UE error variances σ2
c,u

will become independent of the UE index u in the large-
antenna limit and for Rayleigh-fading channels. Furthermore,



C. JEON ET AL. 7

the decoupled noise variances σ2
c depend on the fraction wc

of BS antennas associated with cluster c.
The following result establishes the post-fusion SINR in the

FD architecture; a short proof is given in Appendix A-D.

Theorem 6. Let the assumptions of Lemma 5 hold and σ2
c ,

c = 1, . . . , C, be the per-cluster decoupled noise variances.
Then, the decoupled noise variance σ2

FD of the fused estimate
in (12) of the FD architecture is given by

σ2
FD =

(
C∑
c=1

1

σ2
c

)−1
= N0 + β

C∑
c=1

νcΨ(σ2
c ). (14)

We note that this result implies that the post-fusion SINR
with optimal fusion according to Definition 3, denoted by
sinrFD, corresponds to the sum of the per-cluster SINR values.

Finally, we have the following intuitive result which implies
that for a given equalizer, the FD architecture cannot outperform
the PD architecture; the proof is given in Appendix A-E.

Lemma 7. Let N0 > 0 and assume the large-system limit and
Rayleigh-fading channels. Then, the output SINR for the FD
and PD architectures satisfy sinrFD ≤ sinrPD. Equality holds
for β → 0, C = 1, or if MRC-based equalization is used.

C. Antenna Partitioning Strategies for Linear Equalizers

We now analyze the post-fusion SINR performance of linear
algorithms for the FD architecture, depending on the antenna
allocation strategy, i.e., on the fraction of antennas wc used
per cluster c. For the following analysis, we assume the large-
system limit and Rayleigh fading channels.

For MRC with the FD architecture, the post-fusion SINR is
equivalent to that of the PD architecture (and that of centralized
processing), as shown in Lemma 7. Hence, the antenna
partitioning strategy does not affect the SINR performance.

For ZF equalization in the FD architecture, we have the
following result; the proof is given in Appendix A-F.

Lemma 8. Assume that the B BS antennas are divided into C
clusters so that wc ≥ β holds for c = 1, . . . , C. Then, the
post-fusion SINR for ZF equalization is given by

sinrZF
FD =

Es
N0

(1− Cβ). (15)

Interestingly, we observe that the post-fusion SINR sinrZF
FD

does not depend on the antenna allocation strategy; this implies
that the per-cluster antenna fraction wc can be chosen arbitrarily
as long as wc ≥ β for c = 1, . . . , C.3 Note, however, that
equally-sized clusters are desirable in practice as they may
minimize the interconnect or chip I/O bandwidth as well as
the computational complexity per computing fabric.

For L-MMSE equalization in the FD architecture, we have
the following result; the proof is given in Appendix A-G.

Lemma 9. Assume that the B BS antennas are divided into C
clusters so that

∑C
c=1 wc = 1 holds with wc ≥ 0 for c =

3The condition wc ≥ β implies that
∑C

c=1 wc = 1 ≥ Cβ so the SINR
expression in Lemma 8 is well-defined.

1, . . . , C. Then, the post-fusion SINR of the L-MMSE equalizer
is given by

sinrL-MMSE
FD =

1

2

C∑
c=1

√(
1− Es

N0
(wc − β)

)2
+ 4

Es
N0

wc

− 1

2

(
C − Es

N0
(1− Cβ)

)
(16)

We see from Lemma 9 that the post-fusion SINR expression
for L-MMSE equalization depends on the antenna allocation
strategy, i.e., on the weights wc, which is in contrast to ZF
equalization (cf. Lemma 8). In addition, L-MMSE equalization
does not require the restriction wc ≥ β for ZF-equalization
as the post-fusion SINR expression holds even for underde-
termined systems [26]. Hence, it is natural to ask what the
optimal cluster allocation strategy is. The following result is
rather disappointing; the proof is given in Appendix A-H.

Lemma 10. The cluster allocation strategy that maximizes
the post-fusion SINR for the L-MMSE equalizer sinrL-MMSE

FD is
wc = 1 for some c and wc′ = 0 for c′ 6= c.

Clearly, without any systematic requirements on the cluster
ratios wc, c = 1, . . . , C, besides wc ≥ 0, maximizing
sinrL-MMSE

FD so that
∑C
c=1 wc = 1 corresponds to a centralized

architecture, i.e., all antennas should be allocated to a single
cluster. Since the key idea of DBP was to mitigate interconnect
and I/O bandwidth as well as computation bottlenecks, such
an optimal allocation strategy is undesirable in practice. We
next show that the most desirable (from a practical viewpoint)
cluster allocation strategy, i.e., one for which all clusters have
an equal number of antennas, yields the worst post-fusion
SINR; the proof is given in Appendix A-I

Lemma 11. Assume that the B BS antennas are divided into C
clusters so that

∑C
c=1 wc = 1 with wc ≥ 0, c = 1, . . . , C. Then,

we have the following lower bound on the post-fusion SINR:

sinrL-MMSE
FD ≥ 1

2

√(
1− Es

N0
(1− Cβ)

)2
+ 4

Es
N0

C

− 1

2

(
C − Es

N0
(1− Cβ)

)
. (17)

Furthermore, the lower bound is achieved with equality if
the antennas are distributed uniformly across all clusters, i.e.,
where wc = 1/C for c = 1, . . . , C.

We conclude by noting that even though uniform cluster sizes
are the worst for L-MMSE equalization in the FD architecture,
L-MMSE equalization outperforms ZF equalization for all
possible partitioning schemes in terms of the post-fusion SINR.
Hence, L-MMSE equalization is desirable in practice.

Remark 3. The presented SINR analysis for optimal antenna
partitioning with the L-MMSE equalizer also applies to LAMA-
FD. A detailed SINR analysis, however, requires numerical
integration as no closed-form expressions exist for the MSE
Ψ(σ2) function for LAMA for QAM/PSK constellations [42],
[43]. To enable the interested readers to conduct this perfor-
mance analysis for a range of system configurations, we will
provide a simulator upon possible acceptance of the paper.
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(a) QPSK and target rate of R = 1.99 [bits/UE/channel use].
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(b) 16-QAM with target rate of R = 3 [bits/UE/channel use].
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(c) QPSK with fixed 1 dB SNR loss.
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(d) 16-QAM with fixed 1 dB SNR loss.

Fig. 2. Achievable rate analysis of DBP with feedforward architectures. Minimum BS-to-UE antenna ratio β−1 versus SNR loss for QPSK (a) and 16-QAM
(b) for fixed target rates R. Minimum β−1 versus achievable rate for QPSK (a) and 16-QAM (b) for a given SNR loss of 1 dB. LAMA outperforms MRC, ZF,
and L-MMSE in the FD and PD architectures, especially at high target rates. At low target rates, all equalizers and architectures perform equally well.

V. NUMERICAL RESULTS

We now investigate the performance of decentralized equal-
ization in the large-system limit and for Rayleigh-fading
channels using the SINR expressions from Sections III and IV.
We show error-rate simulation results to validate our asymptotic
results in finite-dimensional systems. We also provide results
for an LTE-like massive MU-MIMO system to demonstrate
the efficacy of our solutions in a realistic scenario.

A. Achievable Rate Analysis

We first investigate the achievable rates of our feedforward
architectures with focus on the large-system limit and Rayleigh
fading channels. We consider C = 2 clusters with uniform
antenna partitioning, i.e., wc = 1/C for c = 1, . . . , C. We
define the average receive signal-to-noise ratio (SNR) as
SNR = βEs/N0 and use an interference-free AWGN channel
with variance N0 as the baseline, which coincides to the large-

antenna limit of massive MU-MIMO systems with β → 0.
Concretely, we will use the following performance metric.

Definition 4 (SNR loss). We define the SNR loss of an equalizer
as the excess SNR required to achieve the same target rate R
of an interference-free AWGN channel with variance N0.

In Fig. 2(a), we use QPSK and a target rate of R = 1.99
bits/UE/channel use; in Fig. 2(b) we use 16-QAM and a target
rate of R = 3 bits/UE/channel use. Both figures investigate
the minimum required BS-to-UE ratio β−1 for a given SNR
loss, which characterizes how many more BS antennas are
required by a given equalizer and feedforward architecture
to be able to approach AWGN performance up to a given
SNR gap. We observe that for a small SNR loss (i.e., when
achieving similar performance as that of an interference-free
AWGN channel), we require significantly more BS antennas
than UEs, irrespective of the algorithm and architecture. For an
SNR loss of 1 dB (shown by a thick vertical line in Figures 2(a)
and 2(b)), we see that the PD architecture outperforms the
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Fig. 3. Symbol error-rate (SER) comparison of equalization in the large-antenna
limit (indicated with lines) vs. the simulated performance (indicated by the
markers) in a B = 256 BS antenna U = 16 UE massive MU-MIMO system
with Rayleigh-fading channels. Evaluating the SER using our analytical SINR
expressions for the large-antenna limit closely matches numerical simulations
in finite-dimensional systems for all considered equalizers and architectures.

FD architecture; this fact is more pronounced in the QPSK
scenario as we are trying to achieve 99.5% of the maximum
possible rate of 2 bits/UE/channel use for QPSK, whereas for
16-QAM, we are only trying to achieve 75% of the maximum
rate. We also see that LAMA-PD significantly outperforms
linear equalizers in the PD and FD architectures; MRC requires
significantly higher BS-to-UE antenna ratios. Interestingly, for
QPSK, LAMA-FD significantly outperforms linear equalization
algorithms for the PD architecture in Fig. 2(a) but performs
strictly worse for 16-QAM in Fig. 2(b); this is due to the
fact that the system-ratio threshold for LAMA to achieve
individually-optimal performance is higher for QPSK than
for 16-QAM [22]. In summary, LAMA-FD achieves similar
performance as linear equalizers with the PD architecture while
reducing interconnect and chip I/O bandwidths.

In Fig. 2(c) and Fig. 2(d), we fix the SNR loss to 1 dB
and plot the minimum BS-to-UE ratio β−1 and varying
achievable rates for QPSK and 16-QAM, respectively. For
both constellations, MRC performs equally well than all
other methods in the low-rate regime; note that the low-rate
regime translates to the low-SNR regime for which MRC is
known to be optimal. For higher rates, however, MRC requires
significantly higher BS-to-UE antenna ratios compared to L-
MMSE or LAMA-based equalization. The PD architecture
significantly outperforms the FD architecture for all equalizers,
which implies that for high-rates the PD architecture is the
preferred choice. Interestingly, the minimum BS-to-UE antenna
ratio remains constant for ZF; this implies that as long as one
operates below a certain antenna ratio β∗, ZF is able to support
all transmission rates; see [28] for additional details on this
behavior. Finally, we see that the minimum BS-to-UE ratio β−1

decreases for LAMA-FD and LAMA-PD at high rates; this
behavior is due to the fact that LAMA in overloaded systems
is particularly robust at low and high values of SNR (see [22]
for a detailed discussion).
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Fig. 4. Packet error-rate (PER) of an LTE-like massive MU-MIMO-OFDM
system with B = 64 and U = 16. LAMA for the PD and FD architectures
clearly outperforms L-MMSE while meeting the 10% LTE minimum PER
requirement. LAMA-PD or L-MMSE clearly outperform the consensus-based
ADMM method from [8] (which suffers from transfer latency), whereas LAMA-
FD closely approaches the performance at minimal lower latency overheads.

B. Asymptotic vs. Finite-Dimensional Systems

In Fig. 3, we compare our analytical SINR expressions in
the large-antenna limit to those in a finite-dimensional massive
MU-MIMO scenario. Specifically, we use the SINR from (5) in
a decoupled AWGN channel to analytically compute the symbol
error-rate (SER) as well as the simulated SER in an uncoded
B = 256 BS antenna, U = 16 UE massive MU-MIMO
system with Rayleigh fading channels. We consider C = 8
clusters with uniform antenna partitioning, i.e., wc = 1/8
for all C = 8 clusters. First, we observe that the simulated
results (indicated with markers) closely match our analytical
expressions (indicated with lines). Second, we see that the
PD architecture significantly outperforms the FD architecture
for C = 8 clusters and LAMA outperforms ZF and L-
MMSE for both architectures. Third, we see that MRC yields
poor SER performance, which is due to the fact that MRC
requires extremely high BS-to-UE antenna ratios to support
4 bits/UE/channel use for 16-QAM; see also Fig. 2(d).

C. Coded Error-rate Performance in Realistic Systems

In Fig. 4, we investigate the coded packet error-rate (PER)
in a realistic LTE-like massive MU-MIMO system with
B = 64 BS antennas and U = 16 UEs. We consider C = 2
clusters with uniform antenna partitioning. We use OFDM
with 2048 subcarriers (1200 used for data transmission) with
16-QAM, 14 OFDM symbols per packet, and use a weak
rate-5/6 convolutional code with soft-input Viterbi decoding.
We consider a WINNER II channel model in an outdoor-to-
indoor scenario. For LAMA-PD and FD, we use 10 iterations
and perform message damping to mitigate performance loss
for finite-dimensional systems with correlated MIMO channel
matrices [44]. We also compare LAMA and L-MMSE to the
consensus-based ADMM method for DBP proposed in [8],
where we use 10 iterations. First, we see that LAMA-PD
outperforms all other equalization algorithms by a significant
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margin, when considering the LTE minimum PER specification
of 10%. Second, we observe that the consensus-sharing ADMM
method performs slightly better than that of LAMA-FD. The
ADMM-based method, however, requires iterative consensus
exchange among the clusters which results in low throughput;
see our GPU implementation results in Section VI-C.

VI. MULTI-GPU SYSTEM IMPLEMENTATION

We now present implementation results of our algorithms
and architectures on a multi-GPU system to validate the
scalability, throughput, and latency in a realistic scenario. We
furthermore provide a comparison to existing consensus-based
DBP algorithms and centralized equalizers. In order to fully
utilize the available GPU resources, we consider an OFDM-
based system as in Section V-C, which enables us to not only
parallelize across antennas but also across subcarriers.

Remark 4. As in [8], the provided multi-GPU implementations
serve as a proof-of-concept to assess the efficacy and scalability
of our solutions when implemented on real hardware. In
practice, we expect that our solutions will be implemented on
clusters consisting of field-programmable gate arrays (FPGAs)
or application-specific integrated circuits (ASICs), which offer
higher computing efficiency and lower transfer latency.

A. Experimental Platform
In Fig. 5, we show the used Nvidia DGX-1 multi-GPU

system [45] consisting of eight Tesla V100 Volta GPUs with
300 GB/s bi-directional NvLink interconnect and two 20-core
Intel Xeon E5-2698 v4 CPUs. Each GPU provides 5120
CUDA cores and 16 GB high bandwidth memory (HBM).
In what follows, we use C GPUs when processing C an-
tenna clusters; other partitioning schemes are possible. Our
equalization algorithms and architectures are implemented
with the CUDA 9.2 toolkit [46] and the Nvidia collective
communications library (NCCL) v2.2 [47] software stack. The
NCCL uses the message passing interface (MPI) library, which
improves the efficiency of inter-GPU collective communica-
tion over NvLink [48] by leveraging the CUDA-aware MPI
technology [49] for direct GPU-to-GPU memory copy.

B. Implementation Details
All decentralized feedforward equalizers proposed in Sec-

tions III and IV are processed in the following three steps:
(i) calculate local intermediate results at each antenna cluster,
(ii) fuse local results at the centralized processor, and (iii)
perform necessary centralized computations to obtain the final
equalization outputs. We use the available CPUs to schedule
the workload and initialize C MPI processes, each process
supervising an individual GPU for design decentralization. The
proposed decentralized algorithms were implemented on the
multi-GPU system using the following procedure:
• We accelerate local computations at the C antenna clusters,

each using a dedicated GPU with multi-threaded CUDA
kernel functions.

• We utilize collective inter-process communication among
the C GPUs via NCCL over NvLink to realize low-latency
gathering of the local results at the master GPU.

• We complete the centralized computations at the master
GPU for high efficiency.

We note that equalization with the PD architecture generally
requires fewer local computations, but more data for fusion
and computations at the centralized master GPU, compared
to equalization with the FD architecture. We now describe
the PD and FD architectures in detail. To keep the discussion
of the FD architecture short, we only discuss the procedure
for LAMA, as the same methodology is used for the linear
equalization algorithms; see [50] for more details.

1) PD Architecture: The local computations at each GPU
include the partial MRC output yMRC

c = Hcyc and the
partial Gram matrix Gc = HH

cHc. To maintain high GPU
occupancy, we aggregate these workloads across a batch of
subcarriers and process them in parallel. To process the batched
matrix-matrix or matrix-vector multiplications required for
partial MRC and Gram computations efficiently, we take
advantage of the cuBLAS library, a collection of CUDA-
accelerated basic linear algebra subprograms (BLAS), and
specifically, the cublasCgemmBatched library function for
fast matrix multiplications with complex-valued floating-point
entries. In a single invocation of the batched function call, we
calculate Gc for Nsc active subcarriers (batchsize = Nsc)
associated with a certain OFDM symbol, and reuse them
across Nsym OFDM symbols within the channel coherence
time to reduce complexity. In contrast to the Gram matrix
calculation, we compute yMRC

c for a total of Nsc × Nsym
subcarriers (batchsize = Nsc × Nsym) in a function call.
This is necessary because yMRC

c also depends on receive vector
yc, which varies for each OFDM symbol. We finally fuse the
local Gc and yMRC

c that results in a total message size of
U × U ×Nsc ×C + U ×Nsc ×Nsym ×C at the master GPU.

For LAMA-PD shown in Algorithm 1, each iteration mainly
involves matrix-vector multiplication and vector operations,
which include vector addition, subtraction, and dot-products.
Although matrix-vector multiplications can be efficiently com-
puted by the batched cuBLAS function with batchsize =
Nsc × Nsym, as done for preprocessing, we also designed
customized multi-threaded kernel functions for the vector
operations to fully exploit the on-chip memories of GPU.
Specifically, for certain kernels, we combine multiple vector
operations which can share intermediate results using fast
local registers. Since the intermediate vectors within each
LAMA iteration, such as s, v, and z, scale with the UE
number U , multi-threaded computations for vector additions,
subtractions, and scaling are straightforward; we launch a
kernel with Nsc × Nsym × U threads to process each of U
entries in a vector for a total of Nsc × Nsym subcarriers in
parallel. For the vector dot-product operations, as an example,
when we update φ in Algorithm 1, we resort to the warp shuffle
technique, where a thread can directly retrieve register values
from another thread efficiently, to obtain a sum reduction
of U vector entries across U threads in the same warp. If
U > warpsize = 32, then we can also use the on-chip
shared memory for the necessary inter-thread communication.
After the last LAMA iteration Tmax, we finally calculate the
global LAMA-PD output at the master GPU.
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Fig. 5. System architecture overview of the multi-GPU experimental platform. The system consists of eight Tesla Volta GPUs with high-bandwidth NvLink
GPU-to-GPU interconnect. The master GPU (highlighted) gathers local equalization results and performs all centralized computations. For (a) C = 1, (b)
C = 2, and (c) C = 4 clusters, we use a single CPU that controls the GPUs via PCIe; (d) for C = 8 clusters, we use two CPUs for control purposes.

TABLE I
LATENCY (L) AND THROUGHPUT (TP) PERFORMANCE OF DECENTRALIZED FEEDFORWARD EQUALIZERS (U = 16, Bc = 32, L IN MS, TP IN GB/S)

Partially Decentralized Feedforward Equalizers Fully Decentralized Feedforward Equalizers

B 64 128 256 64 128 256
C 2 4 8 2 4 8

Performance L / TP L / TP L / TP L / TP L / TP L / TP

LAMA, Tmax = 1 0.651 / 1.76 0.677 / 1.69 0.785 / 1.46 0.591 / 1.94 0.599 / 1.91 0.672 / 1.71
LAMA, Tmax = 2 0.777 / 1.48 0.803 / 1.43 0.912 / 1.26 0.718 / 1.60 0.727 / 1.58 0.799 / 1.44
LAMA, Tmax = 3 0.903 / 1.27 0.929 / 1.23 1.039 / 1.10 0.846 / 1.36 0.854 / 1.34 0.925 / 1.24
LAMA, Tmax = 4 1.030 / 1.11 1.056 / 1.09 1.165 / 0.98 0.973 / 1.18 0.980 / 1.17 1.052 / 1.09
LAMA, Tmax = 5 1.156 / 0.99 1.183 / 0.97 1.291 / 0.89 1.099 / 1.04 1.106 / 1.03 1.180 / 0.97
L-MMSE 0.719 / 1.60 0.745 / 1.54 0.856 / 1.34 0.666 / 1.72 0.676 / 1.70 0.751 / 1.53
ZF 0.690 / 1.66 0.717 / 1.61 0.827 / 1.39 0.635 / 1.81 0.643 / 1.79 0.715 / 1.61
MRC 0.411 / 2.79 0.421 / 2.72 0.499 / 2.30 0.411 / 2.79 0.421 / 2.72 0.499 / 2.30

TABLE II
PERFORMANCE OF DECENTRALIZED CONSENSUS-SHARING EQUALIZERS

DEVELOPED IN [8] (U = 16, Bc = 32, L IN MS, TP IN GB/S)

B 64 128 256
C 2 4 8

Performance L / TP L / TP L / TP

ADMM, Tmax = 2 0.783 / 1.47 0.789 / 1.45 0.858 / 1.34
ADMM, Tmax = 3 0.982 / 1.17 0.995 / 1.15 1.075 / 1.07
CG, Tmax = 2 0.808 / 1.42 0.815 / 1.41 0.880 / 1.30
CG, Tmax = 3 0.997 / 1.15 1.010 / 1.14 1.098 / 1.04

TABLE III
PERFORMANCE OF CENTRALIZED EQUALIZERS (U = 16, C = 1, Bc = B,

L IN MS, TP IN GB/S)

B 64 128 256

Performance L / TP L / TP L / TP

LAMA, Tmax = 2 0.766 / 1.50 1.182 / 0.97 2.004 / 0.57
L-MMSE [50] 0.710 / 1.62 1.125 / 1.02 1.947 / 0.59
ZF [50] 0.682 / 1.68 1.095 / 1.05 1.917 / 0.60
MRC 0.457 / 2.51 0.859 / 1.34 1.650 / 0.70

2) FD Architecture: Preprocessing and equalization is
computed in a decentralized manner at each of the C GPUs.
We reuse the cuBLAS library and customized kernel functions
for those local computations in LAMA-FD, and fuse the local
result zc at the master GPU using the NCCL library with a
smaller total message size of U ×Nsc×Nsym×C than that of
LAMA-PD. We implement optimal fusion at the master GPU.

C. Implementation Results

We now present measured latency and throughput of our
decentralized feedforward equalizers. In Table I, we list results
obtained via CPU wall clock timing that is synchronized
with the start and end of all GPU computations. In what
follows, we consider 16-QAM, and we fix the number of
UEs to U = 16 and BS antennas per cluster to Bc = 32
We simulate an LTE-like system as in Section V-C with
Nsym = 14 OFDM symbols per packet and Nsc = 1200 active
subcarriers (out of 2048 subcarriers), which corresponds to
a 20 MHz LTE subframe. To compare the scalability of our
proposed feedforward equalization architectures, we scale the
total number of BS antennas B = CBc by increasing the
number of clusters from C = 2, C = 4, to C = 8.
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We see from Table I that all our proposed decentralized
feedforward equalizers achieve throughput in the Gb/s regime
with latencies of 1 ms or less. Specifically, the non-linear
LAMA-PD and LAMA-FD equalizers are able to reach higher
throughput for a small number of iterations (Tmax = 1 or
Tmax = 2). We note that for more LAMA iterations, our
decentralized linear equalizers are able to outperform LAMA
in terms of the throughput. This is due to the fact that linear
equalizers can reuse both local Gram matrix multiplication and
matrix inversion results across Nsym OFDM symbols, which
effectively reduces complexity. Among all those feedforward
equalizers, MRC (which is equivalent for MRC-PD and MRC-
FD) has the highest throughput and lowest latency, but entails
significant loss of error-rate performance; see the simulation
results in Section V. Furthermore, we see that equalization with
the FD architecture generally achieves higher throughput than
that of the PD architecture, mainly caused by smaller message
size and lower data-transfer latency during the data fusion
process; this advantage, however, comes at the cost of reduced
error-rate performance. Interestingly, the latency and throughput
of our decentralized feedforward equalization implementations
degrades only slightly when we scale up the number of
BS antennas (with a larger number of clusters C) as our
designs benefit from direct GPU-to-GPU communication with
efficient NCCL over NvLink. This observation demonstrates
that our proposed decentralized feedforward equalizers have
excellent scalability to support hundreds to even thousands of
BS antennas while maintaining high throughput.

We now compare our proposed decentralized feedforward
architectures to the decentralized consensus-based methods
proposed in [8]. In Table II, we show reference latency and
throughput results measured on the same multi-GPU platform.
As discussed in [8], consensus-sharing methods, such as
ADMM-based and decentralized CG-based equalizers, rely
on iterative update of local variables and global consensus,
which requires the data gathering for consensus calculation
and consensus broadcasting in each iteration. In contrast, the
decentralized feedforward equalizers proposed in this paper
significantly reduce the data transfer latency with only one-
shot (feedforward) message passing, which leads to (often
significantly) higher throughput. More specifically, both LAMA-
PD and LAMA-FD achieve higher throughput than D-ADMM
or D-CG for the same number of iterations; the same trend
continues to hold for a larger number of iterations.

In Table III, we show the latency and throughput performance
of several centralized equalizers. We see that the throughput of
centralized equalizers decreases quickly when increasing the
number of BS antennas; this demonstrates that centralized solu-
tions exhibit poor scalability to large BS antenna arrays. Also
note that centralized solutions suffer from high interconnect
and chip I/O data rates, which is not visible in this comparison.

VII. CONCLUSIONS

We have presented two feedforward architectures for de-
centralized equalization in massive MU-MIMO systems that
mitigate the interconnect and I/O bandwidth bottlenecks and
enable parallel processing on multiple computing fabrics. For

the two proposed architectures, we have presented linear and
nonlinear equalization algorithms, and we have analyzed their
post-equalization SINR performance in the large-antenna limit.
We have also performed numerical simulations that confirm
our analysis. Our results indicate that nonlinear equalizers are
able to achieve near-optimal SINR performance while enabling
decentralized computations and low communication overhead
among the antenna clusters. Linear equalizers perform equally
well for scenarios in which the number of BS antennas is
significantly larger than the number of UEs or for systems
that use strong coding or low data rates. Our reference
implementations on a multi-GPU system have shown that
our feedforward architectures achieve throughputs in the Gb/s
regime, even for massive MU-MIMO systems with hundreds of
antenna elements. Specifically, our measurement results show
that feedforward architectures are able to overcome the latency
limits of existing decentralized baseband processing schemes,
such as the consensus-sharing methods proposed in [8].

There are many avenues for future work. First, an implemen-
tation of our algorithms and architectures on multi-FPGA or
multi-ASIC platforms would demonstrate the full capabilities of
our solutions. Second, an investigation of antenna partitioning
schemes for directional channels, such as those experienced in
millimeter wave (mmWave) systems, is part of ongoing research.
Third, a theoretical analysis of the precoding architectures and
algorithms proposed recently in [51] for the massive MU-
MIMO downlink is left for future work.

ACKNOWLEDGMENTS

The work of C. Jeon and C. Studer was supported in part by
Xilinx, Inc. and by the US National Science Foundation (NSF)
under grants ECCS-1408006, CCF-1535897, CCF-1652065,
and CNS-1717559. The work of K. Li and J. R. Cavallaro was
supported in part by Xilinx, Inc. and by the US NSF under
grants ECCS-1408370, CNS-1717218, and CNS-1827940, for
the “PAWR Platform POWDER-RENEW: A Platform for Open
Wireless Data-driven Experimental Research with Massive
MIMO Capabilities.” We would like to thank T. Goldstein
for insightful discussions on DBP, and we acknowledge the
hardware support of the DGX-1 multi-GPU systems at the
Nvidia Technology Center (the PSG Cluster).

APPENDIX A
DERIVATIONS AND PROOFS

A. Derivation of Algorithm 1

Algorithm 1 builds upon the original LAMA algorithm [22]:

zt = st + HHrt

st+1 = F(zt, N0(1 + τ t))

τ t+1 =
β

N0
〈G(zt, N0(1 + τ t))〉

rt+1 = y −Hst+1 + τt+1

1+τt r
t.
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We use the facts that yMRC = HHy and G = HHH and define
φt = N0τ

t

β so that τt+1

1+τt = βφt+1

N0+βφt . Then,

HHrt+1 = HHy −HHHst+1 +
τ t

1 + τ t
HHrt

= yMRC −Gst+1 +
βφt+1

N0 + βφt
HHrt.

Algorithm 1 follows by noticing that vt+1 = HHrt = zt − st.

B. Proof of Lemma 4

As in (5), we write the estimate zc,u for UE u at cluster c as
zc,u = s0u + ec,u, where ec,u represents residual interference
and noise with known error variance E

[
|ec,u|2

]
= σ2

c,u. At UE
u, optimal fusion is zu =

∑C
c=1 νc,uzc,u so that

∑C
c=1 νc,u = 1.

Hence, the fused estimate is zu = s0u +
∑C
c=1 νc,uec,u, with

the following post-fusion SINR:

sinr =
E
[
|s0u|2

]
E
[∣∣∑C

c=1 νc,uec,u
∣∣2] =

Es∑C
c=1 ν

2
c,uσ

2
c,u

. (18)

Here, we used the assumption that the residual interference
and noise terms ec,u are zero mean and uncorrelated across
clusters c = 1, . . . , C. We are now interested in maximizing
the post-fusion SINR in (18) subject to

∑C
c=1 νc,u = 1. Using

the method of Lagrange multipliers, it is easy to see that

νc,u =
1

σ2
c,u

(
C∑
c′=1

1

σ2
c′,u

)−1
, c = 1, . . . , C. (19)

C. Proof of Lemma 5

For Rayleigh-fading channels, each entry in the partial
channel matrix Hc is distributed as CN (0, 1/B). To ensure
that the expected column-norm of Hc is one, we normalize
the per-cluster input-output relation in (3) by 1/

√
wc. This

normalization amplifies the noise variance by 1/wc in each
cluster. In addition, since overall system dimension is Bwc×U ,
the resulting system ratio is given by β = U/(Bwc) = β/wc.
By realizing that N0/wc is the per-cluster noise variance, the
fixed-point equation follows immediately from Theorems 1
and 3 for linear and LAMA-based equalization, respectively.

D. Proof of Theorem 6

To simplify notation, we omit the UE index u. The proof
follows from (19) in Lemma 4. The first expression in (14) is
trivial whereas the second expression is obtained as follows:

β

C∑
c=1

νcΨ(σ̄2
c ) =

(
C∑
c=1

1

σ̄2
c

)−1 C∑
c=1

βΨ(σ̄2
c )

σ̄2
c

=

(
C∑
c=1

1

σ̄2
c

)−1 C∑
c=1

(
wc −

N0

σ̄2
c

)
=

(
C∑
c=1

1

σ̄2
c

)−1
−N0.

E. Proof of Lemma 7

We first show when equality holds. The case for C = 1 is
trivial because the PD and FD architectures are equivalent for
C = 1. The case for β → 0 is also straightforward because
σ2
c = σ2

FD = σ2
PD = N0. For MRC, we have σ2

FD = N0 +
β
∑C
c=1 νcVarS [S] = N0 + β VarS [S] = σ2

PD.
Let us now assume that β > 0. We show that σ2

c > σ2
PD by re-

writing the fixed-point solutions as [52]: σ2
c = sup{σ2 : N0 +

βΨ(σ2) ≥ wcσ
2} and σ2

PD = sup{σ2 : N0 + βΨ(σ2) ≥ σ2}.
Note that N0 > 0, so both σ2

c and σ2
PD are strictly positive. It

is easy to see that σ2
PD 6= σ2

c because σ2
PD = N0 + βΨ(σ2

PD) >
wcσ

2
PD. Since Ψ(σ2) → VarS [S] as σ2 → ∞ and Ψ(σ2) is

continuous [53], there exists a σ2
c > σ2

PD that satisfies N0 +
βΨ(σ2

c ) = wcσ
2
c by the intermediate value theorem.

Finally, we use [53, Prop. 9] to see that Ψ(σ2) is strictly
increasing for σ2 > 0 for LAMA. For ZF and MMSE, this
also holds by inspection of dΨ(σ2)/dσ2 > 0. Thus, the result
σ2

FD > σ2
PD follows directly from Lemma 4 since

σ2
FD = N0+β

C∑
c=1

νcΨ(σ2
c ) > N0+β

C∑
c=1

νcΨ(σ2
PD) = σ2

PD.

F. Proof of Lemma 8

The proof is straightforward and follows from Theorem 1
and Lemma 4. Given that cluster c has Bwc > β antennas
across all clusters C, the input-output relation of cluster c
in the large-system limit under ZF equalization results in a
AWGN channel with decoupled noise variance: σ2

c = N0

wc−β .
The proof follows from Lemma 4 noting that

∑C
c=1 wc = 1:

σ2
FD =

(
C∑
c=1

1

σ2
c

)−1
=

(
C∑
c=1

wc − β
N0

)−1
=

N0

1− Cβ .

G. Proof of Lemma 9

The proof follows Theorem 1 with the fixed-point equation

wcσ
2
c = N0 + β

Es
Es + σ2

c

σ2
c ,

which results in the following sinr expression for cluster C for
L-MMSE with the FD architecture:

sinrL-MMSE
FD,c =

1

2

(√(
1− Es

N0
(wc − β)

)2
+ 4

Es
N0

wc

−
(

1− Es
N0

(wc − β)
))
.

Lemma 9 follows from sinrL-MMSE
FD =

∑C
c=1 sinr

L-MMSE
FD,c .
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H. Proof of Lemma 10

The proof of Lemma 10 starts from (16). Let us denote
sinr

L-MMSE
FD as sinrL-MMSE

FD when w1 = 0 and w2 = · · · = wC =
0. We also define β = 1− β. Then,

max
w

sinrL-MMSE
FD ≥ sinr

L-MMSE
FD

=
1

2

(√(
1− Es

N0
β
)2

+ 4
Es
N0
−
(

1− Es
N0

β
))

+
C − 1

2

(√(
1− Es

N0
β
)2
−
(

1− Es
N0

β
))

=
1

2

(√(
1− Es

N0
β
)2

+ 4
Es
N0
−
(

1− Es
N0

β
))

(a)
= sinrL-MMSE

PD ,

where (a) follows from (L-MMSE) in Corollary 2. Since we
know from Lemma 7 that sinrL-MMSE

PD ≥ sinrL-MMSE
FD , we have

that maxw sinrL-MMSE
FD = sinr

L-MMSE
FD = sinrL-MMSE

PD .

I. Proof of Lemma 11

The proof of Lemma 11 starts from (16) with the definition
f(w,α) =

√
(1− α(w − β))2 + 4αw. Note that f(w,α) is

convex in w as f ′′(w,α) ≥ 0 for α ≥ 0. The final step follows
from Jensen’s inequality, which implies

1

C

C∑
c=1

f(wc, α) ≥ f
(

1

C

C∑
c=1

wc, α

)
,

where equality holds if w1 = w2 = · · · = wC .
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