
TO APPEAR IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I 1

Implementation Trade-offs of Soft-Input Soft-Output
MAP Decoders for Convolutional Codes

Christoph Studer, Member, IEEE, Schekeb Fateh, Student Member, IEEE,
Christian Benkeser, Member, IEEE, and Qiuting Huang, Fellow, IEEE

Abstract—Soft-input soft-output (SISO) maximum a-posteriori
(MAP) decoders for convolutional codes (CCs) are an integral
part of many modern wireless communication systems. Specifi-
cally, SISO-MAP decoding forms the basis for turbo decoders, as,
e.g., specified for HSDPA or 3GPP-LTE, or for iterative detection
and decoding in multiple-input multiple-output wireless systems,
such as IEEE 802.11n. In this paper, we investigate the silicon-
area, throughput, and energy-efficiency trade-offs associated with
SISO-MAP decoders based on the algorithm developed by Bahl,
Cocke, Jelinek, and Raviv (BCJR). To this end, we develop
radix-2 and radix-4 architectures for high-throughput SISO-
MAP decoding of CCs having 4, 8, 16, 32, and 64 states and
present corresponding implementation results in 180 nm, 130 nm,
and 90 nm CMOS technology. We validate technology-scaling
rules and finally demonstrate the use of the presented trade-
off analysis by identifying the key design parameters for parallel
turbo-decoder implementations.

Index Terms—Very-large scale integration (VLSI), wireless
communication, soft-input soft-output (SISO) maximum a-
posteriori (MAP) decoding, convolutional codes, turbo codes and
decoding, iterative decoding.

I. INTRODUCTION

RELIABLE data transmission in wireless communi-
cation systems requires sophisticated channel cod-

ing schemes and corresponding high-throughput, low-area,
and energy-efficient decoder implementations. Convolutional
codes (CCs), used in stand-alone form [3] or as part of turbo
codes [4], are among the most popular codes used in cur-
rent and next-generation wireless communication standards,
such as HSDPA [5], 3GPP-LTE [6], LTE-Advanced [7], or

The 180 nm CMOS implementation results have been presented in part in
the Ph.D. Theses of C. Studer [1] and C. Benkeser [2].

C. Studer was with the Dept. Information Technology and Electrical
Engineering, ETH Zurich, 8092 Zurich, Switzerland, and is now with the
Dept. of Electrical and Computer Engineering, Rice University, Houston, TX
77005, USA (e-mail: studer@rice.edu).

S. Fateh, C. Benkeser, and Q. Huang are with the Dept. Information Tech-
nology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
(e-mail: fateh@iis.ee.ethz.ch; benkeser@iis.ee.ethz.ch; huang@iis.ee.ethz.ch).

The authors would like to thank S. Belfanti, M. Brändli, F. Gürkaynak,
B. Muheim, D. Riha, and S. Schläpfer for their assistance during the ASIC
designs. We gratefully acknowledge the support of A. Burg, N. Felber,
W. Fichtner, and H. Kaeslin, and we would like to thank the anonymous
reviewers for their valuable comments, which helped to improve the exposition
of our results.

This project was supported in part by the Swiss National Science Founda-
tion (SNSF) under Grant PA00P2-134155 and the Hasler Stiftung.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org

Digital Object Identifier XXX-XXX-XXX

IEEE 802.11n [8]. CCs and turbo codes are of significant
practical interest due to the fact that they offer excellent error-
correction performance and can be implemented to achieve
high throughput, while being efficient in terms of silicon
area and power consumption [9]–[16]. Since the advent of
turbo codes [4], iterative decoding algorithms relying on CCs,
became a key enabler for wireless communication systems
operating close to the Shannon limit. CCs have also been
considered for wireless communication systems employing
iterative detection and decoding, i.e., where reliability informa-
tion is exchanged iteratively between a detector and the chan-
nel decoder. In particular, iterative detection and decoding in
multiple-input multiple-output (MIMO) wireless systems [17]
or systems exhibiting inter-symbol interference [18] is becom-
ing an integral part of future transceiver designs because it is
an efficient means to substantially improve the throughput and
quality-of-service (i.e., link reliability, coverage, and range)
compared to non-iterative decoding schemes (see, e.g., [19]
and the references therein).

A. The need for a systematic trade-off analysis

Decoding of CCs is usually performed by the Viterbi
algorithm (VA) [20], which is able to efficiently compute the
most likely transmitted data sequence. Corresponding VLSI
implementations have been shown to achieve high throughput
at low silicon area [21]–[24]. However, for iterative decoding
schemes, reliability information in the form of log-likelihood
ratios (LLRs) for the transmitted bits needs to be computed.
This requirement inhibits the use of Viterbi algorithm and ne-
cessitates soft-input soft-output (SISO) maximum a-posteriori
(MAP) decoding algorithms. The algorithm that has become
de-facto standard for SISO-MAP decoding was proposed by
Bahl, Cocke, Jelinek, and Raviv (BCJR) [25] and was shown
to be well-suited for the implementation in VLSI [10], [12],
[16]. While a large number of BCJR decoders have been
developed for turbo decoding [12], [16], most publications do
not provide corresponding implementation results and lack in-
depth investigation into the underlying silicon area, through-
put, and energy efficiency trade-offs. A systematic analysis
of these trade-offs is, however, of high practical benefit for
the development of turbo decoders in order to identify the
optimum architectural choices for a given throughput, area, or
power constraint. Furthermore, architectures and implementa-
tions of BCJR decoders supporting a large number of states
(i.e., 32-states and beyond) have been ignored in the literature,

0000–0000/00$00.00 © 2007 IEEE

2 TO APPEAR IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I

TABLE I
MAXIMUM FREE-DISTANCE CODES AND REDUCTION OF 2-INPUT MAX

UNITS IN THE LCU USING PARTIAL MAXIMUM SHARING (PMS)

K S dmin Gen. poly. p Initial # PMS # Reduction

3 4 5 [5o 7o] 18 14 22.2%
4 8 6 [15o 17o] 42 22 47.6%
5 16 7 [23o 35o] 90 38 57.7%
6 32 8 [53o 75o] 186 70 62.4%
7 64 10 [133o 171o] 378 134 64.6%

even though the implementation of iterative detection and
decoding, e.g., for IEEE 802.11n, necessitates 64-state SISO-
MAP decoder circuits [19].

B. Contributions

Inspired by the trade-off analysis for turbo-decoder circuits
in [26], we perform an in-depth investigation of the implemen-
tation trade-offs associated with high-throughput SISO-MAP
decoders and explore their suitability for codes having a large
number of states. To this end, we develop reference radix-2
and radix-4 decoder architectures for CCs having 4, 8, 16,
32, and 64 states based on the BCJR algorithm. To achieve
high throughput at low silicon area and power consumption,
we employ windowing, modulo normalization, and introduce
a novel method referred to as partial maximum sharing, which
is the key for efficient implementation of BCJR decoders
supporting 32 states and beyond. We provide silicon area,
throughput, and energy-efficiency results for 180 nm, 130 nm,
and 90 nm CMOS technology and systematically investigate
the associated implementation trade-offs. We furthermore
present first-order models for the throughput, silicon area, and
energy efficiency to validate technology-scaling rules. Finally,
we show how the results presented in this paper enable us to
identify the key design parameters of parallel turbo-decoder
designs for modern and next-generation wireless systems.

C. Outline of the paper

The remainder of the paper is organized as follows.
Section II summarizes the BCJR algorithm for SISO-MAP
decoding. The VLSI architecture along with the corresponding
optimizations is described in Section III. Implementation re-
sults and a comparison to existing SISO-MAP decoder designs
can be found in Section IV. The implementation trade-offs and
technology-scaling rules are investigated in Section V. A case
study that makes use of our results is provided in Section VI.
We conclude in Section VII.

II. SISO-MAP DECODING FOR CONVOLUTIONAL CODES

In this section, we briefly summarize the key properties
of CCs and detail the SISO-MAP decoding algorithm which
builds the foundation of the decoder implementations used for
the trade-off analysis provided in Section V.

.
.
.

.
.
.

.
.
.

.
.
.

Fig. 1. Radix-2 state-metric recursions (left: forward; right: backward).

A. Convolutional Codes and Trellis Representation

Convolutional codes [3] are generated by feeding L binary-
valued information bits xk ∈ {0, 1}, k = 1, . . . , L, into a shift
register of length ν. The coded bits ck,b ∈ {0, 1}, ∀k and
b = 1, 2, of a rate-1/2 CC1 are generated by summations
in GF(2) over well-defined values contained in the shift-
register. The coded bits are then transmitted over a (wireless)
communication channel and the receiver computes reliability
information in form of log-likelihood ratios (LLRs) L(ck,b),
which represent the likelihood of ck,b being a binary one or
zero [28].

1) Maximum free-distance codes: The error-rate perfor-
mance of CCs is determined by the constraint length K = ν+1
and the generator polynomial p = [g1 g2] defining the
connections to the GF(2) adders [27]. Minimization of the
error-rate performance for a given constraint length K is
achieved by selecting p such that minimum free Hamming
distance dmin between the all-zero codeword and any other
codeword is maximized. Table I shows the rate-1/2 maximum
free distance codes from [27] investigated in the remainder of
the paper.

2) Trellis representation: Convolutional codes can be repre-
sented by a trellis diagram (see Fig. 1) consisting of states and
branches. States, denoted by s ∈ {0, . . . , S − 1}, correspond
to the state of the shift register and the number of states is
given by S = 2ν . Each state is associated with so-called state
metrics αk(s) and βk(s); branches are associated with the
branch metrics γk(s′, s), where s′ and s corresponds to a given
state at trellis step k − 1 and k, respectively.

B. The max-log M-BCJR algorithm

The BCJR algorithm [25], which builds upon the Viterbi
algorithm [20], is the de-facto standard method for SISO-
MAP decoding, as it allows for the efficient computation of
the LLRs in hardware. The algorithm traverses the trellis (see
Fig. 1) in both forward and backward directions to compute
the state metrics αk(s) and βk(s) in a recursive way. The
original BCJR algorithm [25] requires i) the computation of
transcendental functions and ii) a large amount of memory.
Therefore, a hardware-friendly variant known as the max-log
M-BCJR algorithm is typically employed in practical systems.

1) Computation of max-log LLRs: To avoid the evaluation
of transcendental functions in VLSI, the max-log approxima-

1We exclusively consider rate-1/2 codes; higher code rates can, e.g., be
obtained by means of puncturing [27].

STUDER ET AL: IMPLEMENTATION TRADE-OFFS OF SOFT-INPUT SOFT-OUTPUT MAP DECODERS FOR CONVOLUTIONAL CODES 3

tion to the forward state-metric recursion is applied [29]

αk(s) = max
{
αk−1(s

′
0) + γk(s

′
0, s),

αk−1(s
′
2) + γk(s

′
2, s)

}
(1)

where s′0 and s′1 correspond to the two predecessor states at
trellis-step k − 1 of the state s (cf. Fig. 1). The backward
state metrics βk(s

′) are computed similarly to (1) but in
the opposite direction. After the computation of all forward
and all backward state metrics, the LLRs associated with the
transmitted information bits can be computed using the max-
log approximation:

L(xk) ≈ max
S(s′,s;0)

{
αk−1(s

′) + γk(s
′, s) + βk(s)

}
− max
S(s′,s;1)

{
αk−1(s

′) + γk(s
′, s) + βk(s)

}
. (2)

Here, the sets S(s′, s; 0) and S(s′, s; 1) contain all state
transitions (s′, s) for which xk = 0 and xk = 1, respectively.
Iterative MIMO decoding [17] and turbo equalization [18]
additionally require the computation of the LLRs associated
with the coded bits L(ck,b), which is achieved analogously to
(2) by maximizing over the sets S ′(s′, s; b; 0) and S ′(s′, s; b; 1)
containing the state transitions for which ck,b = 0 and
ck,b = 1, respectively.

2) Windowing: The algorithm outlined above requires stor-
age of either all forward or all backward state metrics,
which typically results in an excessive amount of memory.
To significantly reduce the memory requirements, windowing
is employed [30]. With this approach, the trellis is processed in
small windows of M trellis-steps and the LLRs are computed
only on the basis of the state and branch metrics within this
window.2 Specifically, the forward recursion computes and
stores the M forward state metrics αk(s) belonging to the mth
window. For the backward recursion, which progresses from
the end of a window to its beginning, suitable initial values
need to be generated. To this end, a dummy backward recursion
is carried out in the successor window m+1. The LLR-values
are then computed simultaneously with the backward state
metric recursion and with the aid of the buffered forward state
metrics. An additional benefit of windowing is the fact that it
enables parallel processing of the trellis, which is commonly
used to achieve high decoding throughput (see Section VI for
the details).

III. VLSI ARCHITECTURE

In this section, we describe a parametrizable max-log M-
BCJR architecture, which is used to investigate the trade-off
analysis and to validate technology scaling rules in Section V.
The architecture corresponds to an area- and throughput-
optimized version of the M-BCJR decoder architectures in-
tegrated in [12], [16] for high-throughput and low-power
decoding of turbo codes.

A. High-level VLSI architecture
Fig. 2 depicts the high-level architecture of the max-log

M-BCJR decoder. The input buffers 1 and 2 serve as a

2Considering windows of size M = 5K was shown to achieve close-to-
optimal performance for the Viterbi algorithm [27] and also provides near-
optimal LLRs for rate-1/2 codes using the max-log M-BCJR algorithm.

ACS
units

init

forward
state-metric-
recursion unit G

backward
state-metric-
recursion unit G

dummy
state-metric-
recursion unit

init

S branch-metric
computation

units

value-reusing
output
LLRs

input
LLRs

-memory

ACS
units

ACS
units

S hard-wired
ACS units

input
buffer 1

input
buffer 2

LLR computation unit

G

Fig. 2. High-level VLSI architecture of the implemented max-log M-BCJR
decoders (thin grey boxes indicate pipeline registers).

temporary cache for the incoming LLRs. Since only 2 ×M
LLRs need to be stored in total, these buffers are realized by
arrays of latches (offering one simultaneous read and write
access per clock cycle) as they i) require a similar amount of
area and power consumption compared to dual-port S-RAM
macrocells [31] and ii) simplify placing-and-routing during
the back-end design. The branch-metric computation units
(denoted by G in Fig. 2) are used to compute the γk(s′, s). To
achieve high throughput, the forward, backward, and dummy-
backward state metric recursions are implemented in three
parallel units, which contain one add-compare-select (ACS)
circuit, either radix-2 or radix-4, for each of the S trellis states.
Windowing is implemented as follows: The forward state
metric recursion unit computes the αk(s) for each window
m, which are buffered in the α-memory.3 This memory stores
S × M branch metrics and is realized by either one or
several two-port S-RAM macrocells instances. For decoders
supporting a large number of states (i.e., S ≥ 16), we partition
the α-memory into multiple instances (see Table II for the
details). The backward state-metric recursion unit computes
the βk(s) in window m − 1. Initial values required at the
beginning of each window are generated by the dummy state-
metric recursion unit in window m+1. The buffered forward
state metrics, intermediate results obtained in the backward
recursion, and the branch metrics are used to compute the LLR
values L(ck,b), b = 1, 2, and L(xk) in the LLR computation
unit (LCU).

B. State-metric recursion and ACS units

In order to maximize the throughput, the critical path of the
decoder must be in the state-metric recursion units because
their recursive nature of the algorithm inhibits pipelining.
To this end, we employ modulo normalization [33], which
results in significant shortening of the critical path compared
to solutions employing costly renormalization circuitry [12],

3In order to further reduce the storage requirements for the state metrics,
compression methods, such as the ones proposed in [32], can be used.

4 TO APPEAR IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I

2-input comparator
with modulo-normalization

>

MSB-1..0 MSB

MSB-1..0 MSB

+

CMP

+

radix-2 ACS circuit

ACS

ACS

ACS

ACS

4-state forward-state-metric
recursion unit

sel

sel

branch metrics

Fig. 3. Left: 4-state forward state-metric recursion unit. Right: Radix-2 ACS
unit with a 2-input modulo normalization comparator. The comparison circuit
shown at the bottom right consists of a comparator and a 3-input XOR gate.

[16]. More specifically, modulo normalization relies on the
fact that the difference between any pair of branch metrics
(at a given state k) is bounded, which can be exploited to
implement the state-metric renormalization with a controlled
overflow. This approach does not cause any performance loss
(given the number of bits to represent the state metrics is large
enough; see [33] for details) and only requires an additional
3-input XOR gate in each ACS unit to take into account the
overflows. Fig. 3 depicts a corresponding radix-2 ACS circuit.

We furthermore perform pipelining in all non-recursive
units, i.e., just after the branch-metric computation units and
within the LCU (see Fig. 2). If desired, the throughput can
further be increased by performing radix-4 state-metric recur-
sions [34]. This approach processes two trellis-steps per clock
cycle, skipping the odd-numbered trellis steps. Specifically,
the forward state metrics αk(s) are computed from its four
admissible predecessor states s′′0 , s′′1 , s′′2 , and s′′3 (at step k−2)
using a radix-4 ACS operation similar to (1). The radix-4
ACS units can be implemented efficiently by six parallel
comparator units followed by a look-up table to control the
output multiplexer (see [16] for circuit details).

C. LLR computation unit with partial maximum sharing

The LCU computes the LLRs associated with the coded
bits L(ck,b) and the information bits L(xk) (see Section II-B1
and Fig. 2). LLR computation is realized by six maximization
trees (two trees are required per LLR output) consisting only of
2-input maximization (MAX) units. Selection of the maximum
input is carried out with a modulo-normalization comparator as
depicted in Fig. 3. To keep the critical path within the state-
metric recursion units (see Section III-B), the maximization
trees in the LCU have been pipelined; one pipeline stage per
tree layer is necessary.

A straightforward tree implementation for LLR computation
leads to a large number of MAX units and pipeline registers,
especially for 32-state and 64-state CCs. The complexity of the
maximum trees contribute substantially to the overall silicon
area and causes routing-congestion problems during the back-
end design. In order to avoid both issues, we employ a novel

87654321

MAX

-

MAX MAX

MAX

MAX MAX

MAX

-

MAX MAX

MAX

MAX MAX

MAX

-

MAX MAX

MAX

MAX MAX

branch metrics

(a) Straightforward LLR computation using 2-input MAX units.

87654321

MAX

-

MAX

MAX

MAX

MAX

-

MAX

MAX

MAX

MAX

-

MAX MAX

MAX

MAX MAX

branch metrics

(b) LLR computation unit using PMS.

Fig. 4. Example of partial maximum sharing (PMS) applied to an unpipelined
4-state LLR computation unit.

technique referred to as partial maximum sharing (PMS).
This approach re-uses partial maximization results required
for computation of the LLRs L(ck,b), b = 1, 2, to reduce
the number of MAX units in the LCU. More specifically,
careful inspection of the six maximization trees shows that
certain intermediate results can be found in different trees.
Since only one of these intermediate results needs to be
computed, one can obviously avoid redundant computations.
To implement PMS, we wrote a Matlab script, which identifies
intermediate results occurring in different maximization trees
and automatically generates a new LCU delivering the same
LLRs while requiring less MAX units than a straightforward
LCU implementation.

Fig. 4 illustrates an application of PMS to a 4-state LCU and
Table I shows the savings (in terms of MAX units) achieved
when using PMS for all codes considered in the paper. We
emphasize that the number of MAX units required by a 64-
state BCJR decoder can be reduced by almost 2/3, whereas
the critical path remains virtually unaffected.4 Corresponding
synthesis results have shown that PMS reduces the silicon area
of the 64-state LCU by 0.58× compared to a straightforward
implementation, which results in 0.87× smaller area of the
whole M-BCJR decoder. Furthermore, PMS effectively miti-
gates routing-congestion problems, which is crucial for high-
throughput implementations of BCJR decoders supporting 32-
state CCs and beyond.

4Even though the fan-out after each 2-input MAX unit slightly increases,
the use of pipelining avoids any detrimental impact on the critical path.

STUDER ET AL: IMPLEMENTATION TRADE-OFFS OF SOFT-INPUT SOFT-OUTPUT MAP DECODERS FOR CONVOLUTIONAL CODES 5

D. Necessary modifications for decoding of turbo codes

The base architecture described above is able to decode
arbitrary rate-1/2 CCs of a given constraint length and can
easily be optimized for the use in turbo decoders. Specifically,
the support of recursive CCs only requires different inter-
connections in the state-metric recursion units, which neither
affects the critical path nor the silicon area. Furthermore, MAP
decoders for turbo decoding require only the computation
of the LLRs associated with the information bits L(xk)
(see [12], [16]) and, therefore, the four maximization trees
required for computation of L(xk,b), b = 1, 2, can be omitted
(cf. Fig. 4). Consequently, max-log M-BCJR implementations
for turbo decoding require, in general, smaller silicon area
while achieving the same throughput.

IV. KEY CHARACTERISTICS OF THE M-BCJR DESIGNS

In order to assess the implementation trade-offs associated
with max-log M-BCJR decoders, five radix-2 architectures
with 4, 8, 16, 32, and 64 states (for the codes in Table I) have
been implemented. To explore the differences between radix-2
and radix-4 designs, an additional radix-4 variant for the 8-
state code, which is used in turbo codes of many wireless
communication standards, has been integrated. To validate
technology-scaling rules, all six architectures have been im-
plemented in 180 nm, 130 nm, and 90 nm CMOS technology.
Thus, we consider a total number of 18 max-log M-BCJR
decoders in this work. As a proof-of-concept, we fabricated six
max-log M-BCJR decoders in 180 nm CMOS technology and
performed functional verification on a HP 83 000 F660 VLSI
test system; the corresponding chip micrographs are depicted
in Fig. 5.

We next detail the fixed-point parameters and summarize
the key characteristics of the max-log M-BCJR decoder archi-
tectures. Finally, we compare our 8-state radix-2 and radix-4
decoder with existing 8-state SISO-MAP decoder ASICs to
ensure that the trade-off analysis in Section V is performed
on the basis of state-of-the-art SISO-MAP decoder designs.

A. Implementation parameters and error-rate performance

To achieve near-optimal SISO decoding performance, the
input LLRs and output LLRs are quantized to 5 bit. The branch
metrics are represented by 5 bit and the word-lengths WACS
used within the ACS units (for proper functioning of modulo
normalization) are provided in Table II. Note that radix-4 pro-
cessing requires WACS+1 bit (compared with radix-2 designs),
as the used branch metrics have twice the dynamic range [16].
The window length for all max-log M-BCJR decoder units was
chosen M = 32, which provides close-to-optimal decoding
performance for all implementations. Table II also shows the
configuration details of the α-memories. Note that the α-
memory of the radix-4 implementation is approximately half
the size of the radix-2 design as only the branch metrics
for the even-numbered trellis steps need to be stored. From
Table III, we can observe that the α-memories for the radix-2
architectures require 14% to 30% of the total core area; for
the radix-4 implementation, however, the α-memory occupies
only 8% of the total core area.

Fig. 6. Bit error-rate (BER) of the implemented max-log M-BCJR decoders.
The dashed black curves in the zoom correspond to the performance of
floating-point SISO-MAP decoding; the orange dotted curves show the
performance of the 4-state floating-point max-log M-BCJR for M ∈ {4, 6, 8}.

Fig. 6 shows the bit error-rate (BER) performance of the
implemented max-log M-BCJR decoders for various signal-
to-noise ratios (SNRs). We simulated an additive white Gaus-
sian noise (AWGN) channel using binary phase-shift keying
(BPSK) modulation for a block-length of 1024 information
bits; the BER is averaged over 100 000 Monte-Carlo trials. One
can immediately observe that increasing the number of states S
improves the BER performance (see Section V-A for more
details). The zoom in Fig. 6 compares the BER performance
to that of the reference SISO-MAP decoding algorithm. We
see that the implementation loss is less than 0.13 dB compared
to the optimal decoding algorithm, which can be addressed
to finite-precision artifacts, the max-log approximation, and
windowing. Note that for codes having less than 64-states, the
window size M could be reduced (see, e.g., the BER of the
4-state floating-point max-log M-BCJR for M ∈ {4, 6, 8} in
Fig. 6). Nevertheless, we consider a constant window length
for all designs to simplify the trade-off analysis in Section V.

B. Comparison with existing decoder implementations

Table III shows the (post-layout) results of all our max-log
M-BCJR designs implemented in 180nm CMOS technology
and provides a comparison with existing 8-state SISO-MAP
decoder circuits for which corresponding implementation re-
sults are available [10], [11], [35]. Our radix-2 reference
design is more than 6× better in terms of silicon complexity
(in mm2ns/bit) and is 2-to-3 times more energy efficient (in
nJ/bit) compared to the 8-state log-MAP and max-log M-BCJR
decoder in [10] and [11], respectively; this is a consequence
of i) using the max-log approximation instead of log-MAP
recursions (which only slightly affects the performance; see
Fig. 6), ii) using modulo normalization instead of expensive
renormalization circuitry (as used in [10]), iii) performing

6 TO APPEAR IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I

32

16

8

4

(a) 4-state to 32-state radix-2 decoders
(6.25 mm2 die area, CLCC84 package).

64-state

radix-2

M-BCJR

(b) 64-state radix-2 decoder (6.25 mm2 die
area, CLCC84 package).

8-state

radix-4

M-BCJR

(c) 8-state radix-4 decoder (2.33 mm2 die
area, QFN48 package).

Fig. 5. ASIC micrographs of the fabricated max-log M-BCJR decoders in 180 nm (1P/6M) CMOS technology.

TABLE II
DESIGN PARAMETERS OF THE IMPLEMENTED MAX-LOG M-BCJR DECODER ARCHITECTURES

States/radix 4/2 8/2 16/2 32/2 64/2 8/4

Window length M 32 32 32 32 32 32

ACS word-lengtha [bit] 8 9 9 10 10 10

α–memory size [kbit] 1 2.25 4.5 10 20 1.25

S-RAM instances 1 (32×32) 1 (32×80) 2 (32×80) 3 (32×80) 8 (32×80) 1 (16×80)(words×bits) 3 (32×32)

aCorresponds to the number of bits required in the ACS units to enable modulo normalization [33].

extensive pipelining5, and iv) the use of PMS in the LCU. Our
radix-2 architecture achieves comparable silicon complexity
and energy efficiency as the soft-output Viterbi algorithm
(SOVA) implementation [35], which, however, delivers less
accurate LLR-values than the BCJR algorithm (see the dis-
cussion in [35]). Hence, we can conclude that the trade-off
analysis provided in the next section bases on state-of-the-art
SISO-MAP decoder designs.

V. IMPLEMENTATION TRADE-OFFS

We now present the implementation trade-off analysis
for max-log M-BCJR decoders and explore the validity of
technology-scaling rules [36]. Our analysis is based on (post-
layout) implementation results of the 18 max-log M-BCJR
reference implementations detailed in Section IV.

A. Performance vs. silicon complexity

As mentioned in Section II-A1, increasing the number
of states S leads to a larger minimum Hamming distance
dmin (cf. Table I), which eventually improves the error-
correction capabilities of CCs. This error-rate performance
improvement comes, however, at the cost of an increase
in terms of implementation complexity. This fundamental
performance/complexity trade-off of SISO-MAP decoders is

5Note that pipelining can be beneficial from an energy-efficiency perspec-
tive as it i) reduces the critical path, while suffering only small power increase
due to additional pipeline registers, and ii) effectively suppresses glitches.

2
3

2
2

2
1

2
0

2
-1

2
-2

2
-3

2
-4

Fig. 7. Performance/complexity trade-off of the implemented SISO-MAP
decoders in 180 nm, 130 nm, and 90 nm CMOS technology. The numbers
correspond to states S and stars designate the results of the 8-state radix-4
decoder units.

shown in Fig. 7. The performance is characterized by the SNR-
operating point, which corresponds to the minimum signal-
to-noise ratio (SNR) required to achieve a target bit error-rate
of 10−5 in an AWGN channel using BPSK modulation and
a block-length of 512 bit. The silicon complexity is charac-
terized by the area-timing (AT -)product and is measured in
mm2ns/bit.

STUDER ET AL: IMPLEMENTATION TRADE-OFFS OF SOFT-INPUT SOFT-OUTPUT MAP DECODERS FOR CONVOLUTIONAL CODES 7

TABLE III
180NM CMOS IMPLEMENTATION RESULTS AND COMPARISON TO OTHER 8-STATE SISO-MAP DECODERS

Publication This work [10] [11] [35]

Decoding algorithm log-MAP max-log SOVAmax-log M-BCJR M-BCJR M-BCJR

States/radix 4/2 8/2 16/2 32/2 64/2 8/4 8/2 8/4×4 8/2

CMOS technology [nm] 180 180 130 180
Supply voltage [V] 1.8 1.8 1.32 1.8

Total cell areaa [kGE] 22 38 67 130 241 67 150b 220 174
Total core area [mm2] 0.26 0.45 0.79 1.54 3.0 0.78 1.5 1.96 0.5

α-memory area [mm2] 0.037 0.077 0.155 0.464 0.618 0.063 – – –

Max. clock frequency [MHz] 539 542 476 484 465 344 285 238 –
Max. throughput [Mb/s] 539 542 476 484 465 687 285 952 500

Silicon complexity [mm2ns/bit] 0.48 0.84 1.67 3.18 6.46 1.14 5.26 5.47c 1.00
Energy per bit [nJ/bit] 0.26 0.54 0.83 2.02 4.0 0.72 1.16 1.43c 0.80

aOne gate equivalent corresponds to the size of a two-input drive-one NAND gate.
bCorresponding to the transistor count of the implementation.
cTechnology scaling to 180 nm CMOS assuming: A ∼ 1/`2, tpd ∼ 1/`, and Pdyn ∼ 1/(V 2

` `) [36].

From the double-logarithmic plot in Fig. 7 we observe
that for a given technology the silicon complexity increases
roughly linearly in S or, equivalently, exponentially in the
constraint length (see Section V-B2 for details on the scal-
ing behavior). Hence, improving the performance of CCs
(i.e., reducing the SNR-operating point) quickly results in
prohibitive silicon complexity, especially for BCJR decoders
supporting more than S = 64 states. Therefore, alternative
coding schemes, such as turbo codes (which typically rely on
8-state CCs), become necessary for communication systems
targeting SNR-operating points close to the Shannon limit.
Fig. 7 additionally shows that radix-4 implementations require
22% to 36% higher silicon complexity for a given performance
and therefore, can be considered as less hardware efficient (in
terms of area per throughput) than their radix-2 counterparts.

B. Throughput vs. silicon area

Fig. 8 shows the trade-off between throughput (in ns/bit)
and silicon area (in logarithmic scale) depending on the
number of states S supported by the decoder and the CMOS
technology node.

1) Silicon area: We observe that the silicon area A scales
linearly in S (for a given technology), which is an immediate
consequence of the fact that decoder area is dominated by the
state-metric recursion units and the α-memory, whose area
scales linearly in S. In order to corroborate this observation,
least-squares fitting to all radix-2 implementation results is
performed. To this end, we consider common technology
scaling rules [36] and propose the following first-order ap-
proximation for the silicon area:

A ≈ (`/180)2
(
αAS + βA

)
[mm2] (3)

where ` denotes the minimum feature size (in nm), and
αA = 0.0502 and βA = 0.0712 are the least-squares fitting
parameters. The model (3) results in a relative error that
is smaller than 25% for all considered implementations and

2
2

2
1

2
0

2
-1

2
-2

2
-3

2
-4

radix-4

radix-4

ra
d
ix-4

2
-4

Fig. 8. Throughput/silicon-area trade-off. The number next to the curves
correspond to the number of states, stars designate 8-state radix-4 architec-
tures, and the thin dashed lines correspond to constant silicon complexity (in
terms of mm2ns/bit).

hence, confirms the validity of the first order model and
supports the fact that technology scaling behaves—among the
considered technology nodes—as the predictions in [36]. Note
that the linear scaling of the silicon area in S shown in (3)
can also be observed in ASIC micrographs shown in Figs. 5(a)
and 5(b), i.e., the 64-state decoder occupies the same die area
as the 4, 8, 16, and 32 state decoders together.

2) Throughput: For the throughput, Fig. 8 shows only a
weak dependence on S. The underlying reason is the fact
that the critical path is essentially6 determined by the number
of bits WACS required in the ACS units, which scales only
logarithmically in S for modulo normalization (see [33] for

6Note that for the 180nm designs, the critical path of the 16-state decoder
is slightly longer than that of the 32-state design, which is an artifact of our
16-state decoder layout.

8 TO APPEAR IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I

details). As a consequence, we propose the following first-
order model for the critical path T of our radix-2 designs:

T ≈ (`/180)
(
αT log2(S) + βT

)
[ns] (4)

where αT = 0.0985 and βT = 1.5839 are obtained through
least-squares fitting. For these parameters, the model (4)
exhibits a maximum relative error of 6% which confirms i)
the validity of the model (4) and ii) that common technology-
scaling rules [36] apply for the critical path of BCJR decoders
in 180 nm, 130 nm, and 90 nm CMOS technology. Further-
more, combining the models in (3) with (4) shows that the
silicon complexity defined as AT scales with S log2(S), which
was observed before in Fig. 7.

Both models (3) and (4) confirm technology-scaling rules
for area and throughput of radix-2 max-log M-BCJR imple-
mentations according to [36]. Hence, the silicon area and
throughput of BCJR designs in most advanced CMOS tech-
nologies (with feature size of 65 nm and below) is expected to
fully benefit from technology scaling, which implies that data-
rates in the Gb/s regime (as targeted by next-generation wire-
less standards, such as LTE-Advanced [7]) can be achieved by
migrating our reference architecture to more recent technology
nodes (see Section VI-B).

3) Radix-4 implementations: The implementation results
for the 8-state radix-4 decoders in Fig. 8 support the ob-
servation that radix-4 implementations achieve roughly 27%
higher throughput than the corresponding radix-2 designs7, but
are less efficient (by 22% to 36%) from a silicon-complexity
perspective. We emphasize, however, that radix-4-based de-
signs have the potential of lowering the clock frequency for a
given target throughput. Such a behavior can be beneficial—at
least from a practical (implementation) viewpoint. Specifically,
radix-4 can be used to avoid excessively high clock frequencies
for more advanced technology nodes (which starts to happen
when integrating the presented architectures in 65 nm CMOS)
and hence, helps to alleviate the need for sophisticated clock
generation and distribution schemes.

C. Energy efficiency vs. silicon area

Fig. 9 shows the trade-off between energy efficiency (in
terms of nJ/bit) and silicon area in a double-logarithmic plot;
the energy-efficiency figures include dynamic and static power
consumption.8 It is interesting to see that there is a (near-
perfect) linear dependence between silicon area and energy
efficiency, i.e., increasing the number of states S (e.g., to
lower the SNR-operating point) leads to a linearly propor-
tional degradation in terms of energy efficiency. This behavior
renders implementations supporting a large number of states
(e.g., S > 64) to be energy inefficient (analogously to the
silicon-complexity behavior in Section V-A).

7The throughput gain of radix-4 architectures (i.e., decoding 2 bits/cycle
instead of 1 bit/cycle), is reduced by the substantially longer critical path
compared to radix-2 ACS circuits.

8Note that dynamic power consumption is dominating for all considered
technology nodes.

2
2

2
1

2
0

2
-1

2
-2

2
-3

2
-4

2
-5

2
-4

2
-3

2
-2

2
-1

2
0

2
1

2
2

2
3

1.0

4.0

16.0

0.250.06252
-6

2
-8

Fig. 9. Energy efficiency/silicon-area trade-off. The numbers next to the
curves correspond to the number of states, stars designate 8-state radix-4
architectures, and the thin dashed lines correspond to a constant AE-product.

1) First-order model: We next validate technology scaling
rules for the energy efficiency E based on the radix-2 sample
points shown in Fig. 9. To this end, we assume the energy
being proportional to the square of the supply voltage V` of the
process technology `, and proportional to the gate capacitances
according to [36]. These assumptions and the observation
that E scales linearly proportional with the silicon area A
lead to the following first-order model:

E ≈ (V`/1.8)
2(`/180)

(
αES + βE

)
[nJ/bit] (5)

with the least-squares fitting parameters αE = 0.066 and
βE = 0.03, and the supply voltages V` ∈ {1.0, 1.2, 1.8}
associated with the considered technology nodes ` ∈
{90, 130, 180} (in nm). The relative error associated with the
model (5) is within 32% for the considered technology nodes
and is, therefore, slightly less accurate than the model (3) for
the silicon area A.

2) Supply-voltage scaling: We additionally see from Fig. 9
that the improvement in terms of energy efficiency from
180 nm to 130 nm is more pronounced than it is the case for
130 nm to 90 nm. The underlying reason is the fact that the
supply-voltage reduction from 130 nm to 90 nm is only 0.2 V
(compared with a 0.6 V reduction from 180 nm to 130 nm),
which—in accordance to the model (5)—yields a diminishing
reduction in terms of nJ/bit.

The migration to more recent technology nodes (e.g., 65 nm
or 45 nm) is expected to provide even less improvement in
terms of energy efficiency, as scaling of the supply voltage be-
low 1 V becomes challenging (see, e.g., [37], [38]). In order to
arrive at energy-efficient designs in such technologies, voltage-
frequency scaling [2], [39] provides a potential solution. This
technique amounts to designing the decoder circuit for a higher
throughput than necessary and using part of the margin to
reduce the clock frequency together with the supply voltage
for further reduction of the power consumption (see, e.g., [12]
for an application of voltage-frequency scaling in a low-power

STUDER ET AL: IMPLEMENTATION TRADE-OFFS OF SOFT-INPUT SOFT-OUTPUT MAP DECODERS FOR CONVOLUTIONAL CODES 9

turbo-decoder implementation).
3) Radix-4 implementations: For the radix-4 implementa-

tion we can observe a degradation of the energy efficiency
(compared with radix-2 designs) by 34%, 27% and 7% for
180 nm, 130 nm and 90 nm CMOS technology, respectively.
Therefore, we conclude that radix-4 max-log M-BCJR de-
coders are, in general, less energy efficient than corresponding
radix-2 designs. This behavior is mainly a result of the fact
that radix-4 requires more logic per throughput (compared
with radix-2 designs; cf. Section V-B3), which causes higher
switching activity, eventually resulting in higher (static and
dynamic) power consumption for a given throughput.

VI. CASE STUDY: PARALLEL TURBO DECODER FOR LTE
Modern wireless communication standards, such as 3GPP-

LTE [6], specify the use of turbo codes, in addition to CCs. In
order to achieve the LTE peak throughput of 326.4 Mb/s [40],
multiple SISO-MAP decoder units which process the trellis
in a parallel fashion, are necessary. This approach is known
as parallel turbo decoding and was shown to increase the
throughput roughly linearly in the number of SISO-MAP
decoder instances (see, e.g., [16], [41], [42]). In order to
demonstrate the usefulness of the trade-off analysis shown in
Section V, we next derive the key design parameters (i.e., the
number of parallel BCJR instances and the ACS radix) for a
parallel turbo decoder in 90 nm technology that achieves the
LTE peak throughput with margin. We furthermore provide
a brief outlook on turbo-decoder circuits for next-generation
wireless standards in more advanced CMOS technology nodes.

A. Design-space exploration
We start with the 3.57 mm2 8× parallel turbo-decoder ASIC

implementation in [16], which employs eight radix-4 M-
BCJR instances to achieve 390.6 Mb/s in 130 nm CMOS. In
a first step, we migrate from 130 nm to 90 nm and assume
technology scaling for silicon area and throughput as de-
tailed in Section V-B; this results in an estimated 564.2 Mb/s
throughput at 1.7 mm2. Since 564.2 Mb/s exceeds the LTE
peak throughput of 326.4 Mb/s [40], we are able to em-
ploy radix-2 processing instead of radix-4, which lowers the
throughput by 24% but improves the overall hardware and
energy efficiency. This architectural transformation is expected
to result in approximately 430 Mb/s. The resulting (estimated)
silicon area of the 8× radix-2-based parallel turbo decoder
is only 1.3 mm2, since 90 nm radix-2 designs exhibit roughly
38% smaller area than radix-4 designs and 2/3 of the turbo-
decoder area is occupied by the eight radix-4 max-log M-
BCJR instances [16].9 This case study shows that migrating
from 130 nm to 90 nm and performing radix-2 instead of
radix-4 is expected to reduce the silicon complexity by 3×. We
also expect the corresponding energy efficiency to improve by
no less than a factor of two as our radix-2 designs have shown
to be significantly more energy efficient than radix-4 max-log
M-BCJR decoders (see Section V-C3 for the details).

9For the area estimates, we ignore the impact of radix-2 processing to the
complexity of the interleaver circuit. This simplification is expected to result
in pessimistic estimates, since interleavers for radix-2 designs require substan-
tially lower complexity than interleavers for radix-4-based turbo decoders.

B. Predictions for next-generation wireless standards

Our trade-off analysis also allows us to study turbo-decoder
implementations for next-generation cellular communication
systems targeting 1 Gb/s, such as LTE-Advanced [7]. As de-
tailed before, the M-BCJR throughput and, hence, the through-
put of corresponding turbo-decoder implementations scale
linearly with the feature size. Therefore, the re-integration of
turbo-decoder designs in more recent technology nodes (e.g.,
65 nm, 45 nm, or 32 nm) will benefit from this technology-
driven performance gain. Specifically, migrating the 90 nm
turbo-decoder design evaluated in Section VI-A to 32 nm is
expected to exceed the 1 Gb/s peak throughput targeted by
LTE-Advanced. However, the power consumption of such
high-throughput turbo-decoder implementations will render
the use in battery-powered mobile devices extremely challeng-
ing. This fact is further aggravated by the observation that the
technology-driven energy-efficiency improvements will slow
down significantly with more advanced technology nodes [38].
Assuming that beyond 90 nm the energy efficiency scales
only linearly in the feature size (for reasons discussed in
Section V-C2), a 1 Gb/s turbo-decoder architecture in 32 nm
would consume roughly 300 mW to 400 mW, which is sub-
stantially higher than the typical 100 mW power budget of
decoding circuits for mobile devices [16]. We, therefore, con-
clude that even more advanced technologies in combination
with voltage-frequency scaling are required to arrive at 1 Gb/s
turbo-decoder solutions that meet the desired power budget of
battery-powered mobile devices.

VII. CONCLUSIONS

In this paper, we analyzed the design and implementation
trade-offs for SISO-MAP decoding based on the max-log M-
BCJR algorithm. To this end, we presented reference decoder
designs for 4-state to 64-state convolutional codes (CCs) in
90 nm, 130 nm, and 180 nm CMOS technology, and extracted
the underlying area, throughput, and energy efficiency trade-
offs. Our decoder implementations show superior hardware
and energy efficiency compared with existing BCJR designs
and the provided implementation trade-off analysis turns out
to be a useful tool for identifying the key design parameters
for parallel turbo decoders used in today’s and next-generation
wireless communication systems.

REFERENCES

[1] C. Studer, “Iterative MIMO decoding: Algorithms and VLSI implemen-
tation aspects,” Ph.D. dissertation, ETH Zürich, Switzerland, Series in
Microelectronics, vol. 202, Hartung-Gorre Verlag Konstanz, 2009.

[2] C. Benkeser, “Power efficiency and the mapping of communication
algorithms into VLSI,” Ph.D. dissertation, ETH Zürich, Switzerland,
Series in Microelectronics, vol. 209, Hartung-Gorre Verlag Konstanz,
2010.

[3] P. Elias, “Coding for noisy channels,” in IRE Convention Record. Part
IV, 1955, pp. 37–46.

[4] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp.
1261–1271, Oct. 1996.

[5] 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; Channel Coding and Multiplexing Examples,
3GPP Organizational Partners TS 25.944, Rev. 4.1.0, Jun. 2001.

10 TO APPEAR IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I

[6] 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; Evolved Universal Terrestrial Radio Access (E-
UTRA); Multiplexing and channel coding (Release 9), 3GPP Organiza-
tional Partners TS 36.212, Rev. 8.3.0, May 2008.

[7] 3rd Generation Partnership Project; LTE; Feasibility study for Further
Advancements for E-UTRA (LTE-Advanced), 3GPP Organizational Part-
ners TR 36.912, Rev. 10.0.0, Apr. 2011.

[8] IEEE Draft Standard; Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications; Amendment 4: En-
hancements for Higher Throughput, P802.11n/D3.0, Sep. 2007.

[9] M. Mansour and N. Shanbhag, “VLSI architectures for SISO-APP
decoders,” IEEE Trans. VLSI, vol. 11, no. 4, pp. 627–650, Aug. 2003.

[10] S.-J. Lee, N. R. Shanbhag, and A. C. Singer, “A 285-MHz pipelined
MAP decoder in 0.18µm CMOS,” IEEE J. Solid-State Circuits, vol. 40,
no. 8, pp. 1718–1725, Aug. 2005.

[11] C.-H. Tang, C.-C. Wong, C.-L. Chen, C.-C. Lin, and H.-C. Chang, “A
952Ms/s max-log MAP decoder chip using radix-4×4 ACS architecture,”
in IEEE A-SSCC, Hangzhou, China, Nov. 2006, pp. 79–82.

[12] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and
optimization of an HSDPA turbo decoder ASIC,” IEEE J. Solid-State
Circuits, vol. 44, no. 1, pp. 98–106, Jan. 2008.

[13] C.-H. Lin, C.-Y. Chen, T.-H. Tsai, and A.-Y. Wu, “Low-power memory-
reduced traceback MAP decoding for double-binary convolutional turbo
decoder,” IEEE Trans. Circ. Systems I, vol. 56, no. 5, pp. 1005–1016,
May 2009.

[14] F. Naessens, V. Derudder, H. Cappelle, L. Hollevoet, P. Raghavan,
M. Desmet, A. AbdelHamid, I. Vos, L. Folens, S. O’Loughlin, S. Sin-
girikonda, S. Dupont, J.-W. Weijers, A. Dejonghe, and L. Van der Perre,
“A 10.37 mm2 675 mW reconfigurable LDPC and Turbo encoder and
decoder for 802.11n, 802.16e and 3GPP-LTE,” in Dig. Techn. Papers,
Symp. on VLSI Circuits, Honolulu, HI, USA, June 2010, pp. 213 –214.

[15] C.-C. Wong, M.-W. Lai, C.-C. Lin, H.-C. Chang, and C.-Y. Lee, “Turbo
decoder using contention-free interleaver and parallel architecture,”
IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 422 –432, Feb. 2010.

[16] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and
implementation of a parallel turbo-decoder ASIC for 3GPP-LTE,” IEEE
J. of Solid-State Circuits, vol. 46, no. 1, pp. 8–7, Jan. 2011.

[17] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp.
389–399, Mar. 2003.

[18] M. Tüchler, A. C. Singer, and R. Koetter, “Minimum mean squared error
equalization using a priori information,” IEEE Trans. Sig. Proc., vol. 50,
no. 3, pp. 673–983, Mar. 2002.

[19] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of soft-
input soft-output MIMO detection using parallel interference cancella-
tion,” IEEE J. Solid-State Circuits, vol. 56, no. 7, pp. 1754–1765, July
2011.

[20] A. J. Viterbi, “Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13,
no. 2, pp. 260–269, Apr. 1967.

[21] P. J. Black and T. H. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi
decoder,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1877–1885,
Dec. 1992.

[22] Y.-N. Chang, H. Suzuki, and K. K. Parhi, “A 2-Mb/s 256-state 10-mW
rate-1/3 Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 35, no. 6,
pp. 826–834, June 2000.

[23] T. Gemmeke, M. Gansen, and T. G. Noll, “Implementation of scalable
power and area efficient high-throughput Viterbi decoders,” IEEE J.
Solid-State Circuits, vol. 37, no. 7, pp. 941–948, July 2002.

[24] A. Burg, S. Haene, M. Borgmann, D. Baum, T. Thaler, F. Carbognani,
S. Zwicky, L. Barbero, C. Senning, P. Greisen, T. Peter, C. Foelmli,
U. Schuster, and P. Tejera, “A 4-stream 802.11n baseband transceiver in
0.13µm CMOS,” in Dig. Techn. Papers, Symp. on VLSI Circuits, Kyoto,
Japan, Jun. 2009, pp. 282–283.

[25] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, no. 2, pp. 284–287, Mar. 1974.

[26] B. Bougard, A. Giulietti, L. Van der Perre, and F. Catthoor, “A class of
power efficient VLSI architectures for high speed turbo-decoding,” in
Proc. of GLOBECOM, vol. 1, Taipei, Taiwan, Nov. 2002, pp. 549–553.

[27] J. G. Proakis, Digital Communications, 4th ed. New York, USA:
McGraw–Hill, 2001.

[28] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp.
429–445, Mar. 1996.

[29] J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding
techniques: an overview,” IEEE Trans. Vehicular Tech., vol. 49, no. 6,
pp. 2208–2233, Nov. 2000.

[30] V. Franz and J. B. Anderson, “Concatenated decoding with a reduced-
search BCJR algorithm,” IEEE J. on Sel. Areas in Comm., vol. 16, no. 2,
pp. 186–195, Feb. 1998.

[31] P. Meinerzhagen, C. Roth, and A. Burg, “Towards generic low-power
area-efficient standard cell based memory architectures,” in Proc. of
IEEE MWSCAS, Seattle, WA, USA, Aug. 2010, pp. 129–132.

[32] M. Martina and G. Masera, “State metric compression techniques for
turbo decoder architectures,” IEEE Trans. Circ. Systems I, vol. 58, no. 5,
pp. 1119–1128, May 2011.

[33] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI
architectures for metric normalization in the Viterbi algorithm,” in Proc.
of IEEE ICC, vol. 4, Atlanta, GA, USA, Apr. 1990, pp. 1723–1728.

[34] G. Fettweiss and H. Meyr, “Parallel Viterbi algorithm implementation:
breaking the ACS-bottleneck,” IEEE Trans. Commun., vol. 37, no. 8,
pp. 785–790, Aug. 1989.

[35] E. Yeo, S. Augsburger, W. Davis, and B. Nikolić, “A 500-Mb/s soft-
output Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp.
1234 – 1241, July 2003.

[36] B. Razavi, Design of analog CMOS integrated circuits. New York, NY:
McGraw-Hill, 2002.

[37] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bern-
stein, “Scaling, power, and the future of CMOS,” in IEDM Techn. Digest.
IEEE Int. Electron. Devices Meeting, Dec. 2005, pp. 7–15.

[38] J. Rabaey, “Ultra low power/voltage design,” in Low Power Design
Essentials, ser. Integrated Circuits and Systems. Springer US, 2009,
pp. 289–316.

[39] A. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS
Design. New York, USA: IEEE, 1998.

[40] 3GPP TR25.912 V8.0.0, “Feasibility study for evolved universal terres-
trial radio access (UTRA) and universal terrestrial radio access network
(UTRAN),” Feb. 2009.

[41] C.-C. Wong and H.-C. Chang, “Reconfigurable turbo decoder with
parallel architecture for 3GPP LTE system,” IEEE Trans. Circ. Systems
II, vol. 57, no. 7, pp. 566–570, July 2010.

[42] ——, “High-efficiency processing schedule for parallel turbo decoders
using QPP interleaver,” IEEE Trans. Circ. Systems I, vol. 58, no. 6, pp.
1412–1420, June 2011.

