Simulating Multi-Core
RISC-V Systems in gem5

Tuan Ta, Lin Cheng, and Christopher Batten

School of Electrical and Computer Engineering
Cornell University

2nd Workshop on Computer Architecture Research with RISC-V
June 2018

Task-Parallel System Design Space Exploration

Task-Parallel Runtimes Multi-Core Systems
OpenMP, Cilk, Intel TBB, etc. In-order superscalar cores
Static, Dynamic, Adaptive Task Scheduling, etc. Out-of-order cores
Work-Stealing, etc. Heterogeneous big.LITTLE system
RISC
Applications

Graph-processing application domain
Irregular parallelism

Ligra graph framework [J. Shun, PPoPP 2013]

Many design points to consider!

Cornell University Tuan Ta 2/24

What Tools Are Available in RISC-V Ecosystem?

Functional-Level Simulators: Spike & QEMU

Pros
» Very fast simulation

> \Verify applications compile and work correctly

Cons
» Capture no micro-architectural details

» Not timing accurate

Cornell University Tuan Ta 3/24

What Tools Are Available in RISC-V Ecosystem?

RTL Simulators: Rocket & BOOM RTL models

Pros
» Provide low-level micro-architectural details

» Cycle-accurate

Cons
» Too slow to run many different simulations

> Simulate at the rate of 4,000 instructions per second
> Take 3 days to run a small application

» Limited to single-threaded application and single-core system

> Use a single-threaded proxy kernel
> Boot a full Linux image — not a practical solution!

» Limited to existing RISC-V RTL models

Cornell University Tuan Ta 4/24

What Tools Are Available in RISC-V Ecosystem?

FPGA

Pros
» Fast execution

» Timing accurate

» Can boot a full Linux image

Cons
» Require physical FPGA boards

» Lengthy synthesis, place and route process

» Limited to existing RISC-V RTL models

Cornell University Tuan Ta 5/24

Is gem5 a Solution?

What is gem5?

Multiple ISAs

Multiple processor models

>

>

» Multiple memory and network models
» Some advanced simulation features
>

Strong support from gemS developer and user community

~d

cemd

Cornell University Tuan Ta 6/24

Is gem5 a Solution?

\

Initial RISC-V port in gem5 [A. Roelke, CARRYV 2017]
> RV64GC

» Single-core system simulation

» System call emulation (SE) mode

Our contribution to RISC-V port in gem5 [CARRV 2018]
» Multi-core system simulation in SE mode

» RISC-V testing infrastructure in gem5

Cornell University

Tuan Ta

7124

Everything Is Open-Source!

% # Get all software dependencies

% sudo apt-get install scons python-dev m4 autoconf automake autotools-dev curl libmpc-dev libmpfr-dev
libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zliblg-dev libexpat-dev
% # Download and build gemb

% cd $HOME && git clone https://gemb.googlesource.com/public/gemb && cd gemb

% # Skip this step when this change is fully merged in upstream gemb

% git pull https://gemb5.googlesource.com/public/gemb refs/changes/26/9626/4

% # skip this step when this change is fully merged in upstream gemb

% git pull https://gemb.googlesource.com/public/gemb refs/changes/44/9644/3

% scons build/RISCV/gemb5.opt -j8

% # Download and build RISC-V GNU toolchain

% cd $HOME && git clone --recursive https://github.com/riscv/riscv-gnu-toolchain

% cd riscv-gnu-toolchain/ && mkdir ./build && cd ./build

% ../configure --prefix=$HOME/riscv-gnu-toolchain/build/

% make linux -j8

% export PATH=$PATH:$HOME/riscv-gnu-toolchain/build/bin/

% # Download and build Ligra applications

% cd $HOME && git clone https://github.com/jshun/ligra.git

% cd $HOME/ligra/ligra/

% # Modify Ligra to work with gemb

% mv ligra.h ligra.h.old

% sed '/long rounds/a int num_cpu = P.getOptionIntValue("-n",1); setWorkers(num_cpu);' ligra.h.old >
ligra.h

% cd $HOME/ligra/apps/

% 1n -s $HOME/ligra/ligra/*

% riscv64-unknown-linux-gnu-gcc -static -fopenmp -DOPENMP -Wall -00 -I. -c BFS.C -o BFS.o

% riscv64-unknown-linux-gnu-g++ -static -DOPENMP -L. -o BFS BFS.o -lgomp -lpthread -1dl

% # Run BFS on gemb

h

$HOME/gem5/build/RISCV/gemb.opt $HOME/gem5/configs/example/se.py --cpu-type Deriv03CPU -n 4 -c ./BFS -o
"-n 4 ../inputs/rMatGraph_J_5_.100" --caches

Cornell University Tuan Ta

8/24

We Can Explore Task-Parallel System Design Space!

Task scheduling policies

Static scheduling in OpenMP library (OMP-S)

Guided scheduling in OpenMP library (OMP-G)

Work stealing in Cilk library (Cilk-WS)

Chunk Task Work

Size Assignment Stealing
OMP-S Fixed Static No
OMP-G Adaptive Dynamic No
Cilk-WS Fixed Dynamic Yes

Heterogeneous system

In-order Out-of-order
Cores Cores

L1$ L1$ L1$ L1$

Shared Memory

Ligra graph-processing applications

O b

Cornell University

Tuan Ta

9/24

We Can Explore Task-Parallel System Design Space!

(521

| = omMp-s [OMP-G HEE Cilk-WS

I
I

W
:
|
|

Speedup over single thread

o = N
“x n
> [

» OMP-G and Cilk-WS are designed to balance workload between
heterogeneous cores

» OMP-G and Cilk-WS offered better throughput in most of Ligra
applications

» gemb5 simulated all Ligra apps at the speed of 175 KIPS (vs. 4 KIPS if
using Chisel C++ RTL simulator)

Cornell University Tuan Ta 10/24

Multi-Core RISC-V Support in gem5

Thread-managing Synchronization
system calls instructions

Release
consistency

Cornell University

Tuan Ta

11/24

Multi-Core RISC-V Support in gem5

Thread-managing system calls

Thread-managing Synchronization
system calls instructions » clone

» futex

> FUTEX_WAIT
> FUTEX_WAKE

Release
consistency

> exit

Cornell University Tuan Ta 12/24

Multi-Threading in gem5 System Call Emulation

» System Call Emulation (SE)

> No OS code is simulated
> All system calls are emulated

» Software thread (SWT)
> User-level thread

» Hardware thread (HWT)
> Execution unit (e.g., CPU core)

» SWT - HWT mapping
> Done by gem5
> SWT can be mapped to and unmapped from a HWT
> HWT maps to at most one SWT at a time
> No SWT context switching

Cornell University Tuan Ta 13/24

clone System Call

» Spawn a new SWT

» gemb finds a free HWT for the new SWT
» gemb initializes and allocates resources for the new SWT

> Copy pointers to shared resources (e.g., page table) from the parent to the
child SWT

> Allocate non-shared resources (e.g., stack and thread-local storage)

» gemb activates the HWT

» Supported RISC-V clone system call interface in gem5 SE

» Initialized RISC-V registers upon clone system call

Cornell University Tuan Ta 14 /24

futex System Call

» Synchronize threads using user-level futex variables

> FUTEX_WAIT: put calling threads into sleep
> FUTEX_WAKE: wake up threads waiting on a futex variable

» gemb5 maintains a list of HWTs waiting on each futex variable
» gemb5 suspends a HWT when it goes to sleep

» gemb5 resumes execution of a HWT when it is waken up by
FUTEX_WAKE

» Supported some variants of FUTEX_WAIT and FUTEX_WAKE

» Fixed bugs in how HWT is suspended and resumed in all CPU models
In gem>

Cornell University Tuan Ta 15/24

exit System Call

» Terminate a running SWT

» gemb cleans up micro-architectural states of the terminating SWT

» gem5 unmaps SWT from HWT and frees up the HWT

» Fixed bugs in thread termination in all CPU models in gem5

Cornell University Tuan Ta 16 /24

Multi-Core RISC-V Support in gem5

Synchronization instructions

Thread-managing Synchronization
system calls instructions » AMO

» LR & SC

Release
consistency

Cornell University Tuan Ta 17 /24

Atomic Memory Operation Instructions

» Added new AMO memory request type to all CPU models

» AMO requests carrying AMO operations are issued to memory system
like normal LOAD and STORE requests

» Modified gem5 cache models to execute AMO operations directly in L1
caches

(3) In-L1 AMO processing L1

CPU O CPU 1

(1) AMO request (4) AMO response

$

$ L1l
~_ (2) Exclusive memory fetch

Shared Mem

Cornell University

Tuan Ta 18/ 24

Load-Reserved & Store-Conditional Instruction

HWT 0 HWT 1

lr:0x100|0x100

‘\\\\‘\~\:§§

reservation lists

X __F--—{0x100

Ox100

sCc:0x100
(fail)

lr:0x100

sCc:0x100
(succeed)

» Address reservation list per HWT

» |oad-reserved
> Invalidate any active reservation of

target variable through memory
coherence bus

> Put the variable in reservation list

» Store-conditional
> Succeed if target variable is still

being reserved

> Otherwise, fail

» Livelock prevention
> Defer invalidation requests in L1

cache in a bounded period of time

Cornell University

Tuan Ta

19/24

Multi-Core RISC-V Support in gem5

Thread-managing Synchronization
system calls instructions

Release consistency

Release
consistency

Cornell University Tuan Ta 20/ 24

Release Consistency

» Break amo, 1r, and sc instructions into micro-operations

» Insert fence micro-operations to ensure correct memory orderings

amoadd.ag amoadd. rl amoadd.aqrl
amoadd fence fence
fence amoadd amoadd
T f
ence

P

MICro-ops

Cornell University Tuan Ta

21/24

Functional Validation

Assembly testing

» Did not exist in gem before

» Single-threaded testing
> Ported RISC-V assembly test suite into gem5

» Multi-threaded testing

> Built a minimal threading library in assembly
> Tested individual system calls
> Tested individual synchronization instructions

» pthread functionality testing
> Detected missing functionality used by GNU
pthread library
> Tested commonly used pthread functions
(e.g., pthread_create, pthread_join,
pthread mutex_lock, efc.)

Cornell University

Tuan Ta

22/ 24

Timing Validation

» CPU models in gem5 are generic and NOT validated against an actual
microarchitecture

» We validated gem5’s multiplier model against an iterative multiplier in
Rocket chip

>

v VvV V V

>

Used a micro-benchmark that executed 500 mul instructions back-to-back
No RAW dependency between these mul instructions

No loop to minimize interference from branch predictor

Warmed up instruction cache

Measured the CPI of the 500 mul instruction sequence in both gem5 and
Rocket models

Adjusted gem5 multiplier’s configuration

» Similar approach can be applied to validate other HW units (e.g.,
floating point unit, branch predictor, etc.)

Cornell University Tuan Ta 23 /24

Take-Away Point

» Multi-threaded RISC-V binaries can run on gem5 out of the box

> gemb5 is a good cycle-level modeling tool for efficient early system
design space exploration

» RISC-V port development in gem5
> Initial RISC-V port in gem5 [A. Roelke, CARRV 2017]
> QOur contribution to RISC-V port in gem5 [CARRV 2018]
> Future contributions from RISC-V and gem5 community ...

</ 95

RISC cemb

This work was partially supported by the NSF, AFOSR, SRC, and donations
from Intel

Cornell University Tuan Ta

24 /24

