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1 Abstract

Hardware specialization is an increasingly common technique to improve
performance and energy efficiency in spite of the diminished benefits of technology
scaling. We are pursuing a single-ISA heterogeneous architecture called explicit loop
specialization (XLOOPS) that transparently integrates general-purpose processors
(GPPs) and specialized loop accelerators. XLOOPS supports a variety of
inter-iteration data- and control-dependence patterns for both single and nested
loops. The XLOOPS hardware/software abstraction requires only lightweight changes
to a general-purpose compiler to generate XLOOPS binaries and enables executing
these binaries on: (1) traditional microarchitectures with minimal performance
impact, (2) specialized microarchitectures to improve performance and/or energy
efficiency, and (3) adaptive microarchitectures that can seamlessly migrate loops
between traditional and specialized execution. We evaluate XLOOPS using a
vertically integrated research methodology and show compelling performance and
energy efficiency improvements compared to both simple and comple GPPs.

2 Motivation

Computer architects have long realized the importance of focusing on the key loops
that often dominate application performance. This has led to a diverse array of
specialized hardware for exploiting loop dependence patterns. In this work, we focus
on architectural specialization for inter-iteration loop dependence patterns.
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Inter-iteration data-dependence patterns include:

. Loops with no inter-iteration dependences

. Loops with inter-iteration dependences encoded through registers and/or memory

. Loops that can execute in any order as long as updates to memory appear atomic

Inter-iteration control-dependence patterns include:

. Loops that terminate after comparing induction variable to loop-invariant bound

. Loops that terminate based on a data-dependent-exit condition

. Loops that can monotonically increase the loop bound during the loop’s execution

3 XLOOPS Compiler

We implemented an LLVM-based compiler framework that can compile
pragma-annotated application kernels drawn from several benchmark suites and our
own custom benchmarks.

Floyd-Warshall Shortest Path Algorithm

for ( int k = 0; k < n; k++ )

#pragma xloops ordered

for ( int i = 0; i < n; i++ )

#pragma xloops unordered

for ( int j = 0; j < n; j++ )

path[i][j] = min( path[i][j], path[i][k] + path[k][j] );
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The XLOOPS compiler includes analysis passes to determine the type of
inter-iteration data-dependence and control-dependence patterns.
Register-dependence testing is implemented by analyzing the use-definition chains
through the PHI nodes, and memory-dependence testing is implemented using
well-known dependence techniques such as ZIV/SIV/MIV tests.

4 XLOOPS Instruction Set

The XLOOPS instruction set is carefully designed to enable efficient execution on
both traditional general-purpose processors (GPPs) and specialized
microarchitectures. The XLOOPS instructions encode the notion of a parallel loop
body and the inter-iteration data- and control-dependence patterns as shown below.

xloop.uc rI, rN, L unordered-concurrent
xloop.ua rI, rN, L unordered-atomic
xloop.or rI, rN, L ordered through registers
xloop.om rI, rN, L ordered through memory
xloop.*.db rI, rN, L dynamic-loop-bound

addiu.xi X, imm encode mutual induction variables
addu.xi rT encode mutual induction variables

Code and Assembly Examples

#pragma xloop unordered

for ( i=0; i<N; i++ )

C[i] = A[i] * B[i]

L:

lw r2, 0(rA)

lw r3, 0(rB)

mul r4, r2, r3

sw r4, 0(rC)

addiu.xi rA, 4

addiu.xi rB, 4

addiu.xi rC, 4

addiu r1, r1, 1

xloop.uc r1, rN, L

#pragma xloop ordered

for ( X=0, i=0; i<N; i++ )

X += A[i]; B[i] = X

L:

lw r2, 0(rA)

addu rX, r2, rX

sw rX, 0(rB)

addiu.xi rA, 4

addiu.xi rB, 4

addiu r1, r1, 1

xloop.or r1, rN, L

#pragma xloop ordered

for ( i=K; i<N; i++ )

A[i] = A[i] * A[i-K]

move r1, rK

sll r2, rK, 0x2

addu r3, rA, r2

L:

lw r4, 0(r3)

lw r5, 0(rA)

mul r6, r4, r5

sw r6, 0(r3)

addiu.xi r3, 4

addiu.xi rA, 4

addiu r1, r1, 1

xloop.om r1, rN, L

#pragma xloop atomic

for ( i=0; i<N; i++ )

B[A[i]]++; D[C[i]]++

L:

lw r6, 0(rA)

lw r7, 0(r6)

addiu r7, r7, 1

sw r7, 0(r6)

addiu.xi rA, rA, 4

lw r6, 0(rC)

lw r7, 0(r6)

addiu r7, r7, 1

sw r7, 0(r6)

addiu.xi rC, rC, 4

addiu r1, r1, 1

xloop.ua r1, rN, L

5 XLOOPS Microarchitecture

A GPP augmented with a loop-pattern specialization unit (LPSU) that contains a lane
management unit and a number of decoupled lanes for executing iterations in parallel.
The GPP and the lanes in the LPSU share long-latency functional units (LLFUs) and
data-memory ports.
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. Traditional Execution – An xloop

instruction is executed as a
conditional branch, and an xi

instruction is executed as simple
addition.

. Specialized Execution –
Specialized execution occurs in two
phases: scan phase where the GPP
scans the xloop and configures the
LPSU and specialized execution
phase where the LPSU executes
the iterations in parallel.

. Adaptive Execution – Adaptive
execution mechanism that adds two
phases, GPP profiling phase and
LPSU profiling phase to determine
the best performing
microarchitecture and adaptively
migrates the loop execution.

6 Cycle-Level Evaluation

We modified a gem5+McPAT-1.0 simulation framework to model both in-order and
out-of-order processors augmented with an LPSU. We compare XLOOPS to three
baseline GPPs: a simple single-issue in-order processor (io), a moderate 2-way
out-of-order superscalar processor (ooo/2), and an aggressive 4-way out-of-order
superscalar processor (ooo/4). We augmented each baseline GPP with an LPSU to
create three XLOOPS configurations: io+x, ooo/2+x, and ooo/4+x.

Performance Results

We observe that specialized execution always benefits the in-order processor. For a
total of 25 application kernels, specialized execution performs better for 18 kernels
compared to ooo/2, and performs better for 12 kernels compared to ooo/4.
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Misc . Sharing the LLFUs does
not significantly hurt
specialized execution.

. Sharing the memory port
could improve the
performance for some
kernels.

. Inter-iteration critical
path restricts
performance of
xloop.or kernels.

. Input datasets influence
performance of
xloop.{om,orm,ua}
kernels.
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specialized adaptive . Overheads of profiling
and work migration
result in only minimal
performance
degradation.

. xloop.or kernels
benefit from traditional
execution when there is
high intra-iteration ILP.

. Adaptive work migration
helps
xloop.{om,orm,ua}
kernels when there is
limited MLP.

Energy Efficiency vs. Performance Results
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Specialized execution adds minimal energy overhead and results in increased
performance for on io+x. Specialized execution is more energy efficient for ooo/2+x
and ooo/4+x.

7 Case Studies

We explored the microarchitectural design space by adding limited vertical
multi-threading, scaling the number of lanes, scaling shared resources, and
increasing the per-lane LSQ entries.

Microarchitectural Case Study
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. Limited vertical multi-threading
and increased lanes only helps
for few kernels.

. Doubling shared resources
helps to reduce memory
contention and LLFU structural
hazards.

. Scaling resources does not
help overcome inter-iteration
register dependences.

Application Case Studies

. Hand-optimizing select xloop.or kernels to reduce the cross-iteration iteration
critical path improves performance by 50–70%.

. Simply annotating serial versions of the kernels often performs better than code
with significant loop transformations which shows that XLOOPS allows
ease-of-programmability without sacrificing performance.

8 RTL/VLSI Evaluation

We implemented a register-transfer-level (RTL) model for a basic LPSU that supports
xloop.uc instructions. We target a 40 nm TSMC process using a Synopsys ASIC
CAD toolflow: VCS for RTL simulation, DesignCompiler for synthesis, IC Compiler for
place-and-route, and PrimeTime for power analysis.
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. Total area of the LPSU design is
0.36 mm2 which is only 43%
larger than the in-order GPP
(0.25 mm2).

. Sharing the LLFUs and
data-memory port is a key design
decision that results in incurring
minimal area overheads.

. Scaling experiments show that
area overhead of a given LPSU
design roughly increases linearly
with the number of lanes
(≈10%).
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. Specialized execution improves
performance by 2.4–4× and
energy efficiency by 1.6–2.1×.

. Accessing instruction buffer is
cheaper by a factor of ten
compared to accessing the
instruction cache.

. McPAT results are relatively
conservative which motivates
RTL implementation of other
patterns.
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