Appears in the Workshop on Robotics Acceleration with Computing Hardware (RoboARCH), May 2025

EntoBench: A Benchmark Suite and Evaluation
Framework for Insect-Scale Robotics

Derin Ozturk, Nick Cebry, Angela Cui, Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{ddo26, nfc35, ayc62, cbatten} @cornell.edu

Abstract—Insect-scale robots face significant size, weight,
power, and timing constraints that complicate system design, re-
strict demonstrations to controlled lab environments, and ulti-
mately limit the achievable autonomy of these systems. This
poster will present our ongoing work on EntoBench, a compre-
hensive benchmark suite and evaluation framework that addresses
these challenges by evaluating latency, energy, and peak power on
resource-constrained microcontrollers.

1. MOTIVATION

Insect-scale robots, typically characterized by lengths un-
der Scm and masses below S5g, are a rapidly growing area
of robotics research. These platforms promise transformative
capabilities in fields such as search-and-rescue and environ-
mental monitoring. At these scales, familiar physical intu-
itions begin to break down: scaling laws introduce new con-
straints on actuation, sensing, and control, requiring roboticists
to employ micro-intuition [22] and look towards biology for
inspiration [14] in the robot design process. The effect is an
explosion of diversity across demonstrated systems (e.g., fly-
ers [10, 12,29, 30, 50, 61], crawlers [2, 12, 24, 34, 47, 54, 62],
jumpers [1, 8, 32, 54], swimmers [53, 60], gliders [18, 31, 48],
and striders [21, 55, 57]) reflecting a wide range of form fac-
tors, actuation strategies, and control architectures tailored for
operation at the insect scale.

A major trend in recent years is the push toward full auton-
omy [14,25] in insect-scale robots, encompassing sensing, con-
trol, compute, and power autonomy. While most demonstrated
systems currently rely on external position tracking, off-board
computation, and tethered power sources, next-generation plat-
forms aim to be self-sufficient: sensing and understanding their
environment and internal state, making control decisions in real
time, and doing so under tight size, weight, power, and tim-
ing constraints. Among these four pillars of autonomy, we
argue that compute autonomy is the most critical to address
first. Processor selection has recently been emphasized for
its influence on algorithmic feasibility and efficiency in insect-
scale robots [14]. The choice of onboard compute directly de-
termines what sensing and control strategies are feasible and
what power budget is sustainable, setting the stage for a virtu-
ous robot-hardware-software co-design loop. Furthermore, op-
timized compute systems may unlock new capabilities for these
robots, beyond enabling operation outside the lab.

The challenge of compute autonomy creates a natural op-
portunity for the RoboArch community to contribute low-level
software optimizations, energy-aware system design, and cus-
tom compute architectures for insect-scale robots. However,
to enable meaningful progress, we need benchmark suites and
evaluation frameworks that reflect the realities of these insect-
scale platforms. Existing robotics benchmark suites [5,6,9,42]
do not meet these needs for several reasons (see Table I). First,

TABLE I. COMPARISON OF ROBOTICS BENCHMARK SUITES

MAV Robot RTR Ro Ento

Bench  Perf Bench Wild Bench
Insect Scale X X X X 4
Resource Constrained X X X X v
Modular & Extensible v v v v v
?g\i/rfrnggcused v v X X v
End-to-End 4 X X v S

they do not reflect current insect-scale robotics algorithms or
pipelines. Second, they assume an abundance of compute re-
sources and software stacks that are impractical for insect-scale
deployments. Third, their modularity and extensibility are lim-
ited in practice. Some suites simply aggregate open source
projects and/or make it difficult to easily add new kernels.
Fourth, they neglect energy as a first-class metric, measuring it
only coarsely or only focusing on average power. Lastly, while
some suites do not evaluate full end-to-end deployments, we
view this as an important future direction. Since such deploy-
ments remain rare at the insect scale, we focus on individual
kernels for this current work.

In this work, we introduce EntoBench, a new bench-
mark suite and evaluation framework tailored for insect-scale
robotics. EntoBench provides a focused set of fundamental ker-
nels representing key stages of the current insect-scale robot
pipeline, enabling researchers to effectively evaluate perfor-
mance and energy efficiency on resource-constrained micro-
controllers in a reproducible manner. By doing so, EntoBench
lays the groundwork for principled robot-hardware-software co-
design at the insect scale.

II. ENTOBENCH

EntoBench is a benchmark suite and evaluation framework
purpose-built for insect-scale robotics. Unlike many existing
robotics benchmark suites, EntoBench deliberately targets the
tight constraints imposed by these ultra-small platforms. In this
section we describe the evaluation framework design goals be-
fore providing a high level description of our catalog of kernels.

A. Benchmark Suite and Evaluation Framework Design Goals

Representative of the Insect-Scale Robot Pipeline — The
suite aims to capture essential computational stages that cur-
rent insect-scale robots are targeting—perception, state esti-
mation, and control—while also acknowledging that additional
stages (e.g., mapping, planning) practically exceed the capabil-
ities of microcontrollers and are less relevant for insect-scale



robot tasks. Kernels are curated to reflect algorithms more rele-
vant for insect-scale robots, including direct and inspired imple-
mentations of those demonstrated in the context of insect-scale
robots, and additionally others scaled down from slightly larger
platforms, such as nanodrones.

Suitable for Resource Constrained Platforms — EntoBench
does not require abundant external memory, double precision
floating point hardware, sophisticated cache-based memory hi-
erarchies, or external libraries and middleware (e.g., ROS,
OpenCV). It is designed for microcontrollers with no exter-
nal memory and limited SRAM and flash. We avoid dy-
namic memory allocation and virtual functions, and rely heavily
on template meta-programming for compile-time parameteriza-
tion, staying closer to code structures that are viable on real-
time embedded systems at the insect scale.

Modular, Extensible, and Configurable Design — Each ker-
nel is implemented as a small standalone module, with minimal
dependencies, enabling easy integration, composition, and de-
ployment across different ARM Cortex-M architectures and mi-
croarchitectural simulators such as gem5 [38]. Kernels are writ-
ten against generic problem interfaces (i.e., task definitions),
and evaluated via a reusable harness that handles I/O and or-
chestrates experiments. Our use of modern C++ and metapro-
gramming enables users to iterate on software optimizations,
switch between single- and double-precision floating point, im-
plement new kernels, or define entirely new problem types. The
framework supports both validation (correctness), and evalu-
ation (latency, energy, and accuracy), providing a structured
methodology for benchmarking across implementations.

Energy as a First-Class Metric — EntoBench recognizes
that insect-scale robots operate on extremely constrained energy
budgets and thus treats energy as a first-class concern. Rather
than relying on low-order models (e.g., FLOP counts) [20, 58,
63], EntoBench integrates direct energy measurement via a
commercially available power measurement device, combined
with a logic-analyzer for precise timing of kernels within a re-
gion of interest. This enables an apples-to-apples comparison
across algorithms, not just in speed, but in energy feasibility
for untethered insect-scale deployments. We also capture peak
power consumption, which is critical for power electronics de-
sign, particularly under transient loads.

End-to-End Pipelines — End-to-end evaluation, from sens-
ing to actuation, is desirable in robotics, as it reflects realistic
workloads beyond isolated kernels. Although fully autonomous
insect-scale robots remain out of reach, recent advances suggest
this will soon become essential. EntoBench acknowledges this
trajectory through the design of its modular benchmarks with
deployment of end-to-end pipelines as future work.

B. Catalog of Kernels

Guided by our design goals, EntoBench implements kernels
carefully selected for their relevance and applicability at the
frontier of insect-scale robotics.

Perception — Our perception kernels reflect the growing im-
portance of onboard feature extraction and visual motion esti-
mation at the insect-scale. Current kernels include feature de-
tectors and descriptors [7,28,37,51,52] and multiple optical
flow methods [3,27,41,56,63] that span a range of complexity
and computational demand.

TABLE II. LATENCY, ENERGY, AND POWER RESULTS

Latency (10° cycles) Energy (nJ) Peak Power (mW)
Kernel M4 M33 M7 M4  M33 M7 M4 M33 M7

FAST 1626.5 1080.9 3113.4 1118.6 216.84 10163 117.8 38.6 106.2
ORB 9060.7 6559.6 97229 6108.8 13354 33027 1269 382 106.6

LKOF 361.0 2434 1956 2435 39.6 1952 118 40.4 107.01
TIOF 2322 195.6 210.1 158.7 82 8534 1188 243 11696
Rel5Pt 129.7  105.8 92.1 929 1151 40 127.7 40.7 1323
Rel8Pt 51.5 38.7 32.9 36 434 13.64 1253 395 1365

TinyMPC 21 15.5 30.7 11.2 1.69 948 1183 442 107.6

State Estimation — This stage includes attitude filters [19,
39,40,43], extended Kalman filters [17,43,59,63], factor graph
chains [46], and absolute and relative geometric pose estima-
tors [16, 23, 33, 45]. We consider minimal solvers and non-
minimal solvers for our pose estimators, including those that
may assume extra information such as a known gravity vector
as well as their deployment in a RANSAC framework [13,49].

Control — EntoBench focuses on advanced control strate-
gies beyond basic PID, including optimal controllers for lin-
earized systems [15, 17], constrained formulations, such as
TinyMPC [44], and more advanced strategies, such as geomet-
ric tracking control [36] and sliding window control [11], which
have been demonstrated on flapping wing insect-scale robots.

III. PRELIMINARY RESULTS

We present preliminary results for seven representative ker-
nels evaluated across Cortex-M4, M33, and M7 microcon-
trollers (see Table II). For perception, we benchmark FAST fea-
ture detection and ORB feature detection and description, and
Lucas-Kanade and image interpolation optical flow, using se-
quences from the Middlebury datasets [4,26]. For state estima-
tion, we evaluate the 5- and 8-point relative pose algorithms us-
ing synthetic data as in [35]. In control, we evaluate TinyMPC
on a quadrotor figure-eight trajectory. Experiments use data and
kernel parameters fitting within the 128KB SRAM of the M4,
enabling comparison across platforms.

To contextualize these results, Table III summarizes key ar-
chitectural differences across the three Cortex-M architectures.
These early results already highlight critical trade-offs. The M7
underperforms on several kernels due to suboptimal memory
placement from a vendor-provided linker script that places the
stack in AXI SRAM, bypassing faster tightly coupled mem-
ory. In contrast, the M33 demonstrates superior energy effi-
ciency, primarily because microcontroller manufacturers imple-

TABLE III. CORTEX-M ARCHITECTURES

MCU
Cortex-M4

Key Features

3-stage pipeline (ARMV7E-M), up to ~200 MHz, optional
SP FPU, widely available even in ultra-compact packaging
(e.g., WLCSP).

Cortex-M33 3-stage pipeline (ARMv8-M), up to ~200 MHz, optional
SP FPU, optional coprocessor interface, less commonly
available in ultra-compact packaging (e.g., WLCSP).

Cortex-M7 6-stage superscalar pipeline with branch prediction
(ARMV7E-M), up to ~600 MHz, optional SP or DP FPU,
optional I/D caches, optional tightly coupled memory
(TCM), widely available even in ultra-compact packaging,

typically larger than M4/M33




ment this newer architecture on more advanced semiconduc-
tor technology nodes. However, M33 microcontrollers are less
commonly available in ultra-compact packages (e.g., WLCSP)
required by insect-scale robotics. These findings underline an
early key insight: better compute performance (M7) or energy
efficiency (M33) is not cost-free, as each introduces challenges
in managing memory allocation and available packaging.
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