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We present a taxonomy and modular implementation approach for data-parallel accelerators, including the
MIMD, vector-SIMD, subword-SIMD, SIMT, and vector-thread (VT) architectural design patterns. We in-
troduce Maven, a new VT microarchitecture based on the traditional vector-SIMD microarchitecture, that
is considerably simpler to implement and easier to program than previous VT designs. Using an extensive
design-space exploration of full VLSI implementations of many accelerator design points, we evaluate the
varying tradeoffs between programmability and implementation efficiency among the MIMD, vector-SIMD,
and VT patterns on a workload of compiled microbenchmarks and application kernels. We find the vector
cores provide greater efficiency than the MIMD cores, even on fairly irregular kernels. Our results suggest
that the Maven VT microarchitecture is superior to the traditional vector-SIMD architecture, providing both
greater efficiency and easier programmability.
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1. INTRODUCTION
Data-parallel kernels dominate the computational workload in a wide variety of
demanding application domains, including graphics rendering, computer vision, audio
processing, physical simulation, and machine learning. Specialized data-parallel ac-
celerators [Gschwind et al. 2006; Kelm et al. 2009a; Kozyrakis et al. 1997; Krashinsky
et al. 2004; NVIDIA 2009; Wawrzynek et al. 1996] have long been known to provide
greater energy and area efficiency than general-purpose processors for codes with
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6:2 Y. Lee et al.

significant amounts of data-level parallelism (DLP). With continuing improvements in
transistor density and an increasing emphasis on energy efficiency, there has recently
been growing interest in DLP accelerators for mainstream computing environments.
These accelerators are usually attached to a general-purpose host processor, either
integrated on the same die or on a separate die. The host processor executes system
code and non-DLP application code while distributing DLP kernels to the accelerator.
Surveying the wide range of data-parallel accelerator cores in industry and academia
reveals a general tradeoff between programmability (how easy is it to write software
for the accelerator) and efficiency (energy/task and tasks/second/area). In this article,
we examine multiple alternative data-parallel accelerators to quantify the efficiency
impact of microarchitectural features intended to simplify programming or expand
the range of code that can be executed.

We first introduce a set of five architectural design patterns for DLP cores in
Section 2, qualitatively comparing their expected programmability and efficiency.
The multiple-instruction multiple-data (MIMD) pattern [Flynn 1966; Kelm et al.
2009a] flexibly supports mapping data-parallel tasks to a collection of simple scalar
or multithreaded cores, but lacks mechanisms for efficient execution of regular DLP.
Two alternate versions of the single-instruction multiple-data (SIMD) pattern [Flynn
1966] are vector-SIMD [Kozyrakis et al. 1997; Russell 1978; Wawrzynek et al. 1996]
and subword-SIMD [Frankovich and Peterson 1957; Gschwind et al. 2006]. These
SIMD patterns can significantly reduce the energy used for regular DLP, but can
require complicated programming for irregular DLP. The single-instruction multiple-
thread (SIMT) [Lindholm et al. 2008] and vector-thread (VT) [Krashinsky et al. 2004]
patterns are hybrids between the MIMD and vector-SIMD patterns that attempt to
offer alternative tradeoffs between programmability and efficiency.

When reducing these high-level patterns to an efficient VLSI design, there is a
large design space to explore. In Section 3, we present a common set of parameterized
synthesizable microarchitectural components and show how these can be combined
to form complete RTL designs for the different architectural design patterns, thereby
reducing total design effort and allowing a fairer comparison across patterns. In this
section, we also introduce Maven, a new VT microarchitecture. Our modular design
strategy revealed a much simpler and more efficient VT implementation than the
earlier Scale design [Batten et al. 2004; Krashinsky 2007; Krashinsky et al. 2004,
2008]. Maven is based on a vector-SIMD microarchitecture with minimal changes
to enable the improved programmability from VT [Batten 2010; Lee 2011; Lee et al.
2011], instead of the decoupled cluster microarchitecture of Scale. Another innovation
in Maven is to use the same RISC instruction-set architecture (ISA) for both vector
and scalar code, greatly reducing the effort required to develop an efficient VT
compiler. The Scale design required a separate clustered ISA for vector code, which
complicated compiler development [Hampton and Asanović 2008].

To concretely evaluate and compare the efficiency of these patterns, we used our
parameterized microarchitectural components to generate hundreds of complete VLSI
layouts for MIMD, vector-SIMD, and VT processors in a modern 65 nm technology.
Section 4 describes our methodology for extracting the area, energy, and performance
of these designs for a range of compiled microbenchmarks and application kernels.

Our results, presented in Section 5, show that vector cores are considerably more
efficient in both energy and area-normalized performance than MIMD cores, although
the MIMD cores are usually easier to program. Our results also suggest that the
Maven VT microarchitecture is superior to the traditional vector-SIMD architecture,
providing greater efficiency and a simpler programming model. For both VT and
vector-SIMD, multilane implementations are usually more efficient than multicore
single-lane implementations and can be easier to program as they require less
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Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators 6:3

Fig. 1. Different types of data-level parallelism. Examples are expressed in a C-like pseudocode and are
ordered from regular DLP (regular data access (DA) and control flow (CF)) to irregular DLP (irregular data
access (DA) and control flow (CF)).

partitioning and load balancing. VT allows a flexible blend of vector-style or threaded-
style programing, where efficiency increases as more vector features are used by
software, but programming effort increases correspondingly. Although we do not
implement a full SIMT machine, our initial analysis indicates SIMT will be consid-
erably less efficient than VT for regular DLP code, whereas we expect SIMT and
VT to be similar in efficiency for more irregular code programmed in a threaded
style. Our belief is therefore that VT offers a wider tradeoff between efficiency and
programmability than SIMT.

2. ARCHITECTURAL DESIGN PATTERNS FOR DATA-PARALLEL ACCELERATORS
Data-parallel applications can be categorized in two dimensions: the regularity
with which data memory is accessed and the regularity with which the control flow
changes. Regular data-level parallelism has well-structured data accesses where the
addresses can be compactly encoded and are known well in advance of when the
data is ready. Regular DLP also has well-structured control flow where the control
decisions are either known statically or well in advance of when the control flow
actually occurs. Irregular data-level parallelism might have less-structured data
accesses where the addresses are more dynamic and difficult to predict, and might
also have less-structured control flow with data-dependent control decisions. Irregular
DLP might also include a small number of intertask dependencies that force a portion
of each task to wait for previous tasks to finish. Eventually a DLP kernel might
become so irregular that it is better categorized as exhibiting task-level parallelism.

Figure 1 uses a few simple loops to illustrate the spectrum from regular to irregu-
lar DLP. In the following, we assume that the outer loop iterations are independent,
but in general, depending on the loop structure and source language semantics, ex-
tensive compiler analysis or programmer annotations may be required to allow safe
vectorization. The regular loop in Figure 1(a) includes unit-stride accesses (A[i],C[i]),
strided accesses (B[2*i]), and shared accesses (x). The loop in Figure 1(b) uses indexed
accesses (E[C[i]],D[A[i]]). The loop in Figure 1(c) includes a data-dependent condi-
tional to choose the correct shared constant, while the irregular loop in Figure 1(d)
includes conditional accesses (B[i],C[i]) and computation. Finally, the irregular loop
in Figure 1(e) includes an inner loop with a complex data-dependent exit condition.

There have been several studies that demonstrate that full DLP applications con-
tain a mix of regular and irregular DLP [Krashinsky et al. 2004; Mahesri et al. 2008;
Rivoire et al. 2006; Sankaralingam et al. 2003]. There are many reasons to prefer ac-
celerators that can handle a wider variety of DLP over those that are restricted to just
regular DLP. First, it is possible to improve performance and energy-efficiency even
on irregular DLP. Second, even if the performance and energy-efficiency on irregular
DLP is similar to a general-purpose processor, by keeping the work on the accelerator,
we make it easier to exploit regular DLP intermingled with irregular DLP. Finally, a
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consistent way of mapping both regular and irregular DLP simplifies the programming
methodology. The rest of this section presents five architectural patterns for the design
of data-parallel accelerators, and describes how each pattern handles both regular and
irregular DLP.

The multiple-instruction multiple-data (MIMD) pattern is perhaps the simplest ap-
proach to building a data-parallel accelerator. A large number of scalar cores are repli-
cated across a single chip, and these scalar cores can be extended to support per-core
multithreading to help improve performance by hiding various latencies. Figure 2(a)
shows the programmer’s model (the ISA view) and an example implementation for the
multithreaded MIMD pattern. All of the design patterns include a host thread (HT) as
part of the programmer’s model. The HT runs on the general-purpose processor and is
responsible for application startup, configuration, interaction with the operating sys-
tem, and managing the data-parallel accelerator. We refer to the threads that run on
the data-parallel accelerator as microthreads (µTs), since they are lighter-weight than
the threads that run on the general-purpose processor. Programmers can map each
data-parallel task to a separate microthread. The primary advantage of the MIMD
pattern is the flexible programming model, and since every hardware microthread can
execute a fully independent task, there should be little difficulty in mapping both regu-
lar and irregular DLP applications. This can simplify parallel programming compared
to the other design patterns, but the primary disadvantage is that this pattern lacks
any dedicated DLP mechanisms and hence it is difficult to gain an energy-efficiency
advantage when executing DLP applications.

The pseudoassembly in Figure 3(a) illustrates how we might map a portion of a sim-
ple irregular loop as in Figure 1(d) to each µT. The first ten instructions divide the
work among the µTs such that each thread works on a different consecutive parti-
tion of the input and output arrays. Notice that all µTs redundantly load the shared
scalar value x (line 11). This might seem trivial in this instance, but the lack of spe-
cialized mechanisms to handle shared loads and other shared computation, adversely
impacts many regular DLP codes. Similarly there are no specialized mechanisms to
take advantage of the regular data accesses. Figure 4(a) shows an execution diagram
corresponding to the pseudoassembly in Figure 3(a) running on the 2-core, 4-µT im-
plementation with the two-way multithreading illustrated in Figure 2(a). The scalar
instructions from each µT are interleaved in a fixed pattern. It is very natural to map
the data-dependent conditional to a scalar branch (line 15) which simply skips over
the unnecessary work when possible. It is also straightforward to implement condi-
tional loads and stores of the B and C arrays by simply placing them after the branch.
The execution diagram shows how the µTs are converged (execute in lock-step) before
the branch and then diverge after the data-dependent conditional with µT0 and µT3
quickly moving on to the next iteration. After a few iterations the µTs will most likely
be completely diverged.

The Illinois Rigel is a recently proposed data-parallel accelerator following the
MIMD pattern with 1024-cores and a single µT per core [Kelm et al. 2009a]. Sun’s line
of Niagara processors exemplify the multithreaded MIMD pattern with 8–16 cores
and 4–8 threads per core for a total of 32–64 threads per chip [Kongetira et al.
2005; Nawathe et al. 2007], but are not specifically designed as data-parallel accel-
erators. Niagara threads are heavier-weight than µTs, and Niagara is meant to be a
standalone processor as opposed to a true coprocessor. Even so, the Niagara processors
are often used to execute both regular and irregular DLP codes, and their multithread-
ing enables good performance on these codes [Williams et al. 2009]. MIMD accelerators
can be programmed using general-purpose parallel programming frameworks such as
OpenMP [OpenMP 2008] and Intel’s Thread Building Blocks [Reinders 2007], or in the
case of Rigel, a custom task-based framework is used [Kelm et al. 2009b].
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Fig. 2. Architectural design patterns. Programmer’s model and a typical core microarchitecture for five
patterns: (a) MIMD, (b) vector-SIMD, (c) subword-SIMD, (d) SIMT, and (e) VT. HT = host thread, CT = control
thread, CP = control processor, µT = microthread, VIU = vector issue unit, VMU = vector memory unit.

In the vector single-instruction multiple-data (vector-SIMD) pattern, a control thread
(CT) uses vector memory instructions to move data between main memory and vector
registers, and vector arithmetic instructions to operate on vectors of elements at once.
As shown in Figure 2(b), one way to think of this pattern is as if each CT manages
an array of µTs that execute in lock-step; each µT is responsible for one element of the
vector and the hardware vector length is the number of µTs (e.g., four in Figure 2(b)). In
this context, µTs are sometimes referred to as virtual processors [Zagha and Blelloch
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Fig. 3. Pseudoassembly for irregular DLP example. Pseudoassembly implements the loop in Figure 1(d) for
the (a) MIMD, (b) vector-SIMD, (c) SIMT, and (d) VT patterns. Assume * ptr and n are inputs. Vi = vector
register i, VF = vector flag register, *.v = vector command, *.vv = vector-vector op, *.sv = scalar-vector op,
nthr = number of µTs, tidx = current microthread’s index.

1991]. Unlike the MIMD pattern, the HT in the vector-SIMD pattern only interacts
with the CTs and does not directly manage the µTs. Even though the HT and CTs must
still allocate work at a coarse-grain among themselves via software, this configuration
overhead is amortized by the hardware vector length. The CT in turn distributes work
to the µTs with vector instructions enabling very efficient execution of fine-grain DLP.
In a typical vector-SIMD core, the CT is mapped to a control processor (CP) and the µTs
are mapped both spatially and temporally across one or more vector lanes in the vector
unit. The vector memory unit (VMU) handles executing vector memory instructions,
and the vector issue unit (VIU) handles the dependency checking and eventual dispatch
of vector arithmetic instructions.

Figures 3(b) shows the pseudoassembly corresponding to the loop in Figure 1(d).
Unit-stride vector memory instructions (lines 5–6,11) efficiently move consecutive
blocks of data in and out of vector registers. A vector-vector arithmetic instruction
(line 10) efficiently encodes a regular arithmetic operation across the full vector of el-
ements, and a combination of a scalar load and a scalar-vector instruction (lines 1,
9) can easily handle shared accesses. In the vector-SIMD pattern, the hardware vec-
tor length is not fixed by the instruction set but is instead stored in a special control
register. The setvl instruction [Asanović 1998] takes the application vector length (n)
as an input and writes the minimum of the application vector length and the hard-
ware vector length to the given destination register vlen (line 4). As a side-effect, the
setvl instruction sets the active vector length, which specifies how many of the µTs are
active and should participate in a vector instruction. Software can use the setvl in-
struction to process the vectorized loop in blocks equal to the hardware vector length,
a process known as stripmining, without knowing what the actual hardware vector
length is at compile time. This technique of allowing a single binary to run on many
different implementations with varying hardware vector lengths was initially intro-
duced in the IBM 3090 [Buchholz 1986]. The setvl instruction will naturally handle
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the final iteration when the application vector length is not evenly divisible by the
hardware vector length; setvl simply sets the active vector length to be equal to the
final remaining elements. Note that a vector flag is used to conditionally execute the
vector multiply, addition, and store instructions (lines 9–11). More complicated irregu-
lar DLP with nested conditionals can quickly require many independent flag registers
and complicated flag arithmetic [Smith et al. 2000].

Figure 4(b) shows the execution diagram corresponding to the pseudoassembly in
Figure 3(b) running on the two-lane, four-µT implementation depicted in Figure 2(b).
We assume the use of an access-execute decoupled vector microarchitecture [Espasa
and Valero 1996]. Earlier vector machines were not decoupled [Buchholz 1986; Russell
1978; Tamura et al. 1985], but later machines have moved to a decoupled design
to help tolerate longer memory latencies [Abts et al. 2007]. The vector memory
commands (lines 5–6, 11) are broken into two parts: the address portion is sent to the
VMU, which will issue the request to memory while the register write/read portion
is sent to the VIU. For vector loads, the register writeback portion waits until the
data returns from memory and then controls writing the vector register file with two
elements per cycle over two cycles. Notice that the VIU/VMU are decoupled from the
vector lanes to allow the implementation to begin fetching new vector loads before
previous loads are consumed. The vector arithmetic operations (lines 7, 9–10) are also
processed two elements per cycle over two cycles. Note that some µTs are inactive
because the corresponding vector flag is false. The time-multiplexing of multiple µTs
on the same physical lane is an important aspect of the vector-SIMD pattern, and it is
common to use a large vector register file to support longer vector operations stretch-
ing over many cycles. The reduced instruction-issue bandwidth requirements of long
vector operations simplifies management of multiple vector functional units, allowing
a single vector instruction issue per cycle to keep multiple vector functional units busy,
unlike the scalar MIMD pattern, which would require multiple instructions issued
per cycle to keep multiple scalar functional units busy. Vector chaining is a common
optimization to bypass element values between multiple vector functional units to
increase execution overlap of dependent vector instructions. A final point is that the
vector command queue between the control processor and the VIU allows the control
thread to continue executing while the vector unit is still processing older vector
instructions. This decoupling means the control thread can quickly work through the
loop overhead instructions (lines 13–18) and start issuing the next iteration of the
stripmine loop, including starting new vector loads on the VMU, as soon as possible.

Figures 3(b) and 4(b) illustrate three ways that the vector-SIMD pattern can improve
energy efficiency: (1) some instructions are executed once by the CT instead of for each
µT, as in the MIMD pattern (lines 1, 13–18); (2) for operations that the µTs do execute
(lines 5–11), the CP and VIU can amortize overheads such as instruction fetch, decode,
and dependency checking over vlen elements; and (3) for memory accesses, which the
µTs still execute (lines 5–6, 11) the VMU can efficiently move data in large blocks.

The Cray-1 was the first machine to exemplify this pattern [Russell 1978], and other
examples include T0 [Wawrzynek et al. 1996], VIRAM [Kozyrakis et al. 1997], the Cray
X2 [Abts et al. 2007], and the NEC SX-9 [Soga et al. 2009]. Autovectorizing compilers
are the standard way to program these systems [Allen and Kennedy 2001].

The subword single-instruction multiple-data (subword-SIMD) architectural pattern
is shown in Figure 2(c). In this pattern, the vector-like unit is really a wide scalar data-
path with standard scalar registers, often overlaid on a double-precision floating-point
unit. The pattern leverages the existing scalar datapaths and registers to execute mul-
tiple narrow-width operations in a single cycle. Some subword-SIMD variants support
bitwidths larger than the widest scalar datatype, in which case the datapath can only
be fully utilized with subword-SIMD instructions. Other variants unify the CT and
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Fig. 4. Execution diagrams for irregular DLP example. Executions are for the loop in Figure 1(d), for the
(a) MIMD, (b) vector-SIMD, (c) SIMT, and (d) VT patterns. CP = control processor, VIU = vector issue unit,
VMU = vector memory unit.

SIMD units such that the same datapath is used for both control, scalar arithmetic,
and subword-SIMD instructions.

Comparing subword-SIMD to vector-SIMD, we see that the former has short vector
lengths that are exposed to software as wide fixed-width datapaths, whereas vector-
SIMD has longer vector lengths exposed to software as a true vector of elements. In
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vector-SIMD, the vector length can be exposed in such a way that the same binary can
run on many different implementations with varying hardware resources, while code
for one subword-SIMD implementation is usually not portable to implementations
with different widths. Subword-SIMD implementations typically lack the strided or
gather-scatter memory operations common in vector-SIMD implementations, which
substantially limits the range of codes that can be executed efficiently. Special within-
register element permute instructions are usually provided to accelerate certain
classes of code but are generally difficult to target with a compiler.

The first machine with subword-SIMD extensions was likely the Lincoln Labs TX-2
[Frankovich and Peterson 1957]. All popular commercial general-purpose processors
have added subword-SIMD ISA extensions over time [Diefendorff et al. 2000; Goodacre
and Sloss 2005; Gwennap 1996; Lee 1996; Lomont 2011; Peleg and Weiser 1996;
Raman et al. 2000; Tremblay et al. 1996], but the IBM Cell processor is an example
of a data-parallel accelerator specially designed around this pattern, with eight cores
each including a unified 128-bit subword-SIMD datapath that can execute scalar op-
erations as well as 16 × 8-bit, 8 × 16-bit, 4 × 32-bit, or 2 × 64-bit operations [Gschwind
et al. 2006]. In terms of programming methodology, some compilers include optimiza-
tion passes that can automatically vectorize regular DLP, but many compilers only
include intrinsics for accessing subword-SIMD operations and these are not usually
portable between architecture families. In this work, we do not consider the subword-
SIMD pattern further, as it cannot tackle a wide variety of data-parallel codes.

The single-instruction multiple-thread (SIMT) pattern is a hybrid pattern with a
programmer’s model similar to the MIMD pattern but an implementation similar
to the vector-SIMD pattern. As shown in Figure 2(d), the SIMT pattern supports a
large number of µTs but no CTs; the HT is responsible for directly managing the µTs
(usually through specialized hardware mechanisms). A µT block is mapped to a SIMT
core that contains vector lanes similar to those found in the vector-SIMD pattern.
However, since there is no CT, the VIU is responsible for grouping µTs together into a
vector (or warp) to allow their individual scalar instruction streams to be executed in
an SIMD fashion while the µTs are executing along a common control path. The VIU
also manages the case when the µTs execute a branch possibly causing them to diverge.
The µTs can sometimes reconverge either through static hints in the scalar instruc-
tion stream added by software or through dynamic convergence mechanisms imple-
mented in hardware. SIMT only has scalar loads and stores, but the VMU can include a
hardware memory coalescing unit to dynamically detect when these scalar accesses
can be converted into vector-like memory operations. The SIMT pattern usually ex-
poses the concept of a µT block to the programmer, where barriers are sometimes
provided for intrablock synchronization and where application performance depends
heavily on the convergence and coalescing opportunities within a µT block.

The loop in Figure 1(d) maps to the SIMT pattern in a similar way as in the MIMD
pattern except that each µT is usually only responsible for a single element as op-
posed to a range of elements (see Figure 3(c)). Since there are no control threads and
thus nothing analogous to the vector-SIMD pattern’s setvl instruction, a combination
of dedicated hardware and software is required to manage the stripmining. The host
thread tells the hardware how many µT blocks are required for the computation and
the hardware manages the case when the number of requested µT blocks exceeds that
supported by the hardware, by scheduling blocks sequentially onto the available re-
sources. In the common case where the application vector length is not statically guar-
anteed to be evenly divisible by the µT block size, each µT must use a scalar branch to
verify that the computation for the corresponding element is necessary (line 1).

Figure 4(c) shows the execution diagram corresponding to the pseudoassembly in
Figure 3(c) for the two-lane, four-µT implementation shown in Figure 2(d). Scalar
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branch management corresponding to the branch at line 1 will be discussed later.
Without a control thread, all four µTs redundantly perform address calculations
(lines 3, 7–8) and the actual scalar load instruction (lines 4, 11), even though these
are unit-stride accesses. The VMU dynamically checks all four addresses, and if
they are consecutive, then the VMU coalesces these accesses into a single vector-like
memory operation. Also notice that since there is no control thread to amortize the
shared load at line 10, all four µTs must redundantly load x. The VMU may be able to
dynamically coalesce this into one scalar load, which is then broadcast to all four µTs.
The VMU attempts to coalesce well-structured stores (line 14) as well as loads. Since
the µTs are converged when they execute the scalar multiply and addition instructions
(lines 12–13), these should be executed with vector-like efficiencies by the VIU. After
issuing the scalar branch corresponding to line 5, the VIU waits for the µT block to
calculate the branch resolution based on each µT’s scalar data. The VIU then turns
these branch resolution bits into a dynamically generated vector flag, which is used
to mask off inactive elements on either side of the branch. SIMT implementations
differ in the details of handling µT divergence, but the overall approach is similar.
SIMT can avoid fetching vector instructions when the vector flag bits are all zero. So
if the entire µT block takes the branch at line 5, then the VIU can completely skip
the instructions at lines 7–14 and start the µT block executing at the branch target.
Also note that conditional memory accesses are naturally encoded by simply placing
them after the branch (lines 10–11, 14). The vector-SIMD pattern could achieve the
same effect by reading the mask registers into the CT and branching around code
that has no µTs active. But in a decoupled vector microarchitecture, this will lead
to a loss of decoupling. Nondecoupled vector microarchitectures will have similar
branch-resolution latencies, but will also be exposed to memory latency on all code.

SIMT machines hide branch resolution and other latencies, using hardware
multithreading across multiple vectors of µTs. This requires very large register files to
hold multiple contexts, each with multiple vector registers.

Figures 3(c) and 4(c) illustrate some of the issues that can prevent the SIMT pattern
from achieving vector-like energy-efficiencies on regular DLP. The µTs must redun-
dantly execute instructions that would otherwise be amortized onto the CT (lines 1–3,
7–10). Regular data accesses are encoded as multiple scalar accesses (lines 4, 11, 14),
which then must be dynamically transformed (at some energy overhead) into vector-
like memory operations. In addition, the lack of a control thread requires every µT to
perform stripmining calculations (line 1) and prevents deep access-execute decoupling
to efficiently tolerate long memory latencies. Even so, the ability to achieve vector-like
efficiencies on converged µT instructions helps improve SIMT energy-efficiency com-
pared to the MIMD pattern. The real strength of the SIMT pattern, however, is that
it provides a simple way to map complex data-dependent control flow with µT scalar
branches (line 5).

The NVIDIA Fermi graphics processor is a modern example of this pattern with
32 SIMT cores, each with 16 lanes suitable for graphics as well as more general
data-parallel applications [NVIDIA 2009]. The Fermi SIMT core supports up to
32 hardware threads or warps, where each warp contains 32 µTs. Various SIMT
frameworks, such as Microsoft’s DirectX Compute [Microsoft 2009], NVIDIA’s CUDA
[Nickolls et al. 2008], Stanford’s Brook [Buck et al. 2004], and OpenCL [OpenCL 2008]
allow programmers to write high-level code for the host thread and to specify the
scalar code for each µT as a specially annotated function. A combination of off-line com-
pilation, just-in-time optimization, and hardware actually executes each data-parallel
kernel.

SIMT architectures have many complex features that have not been publicly
disclosed. We therefore cannot evaluate SIMT at the same level of detail as other

ACM Transactions on Computer Systems, Vol. 31, No. 3, Article 6, Publication date: August 2013.



!
!

!
!

!
!

!
!

Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators 6:11

architecture patterns, but we do include some observations based on what is publicly
known about this architectural style.

The vector-thread (VT) pattern is also a hybrid pattern, but takes a very different
approach from the SIMT pattern. As shown in Figure 2(e), the HT manages a
collection of CTs and each CT in turn manages an array of µTs. Similar to the vector-
SIMD pattern, this allows various overheads to be amortized onto the CT. Control
threads can also execute vector memory commands to efficiently handle regular data
accesses. Unlike the vector-SIMD pattern, the CT does not execute vector arithmetic
instructions but instead uses a vector-fetch instruction to indicate the start of a scalar
instruction stream that should be executed by the µTs. The VIU allows the converged
µTs to execute efficiently using SIMD execution, but as in the SIMT pattern, they can
also diverge after executing scalar branches.

Figure 3(d) shows the VT pseudoassembly corresponding to the loop in Figure 1(d).
Stripmining (line 5), loop control (line 11–16), and regular data accesses (lines 6–7),
are handled just as in the vector-SIMD pattern. Instead of vector arithmetic instruc-
tions, we use a vector-fetch instruction (line 9) with one argument, which indicates the
instruction address at which all µTs should immediately start executing (e.g., the in-
struction at the ut code label). All µTs execute these scalar instructions (lines 20–24)
until they reach a stop instruction (line 26). An important part of the VT pattern is
that the control thread views the scalar registers across multiple µTs as a single set
of vector registers. In this example, the unit-stride vector load at line 6 writes the vec-
tor register VA with vlen elements. Each µT’s scalar register a implicitly refers to that
µT’s element of vector register VA (µT0’s scalar register a implicitly refers to the first
element of the vector register VA). The µTs cannot access the control thread’s scalar reg-
isters, since this would significantly complicate control processor decoupling. A shared
scalar value is instead broadcast by first loading a scalar value with the control thread
(line 1) and then using a scalar-vector move instruction (lines 2, 8) to copy the given
scalar register value into each element of the given vector register. A scalar branch
(line 20) is used to encode data-dependent control flow. The uTs thus completely skip
the instructions at 21–24 when the branch condition is true. The conditional store is
encoded by simply placing the store after the branch (line 24) similar to the MIMD and
SIMT examples.

Figure 4(d) illustrates how the pseudoassembly in Figure 3(d) would execute on
the implementation pictured in Figure 2(e). An explicit scalar-vector move instruction
(line 2) writes the scalar value into each element of the vector register two elements
per cycle over two cycles. The unit-stride vector load instructions (lines 6–7) execute as
in the vector-SIMD pattern. The control processor then sends the vector fetch instruc-
tion to the VIU. The VIU fetches the branch instruction (line 20) and issues it across
the uTs. Similar to the SIMT pattern, the VIU waits until all µTs resolve the scalar
branch to determine how to proceed. If all µTs either take or do not take the branch,
then the VIU can simply start fetching from the appropriate address. If some µTs take
the branch while others do not, then the µTs diverge and the VIU needs to keep track
of which µTs are executing which side of the branch.

Figures 3(d) and 4(d) illustrate how VT achieves vector-like energy-efficiency while
maintaining the ability to flexibly map irregular DLP. Control instructions are exe-
cuted by the control thread, either only once per loop (lines 1–2) or once per iteration
(lines 11–16). A scalar branch (line 20) provides a convenient way to map complex
data-dependent control flow. The VIU is still able to amortize instruction fetch,
decode, and dependency checking for vector arithmetic instructions (lines 21–23). VT
uses vector memory instructions to efficiently move regular blocks of data between
memory and vector registers (lines 6–7), but can also use µT loads and stores for
gather-scatter operations (line 24). There are however, some overheads including the
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Fig. 5. Example data-parallel tile configurations.

extra scalar-vector move instruction (line 2), the vector-fetch instruction (line 9), and
the µT stop instruction (line 26).

The Scale VT processor was the first example of the VT pattern [Krashinsky et al.
2004]. Scale’s programming methodology uses either a combination of compiled code
for the control thread and hand-coded assembly for the µTs, or a preliminary version
of a vectorizing compiler written specifically for Scale [Hampton and Asanović 2008].

3. MICROARCHITECTURE OF MIMD, VECTOR-SIMD, AND VT TILES
In this section, we describe in detail the microarchitectures used to evaluate the vari-
ous patterns. A data-parallel accelerator will usually include an array of tiles and an
on-chip network to connect them to each other, and an outer-level memory system, as
shown in Figure 5(a). Each tile includes one or more tightly coupled cores and their
caches, with examples in Figures 5(b)–(d). In this article, we focus on comparing the
various architectural design patterns with respect to a single data-parallel tile. The
intertile interconnect and memory system are also critical components of a DLP accel-
erator system, but are outside the scope of this work.

3.1. Microarchitectural Components
We developed a library of parameterized synthesizable RTL components that can be
combined to construct MIMD, vector-SIMD, and VT tiles. Our library includes long-
latency functional units, a multithreaded scalar integer core, vector lanes, vector mem-
ory units, vector issue units, and blocking and nonblocking caches.

A set of long-latency functional units provide support for integer multiplication and
division, and IEEE single-precision floating-point addition, multiplication, division,
and square root. These units can be flexibly retimed to meet various cycle-time
constraints.

Our scalar integer core implements a RISC ISA, with basic integer instructions ex-
ecuted in a five-stage, in-order pipeline but with two sets of request/response queues
for attaching the core to the memory system and long-latency functional units. A two-
read-port/two-write-port (2r2w-port) 32-entry, 32-bit register file holds both integer
and floating-point values. One write port is for the integer pipeline and the other
is shared by the memory system and long-latency functional units. The core can be
multithreaded, with a replicated architectural state for each thread and a dynamic
thread scheduling stage at the front of the pipeline.

Figure 6 shows the microarchitectural template used for all the vector-based cores.
A control processor (CP) sends vector instructions to the vector unit, which includes
one or more vector lanes, a vector memory unit (VMU), and a vector issue unit (VIU).
The lane and VMU components are nearly identical in all of the vector-based cores,
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Fig. 6. Vector-based core microarchitecture. (a) Each vector-based core includes one or more vector lanes,
vector memory unit, and vector issue unit; PVFB = pending vector fragment buffer, PC = program counter,
VAU = vector arithmetic unit, VLU = vector load-data writeback unit, VSU = vector store-data read unit,
VGU = address generation unit for µT loads/stores, VLDQ = vector load-data queue, VSDQ = vector store-
data queue, VLAGU/VSAGU = address generation unit for vector loads/stores, µTAQ = µT address queue,
µTLDQ = µT load-data queue, µTSDQ = µT store-data queue. Modules specific to vector-SIMD or VT cores
are highlighted. (b) Changes required to implement intralane vector register file banking with per-bank
integer ALUs.

but the VIU differs significantly between the vector-SIMD and VT cores, as discussed
below.

Our baseline vector lane consists of a unified 6r3w-port vector register file and five
vector functional units (VFUs): two arithmetic units (VAUs), a load unit (VLU), a store
unit (VSU), and an address-generation unit (VGU). Each VAU contains an integer
ALU and a subset of the long-latency functional units. The vector register file can be
dynamically reconfigured to support between 4–32 registers per µT with correspond-
ing changes in maximum vector length (32–1). This register reconfiguration is similar
to that in the early FACOM VP100/200 machines [Tamura et al. 1985], but is more
flexible, as neither the number of registers nor the vector length have to be a power
of two. Each VFU has a sequencer to step through elements of each vector operation,
generating physical register addresses.

The vector memory unit coordinates data movement between the memory system
and the vector register file using decoupling [Espasa and Valero 1996]. The CP splits
each vector memory instruction into a vector memory µop issued to the VMU and a
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vector register access µop sent to the VIU, which is eventually issued to the VLU or
VSU in the vector lane. A load µop causes the VMU to issue a vector’s worth of load
requests to the memory system, with data returned to the vector load data queue
(VLDQ). As data becomes available, the VLU copies it from the VLDQ to the vector
register file. A store µop causes the VMU to retrieve a vector’s worth of data from
the vector store data queue (VSDQ) as it is pushed onto the queue by the VSU. Note
that for single-lane configurations, the VMU still uses wide accesses between the
VLDQ/VSDQ and the memory system, but moves data between the VLDQ/VSDQ
and the vector lane one element at a time. Individual µT loads and stores, which are
used to implement gathers and scatters, are handled similarly, except addresses are
generated by the VGU and data flows through separate queues.

The main difference between vector-SIMD and VT cores is how the vector issue unit
fetches instructions and handles conditional control flow. In a vector-SIMD core, the
CP sends individual vector instructions to the VIU, which is responsible for ensuring
that all hazards have been resolved before sending vector µops to the vector lane.
Our vector-SIMD ISA supports data-dependent control flow using conventional vector
masking, with eight single-bit flag registers. A µT is prevented from writing results for
a vector instruction when the associated bit in a selected flag register is clear.

In our VT core, the CP sends vector-fetch instructions to the VIU. For each vector
fetch, the VIU creates a new vector fragment consisting of a program counter initial-
ized to the start address specified in the vector fetch, and an active µT bit mask, ini-
tialized to all active. The VIU then fetches and executes the corresponding sequential
instruction stream across all active µTs, sending a vector µop plus active µT mask to
the vector lanes for each instruction. The VIU handles a branch instruction by issuing
a compare µop to one of the VFUs, which then produces a branch-resolution bit mask.
If the mask is all zeros or ones, the VIU continues fetching scalar instructions along the
fall-through or taken path. Otherwise, the µTs have diverged causing the VIU to split
the current fragment into two fragments representing the µTs on the fall-through and
taken paths respectively. The VIU then continues to execute the fall-through fragment
while placing the taken fragment in a pending vector fragment buffer (PVFB). The
µTs can repeatedly diverge, creating new fragments, until there is only one µT per
fragment. The current fragment finishes when it executes a stop instruction. The VIU
then selects another vector fragment from the PVFB for execution. Once the PVFB is
empty, indicating that all the µTs have stopped executing, the VIU can begin process-
ing the next vector-fetch instruction.

Our library also includes blocking and nonblocking cache components with a rich set
of parameters: cache type (instruction/data), access port width, refill port width, cache
line size, total capacity, and associativity. For nonblocking caches, additional parame-
ters include the number of miss-status-handling registers (MSHR) and the number of
secondary misses per MSHR.

3.2. Constructing Tiles
MIMD cores combine a scalar integer core with integer and floating-point long-latency
functional units, and support from one to eight µTs per core. Vector cores use a single-
threaded scalar integer core as the CP connected to either a vector-SIMD or VT VIU,
with one or more vector lanes and a VMU. To save area, the CP shares long-latency
functional units with the vector lane, as in the Cray-1 [Russell 1978].

We constructed two tile types: multicore tiles consist of four MIMD (Figure 5(b))
or single-lane vector cores (Figure 5(c)), while multilane tiles consist of a single CP
connected to a four-lane vector unit (Figure 5(d)). All tiles have the same number of
long-latency functional units. Each tile includes a shared 64-KB four-bank data cache
(8-way set-associative, 8 MSHRs, 4 secondary misses per MSHR), interleaved by a
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Fig. 7. Example read port scheduling. All four examples execute an add, a multiply, a µTAQ access, and
a µTSDQ access µop. A hardware vector length of eight, and an active µT mask of 11101001, is assumed.
VRF = vector register file, R = read port, C = cycle, + = addition, * = multiplication, a = µTAQ access, st =
µTSDQ access.

64-byte cache line. Request and response arbiters and crossbars manage communi-
cation between the cache banks and cores (or lanes). Each CP has a 16-KB private
instruction cache and each VT VIU has a 2-KB vector instruction cache. Hence the
overall instruction cache capacity (and area) is much larger in multicore (64–72 KB)
as compared to multilane (16–18 KB) tiles.

3.3. Microarchitectural Optimizations: Banking and Density-Time Execution
We explored a series of microarchitectural optimizations to improve performance,
area, and energy efficiency of our baseline vector-SIMD and VT cores. The first
was using a conventional banked vector register file to reduce area and energy (see
Figure 6(b)). While a monolithic 6r3w register file simplifies vector lane design by
allowing each VFU to access any element on any clock cycle, the high port count is
expensive. Dividing the register file into four independent banks, each with one write
and two read ports significantly reduces register file area while keeping capacity
constant. A crossbar connects banks to VFUs. The four 2r1w banks result in a greater
aggregate bandwidth of eight read and four write ports, which we take advantage of
by adding a third VAU (VAU2) to the vector lane and rearranging the assignment of
functional units to VAUs.

Figure 7(a) illustrates an example read port scheduling with a monolithic 6r3w vec-
tor register file. The add µop is issued at cycle 0 to use read ports R0 and R1 for eight
cycles. The multiply µop is scheduled to access its operands with R2 and R3 starting
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at cycle 1. µTAQ and µTSDQ access µops for a µT store instruction are performed
through R4 and R5 at cycles 3 and 4 respectively. Figure 7(b) illustrates how the read
port scheduling changes with vector regfile banking. Registers within a µT are colo-
cated within a bank, and µTs are striped across banks. As a VFU sequencer iterates
through the µTs in a vector, it accesses a new bank on each clock cycle. The VIU must
schedule vector µops to prevent bank conflicts, where two VFUs try to access the same
bank on the same clock cycle. Note that the µTSDQ access cannot be scheduled at cycle
4 because of a bank conflict with the add operation. The operation is instead scheduled
at cycle 6, requiring a total of 14 cycles to finish—2 cycles longer than a monolithic vec-
tor register file. Read ports are simply disabled for inactive µTs (µT1, µT2, and µT4)
in both cases.

We developed another optimization for the banked design, which removes integer
units from the VAUs and instead adds four per-bank integer ALUs directly connected
to the read and write ports of each bank, bypassing the crossbar (see Figure 7(b)).
This saves energy, and also helps performance by avoiding structural hazards and
increasing peak integer throughput to four integer VAUs. The area cost of the extra
ALUs is small relative to the size of the register file.

We also investigated density-time execution [Smith et al. 2000] to improve vector
performance on irregular codes. The baseline vector machine takes time proportional
to the vector length for each vector instruction, regardless of the number of inactive
µTs. For example, if the hardware vector length is 8, it will take 8 cycles to exe-
cute a vector instruction, even if only five µTs are active (Figure 7(a)). Codes with
highly irregular control flow often cause significant divergence between the µTs,
splintering a vector into many fragments of only a few active µTs each. Density-time
improves vector execution efficiency by compressing the vector fragment and only
spending cycles on active µTs. With density-time execution in Figure 7(c), it only
takes 5 cycles per vector fragment rather than 8 cycles. As illustrated in Figure 7(d),
bank scheduling constraints reduce the effectiveness of density-time execution in
banked register files. Rather than compressing inactive µTs from the whole vector,
only inactive µTs from the same bank can be compressed. In Figure 7(d), µT3 and
µT7 from the same bank are both active, resulting in no actual cycle savings with
density-time execution. Multilane machines have even greater constraints, as lanes
must remain synchronized, so we only added density-time execution to our single-lane
configurations.

3.4. Microarchitectural Optimizations: Dynamic Fragment Convergence
The PVFB in our baseline VT machine is a FIFO queue with no means to merge vec-
tor fragments. Figure 8(c) shows the execution of code in Figure 8(a) with the baseline
FIFO queue. We assume a hardware vector length of four, and the outcome of branches
b.0, b.1, and b.2 for all four µTs are shown as part of the execution trace in Figure 8(b).
The execution starts at the vector-fetched PC (0x00) with an active µT bit mask, ini-
tialized to all active (1111). Since op.0 is not a branch instruction, the FIFO vector
fragment selection policy chooses the PC+4 fragment, which consists of a PC (0x04)
and the same µT mask (1111), for execution. Once branch b.0 is resolved, the selection
policy chooses to stash the taken fragment {0x20,1000} in the PVFB for later execu-
tion and execute the not-taken fragment {0x08,0111}. Vector fragments {0x1c,0100}
and {0x20,0010} are saved next as a result of branches b.1 and b.2. Once the cur-
rent fragment {0x24,0001} encounters a stop instruction, the selection policy chooses
to dequeue a fragment from the PVFB to execute. Note that once a vector becomes
fragmented, those fragments will execute independently until all µTs execute a stop
instruction, even when fragments have the same PC (0x20).
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Fig. 8. Executing irregular DLP code with forward branches only. Example (a) pseudoassembly, (b) trace
(PCs are aligned to match the 1-stack scheduling), (c) execution diagram illustrating how the FIFO queue
manages divergence, (d) execution diagram illustrating how the 1-stack scheme manages divergence. T =
taken, NT = not-taken, PVFB = pending vector fragment buffer.

To improve execution efficiency, we developed two schemes to implement dynamic
fragment convergence in the PVFB for VT machines. When a new fragment is inserted
into the PVFB, both schemes will attempt to dynamically merge the fragment with
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an existing fragment if their PCs match, OR-ing their active µT masks together. The
challenge is to construct a fragment scheduling heuristic that maximizes opportunities
for convergence by avoiding early execution of fragments that could later have been
able to merge with other fragments in the PVFB.

Our first convergence scheme, called 1-stack, organizes the PVFB as a stack
with fragments sorted by PC address, with newly created fragments systolically
insertion-sorted into the stack. The stack vector fragment selection policy always
picks the fragment with the numerically smallest (earliest) PC among the taken
and not-taken fragments, merging with the fragment at the top of the PVFB stack
when possible. The intuition behind 1-stack is to favor fragments trailing behind
in execution, giving them more chance to meet up with faster-moving fragments at
a convergence point. The execution diagram in Figure 8(d) illustrates the 1-stack
fragment scheduling heuristic. Note that when fragment {0x1c,0100} is pushed to the
stack, the stack enforces PC ordering and keeps that fragment on the top. Also note
fragment {0x20,0010} is merged with an existing fragment in the stack with the same
PC 0x20. Once PC 0x1c is reached, the current fragment is merged with the fragment
at the top of the stack {0x1c,0100}, resulting in a new fragment {0x1c,0101} to execute.
Note that the operations at PC 0x20 are now executed with all µTs active.

The 1-stack scheme performs reasonably well, but is suboptimal for loops with mul-
tiple backwards branches. Fragments that first branch back for another loop iteration
are treated as if they are behind slower fragments in the same iteration and race
ahead. Suppose four µTs execute the pseudoassembly in Figure 9(a) and the four µTs
pick branch directions as shown in Figure 9(b). An execution diagram in Figure 9(c)
illustrates this phenomenon. As shown in the diagram, µT2 and µT3 satisfy a loop
condition such that b.1 is taken. Since the 1-stack scheme favors the smallest PC,
these µT fragments are executed to completion, only converging with the fragment at
PC 0x10 on the last iteration. This reduces the number of active µTs per instruction
execution (instructions at PC 0x00–0x14 are executed with an active µT mask 0011)
yielding suboptimal execution for this type of code.

To solve this problem, our second scheme, called 2-stack, divides the PVFB into
two virtual stacks, one for fragments on the current iteration of a loop and another
for fragments on a future iteration of a loop (Figure 9(d)). Fragments created by the
forward branch ({0x0c,1011}) are pushed onto the current stack, while fragments cre-
ated by backwards branches ({0x00,1100} and {0x00,0011}) are pushed onto the future
stack. The selection policy now only pops fragments from the current stack. When the
current stack empties, the current and future stacks are swapped (PVFB operation E).
The 2-stack implementation is similar to the 1-stack implementation, but PCs saved
in the PVFB have an extra most-significant bit added to be used in comparisons for
sorting. This bit is set if the fragment being inserted into the PVFB was a backwards
branch to prevent this fragment from being chosen until all fragments on the current
iteration are executed. Once no fragments of the current iteration remain, this bit is
toggled so that the next iteration’s fragments become active candidates for selection.
Implementing the 2-stack scheme in this way allows us to physically use only one
stack, exploiting the fact that we can never use more entries than there are µTs.

Note that the Maven VT design only uses dynamic information such as the PC of
a fragment, with no explicit static hints to aid fragment convergence as are believed
to be used in SIMT architectures [Fung et al. 2009; NVIDIA 2009]. The stack-based
convergence scheme proposed in Woop et al. [2005] and described in Fung et al. [2009]
uses immediate postdominators as explicit yield points to guide convergence in the
warp scheduler. To know the immediate postdominator of a diverging branch, however,
the control-flow graph needs to be analyzed. Fung et al. [2009] proposes dynamic warp
formation to increase the utilization of the SIMD pipeline. Five scheduling polices were
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Fig. 9. Executing irregular DLP code with backward branches. Example (a) pseudoassembly, (b) trace (PCs
are aligned to match the 2-stack scheduling), (c) execution diagram illustrating how the 1-stack scheme
manages divergence, (d) execution diagram illustrating how the 2-stack scheme manages divergence. T =
taken, NT = not-taken, PVFB = pending vector fragment buffer.

considered to maximize the number of active threads when dynamically forming a
warp. Among the five schemes, the program counter (DPC) policy is similar to our
1-stack convergence scheme. The intuition behind the two schemes is the same: the
program counter is a good indicator of fragment progress.
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Fig. 10. Memory coalescer microarchitecture. A memory coalescer for multilane VT tiles with four lanes.
VMU = vector memory unit, µTAQ = µT address queue, µTLDQ = µT load data queue, WBS = word/byte
select buffer, LDB = load data buffer.

3.5. Microarchitectural Optimizations: Dynamic Memory Coalescer
The final optimization we considered is a dynamic memory coalescer for multilane VT
vector units (Figure 10). During the execution of a µT load instruction, each lane may
generate a separate memory address on each cycle. The memory coalescer compares
the high-order bits of each memory address across lanes and combines matching re-
quests. The low-order bits or each request address are stored as word and byte select
bits alongside the load data buffer. The number of low-order bits should match the
maximum size of the memory response in bytes. When memory responses arrive from
the cache, we use the stored word and byte select bits to select the correct portion of
the response to write to each µT load data queue feeding the vector lanes.

For example, suppose the four µT address queues issue the following load word re-
quests: 0x001c, 0x0014, 0x0008, 0x0014. We assume each data cache response may
contain up to 16 bytes, and that cache banks are interleaved on 16-byte boundaries.
The address comparators identify that the first, second, and fourth requests may be co-
alesced. The second and fourth requests are disabled from accessing the cache, while
the first request is annotated with extra information that indicates that it is a coa-
lesced request for the first, second, and fourth lanes. The third request passes through
to a separate cache bank alone. At the same time, the address comparators write the
word and byte select information to the word and byte select buffers. In this case
the first, second, and fourth requests select the fourth, second, and first words of the
16-byte coalesced response, respectively. Notice how addresses need not be in ascend-
ing order and may even match in the low-order bits.

Additional control logic must be added to the data cache arbiter to correctly route
memory responses. The arbiter must be able to write a response to multiple load data
buffers but only if all buffers are ready to receive data. A conflict occurs when a coa-
lesced response arrives at the same time as a noncoalesced response and both wish to
write to the same load data buffer. This introduces more complex control dependencies
between vector lanes.

Dynamic memory coalescing can significantly help performance on codes that use µT
loads to access memory addresses with a unit stride, as these would otherwise gener-
ate cache bank conflicts. Similarly, codes that use µT loads to access the same memory
address also benefit. This effect diminishes with larger strides, as requests no longer
occupy the same cache bank. Compared to vector memory operations, however, µT
memory operations are still less efficient for code with regular memory access patterns
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Fig. 11. Evaluation framework. The software toolflow allows C++ applications to be compiled either na-
tively or for Maven, while the hardware toolflow transforms the Verilog RTL for a data-parallel tile into
actual layout. From this toolflow we can accurately measure area, performance (1/cycle count × cycle time),
and energy (average power × cycle count × cycle time).

even with dynamic memory coalescing. Vector memory operations have the benefit of
access-execute decoupling because addresses can be computed independently and far
ahead of nonmemory operations. Compile-time generation of unit-stride and constant-
stride vector memory operations supports hardware coalescing much more efficiently
than dynamic comparison of µT memory addresses at run time. However, dynamic co-
alescing of µT memory accesses can improve the efficiency of irregular access patterns
with high spatial locality, and could also improve indexed memory operations on tradi-
tional vector machines. We compare the effectiveness of vector memory operations to
using only µT memory operations with memory coalescing in Section 5.3.

4. EVALUATION FRAMEWORK
This section describes the software and hardware infrastructure used to evaluate
the various microarchitectural options introduced in the previous section, and also
outlines the specific configurations, microbenchmarks, and application kernels used in
our evaluation. Figure 11 illustrates the overall process of compiling C++ application
code into a binary, generating a VLSI layout from an RTL description of a particular
machine configuration, and simulating the execution of the application to extract area,
performance, and power statistics.

4.1. Programming Methodology
Past accelerators usually relied on hand-coded assembly or compilers that automati-
cally extract DLP from high-level programming languages [Bacon et al. 1994; DeVries
and Lee 1995; Hampton and Asanović 2008]. Recently there has been a renewed
interest in explicitly data-parallel programming methodologies [Buck et al. 2004;
Nickolls et al. 2008; OpenCL 2008], where the programmer writes code for the HT
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and annotates data-parallel tasks to be executed in parallel on all µTs. We developed
a similar explicit-DLP C++ programming environment for Maven. Supporting such a
programming style for our VT implementation was made relatively easy by the use of a
single ISA for the CT and µTs. The software toolflow is illustrated on the lefthand side
of Figure 11. Note that to aid in debugging, we produce a program binary that runs
natively on our development platform along with the binary for our target machine
architecture. For all systems, a simple proxy kernel running on the cores supports
basic system calls by communicating with an application server running on the host.
More details about the programming methodology can be found in Batten [2010].

To bring up a reasonable compiler infrastructure with limited resources, we
leveraged a standard scalar compiler. We started with a recent version of the GNU
assembler, linker, and C++/newlib compiler (version 4.4.1), which all contain support
for the basic MIPS32 instruction set. We then modified the assembler to support the
new Maven scalar and vector instructions.

Most of our efforts went into modifying the compiler back-end. We first unified the
integer and floating-point register spaces. Instruction templates were added for the
new divide and remainder instructions, since the Maven ISA lacks high and low reg-
isters. Branch delay slots were also removed. A new vector register space and the
corresponding instruction templates required for register allocation were added. Some
of these modifications were able to leverage the GNU C++ compiler’s built-in support
for fixed-length subword-SIMD instructions. Compiler intrinsics were added for some
of the vector instructions to enable software to explicitly generate these instructions
and for the compiler to understand their semantics. The control thread and the µTs
have different performance characteristics, so we leveraged the compiler instruction
scheduling framework to create two pipeline models for Maven: one optimized for con-
trol threads and the other optimized for µTs.

There were relatively few modifications necessary to the compiler front-end. We used
the GNU C++ compiler’s function attribute framework to add new attributes denoting
functions meant to run on the µTs for performance tuning. We again leveraged the
GNU C++ compiler’s built-in support for fixed-length subword-SIMD instructions to
create true C++ vector types.

Figure 12 illustrates how the irregular DLP loop in Figure 1(d) might be coded for
various architectural patterns. Figure 12(a) illustrates how the MIMD architectural
pattern is programmed. The VT architectural pattern can be programmed much like
an SIMT machine (Figure 12(b)), in which case programming is relatively easy but
execution is less efficient. The VT pattern also allows programmers to expend more ef-
fort in optimizing their code to hoist structured memory accesses out as vector memory
operations, and to use scalar operations (Figure 12(c)), which provides more efficiency
than is possible with a pure SIMT machine. Figure 12(d) shows how irregular DLP is
mapped to the Vector-SIMD architectural pattern. Finally, Figure 12(e) describes how
we leverage the MIMD programming model to target a multicore VT machine.

For MIMD, a master µT on the multithreaded core is responsible for spawning the
work on the other remaining worker µTs. To support this, we first modify the proxy
kernel to support multiple threads of execution and then build a lightweight user-
level threading library called bthreads, which stands for “bare threads,” on top of the
proxy-kernel threads. There is one bthread for each underlying hardware µT context.
The application is responsible for managing scheduling. Parallel threads are spawned
using a BTHREAD PARALLEL RANGE macro as shown in Figure 12(a). This macro automat-
ically partitions the input dataset’s linear index range, creates a separate function,
spawns the function onto each µT, passes in arguments through memory, and waits for
the threads to finish. Each thread does the work from range.begin() to range.end(),
where range is defined by the preprocessor macro to be different for each thread. Line 4
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Fig. 12. Irregular DLP example using Maven programming methodology. Code corresponds to the loop
in Figure 1(d). Roughly, code (a) compiles to assembly in Figure 3(a), code (c) compiles to assembly in
Figure 3(d), and code (d) compiles to assembly in Figure 3(b).

specifies the total number of elements to be distributed to the worker µTs and a list
of C++ variables that should be marshalled for each worker µT. The final argument to
the macro is the work to be done by each µT (lines 5–11). The work can contain any of
the other architectural design pattern programming methodologies to enable mapping
an application to multiple cores. As illustrated in Figure 12(e), by calling the idlp vt
function inside the body of a BTHREAD PARALLEL RANGE macro we can use the bthreads
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library to distribute work among multiple VT cores. This programming model is simi-
lar to the OpenMP programming framework [OpenMP 2008], where the programmer
explicitly annotates the source code with pragmas to mark parallel loops.

Figure 12(b) illustrates the Maven VT programming environment used in SIMT
fashion. The config function on line 4 takes two arguments: the number of required
µT registers and the application vector. This function returns the actual number of µTs
supported by the hardware (block size), which is used to calculate the number of µT
blocks on line 5. Lines 7–8 copy array base pointers and address of x, and lines 9–10,
13 copy size, block size, and block index into all µTs. A for loop on line 12 emulates
multiple µT blocks mapped to the same core. The VT VFETCH macro on lines 15–22
takes two arguments: a list of hardware vectors, and the actual code, which should
be executed on each µT. The code within the vector-fetched block specifies what op-
erations to perform on each element of the hardware vectors. This means that the
C++ type of a hardware vector is different inside versus outside, the vector-fetched
block. Outside the block, a hardware vector represents a vector of elements and has
type HardwareVector<T> (e.g., vsize on line 9 has type HardwareVector<int>), but in-
side the block, a hardware “vector” now actually represents a single element and has
type T (e.g., vsize on lines 18 has type int). Code within a vector-fetched block can
include almost any C++ language feature including stack-allocated variables, object
instantiation, templates, conditionals (if, switch), and loops (for, while). The primary
restrictions are that a vector-fetched block cannot use C++ exceptions nor make any
system calls. After calculating its own index on line 17, a conditional on line 18 checks
to make sure the index is not greater than the array size. Lines 19–20 contain the
actual work. Line 24 performs a memory fence to ensure that all results are visible
in memory before returning from the function. Note that this is similar to the CUDA
programming methodology [Nickolls et al. 2008]. The address calculation on line 17
and the conditional branch on line 18 closely follows the CUDA programming practice
(compare vbidx with CUDA blockIdx.x, vbsz to blockDim.x, and vt::get utidx() to
threadIdx.x).

Figure 12(c) shows an example of code after optimizing for the VT architectural pat-
tern. The output of the config function is now used to stripmine across the application
vector via the for loop on line 7. The call to set vlen on line 8 allows the stripmine
loop to naturally handle cases where size is not evenly divisible by the hardware vec-
tor length. This eliminates the first conditional branch in Figure12(b) to check whether
the index is in bounds. Line 5 instantiates a hardware vector containing elements of
type int and initializes all elements in the vector with the scalar value x. This shared
variable will be kept in the same hardware vector across all iterations of the strip-
mine loop. The structured memory accesses are turned into unit-stride loads (line 11,
13–14); vlen consecutive elements of arrays a and b are moved into the appropriate
hardware vector with the load member function. Note that the conditional store is
implemented similarly to Figure 12(b); the base pointer for the array c is copied into
all elements of the hardware vector vcp on line 10 and then a scalar store (line 19) is
executed inside a conditional.

For vector-SIMD, we were able to leverage the built-in GCC vectorizer for map-
ping very simple regular DLP microbenchmarks, but the GCC vectorizer could not
automatically compile the larger application kernels for the vector-SIMD tiles. For
these more complicated vector-SIMD kernels, we use a subset of our VT C++ library
for stripmining and vector memory operations along with GCC’s inline assembly
extensions for the actual computation. Figure 12(d) shows how the existing VT pro-
gramming environment is used with hand-coded assembly to map an irregular DLP
loop to a vector-SIMD machine. The same stripmining process is used on lines 4–8.
Lines 13–14 are the same unit-stride loads used in the VT programming model.
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The actual computation is expressed with an inline assembly extension found on
lines 17–25. Note that a conditional store is implemented with a unit-stride load
(line 15), a conditional move (line 21), and a unit-stride store (line 27).

The big reduction in programmability is shown in the progression of Figure 12.
Figure 12(a) needs explicit coarse-grain parallelization. Explicit data-parallelization
is required for Figures 12(b), 12(c), and 12(d). Figures 12(c) and 12(d) require factoring
out, vector loads and stores, shared data, and common work, to run on the control
thread. Finally, Figure 12(d) requires handling irregular control flow with vector flags.
Moving down the list, substantially increases the level of programmer effort. For
example, our struggle to find a suitable way to program more interesting codes for the
vector-SIMD pattern is anecdotal evidence of the broader challenge of programming
such accelerators. These qualitative big steps impact the high-level programming
models and ability of compilers to generate efficient code for each style.

4.2. Hardware Toolflow
The right-hand side of Figure 11 shows the steps we used to generate full layout-
level designs for our evaluation. We use our own machine definition files to instantiate
and compose the parameterized Verilog RTL for each tile configuration. We targeted
TSMC’s 65-nm GPLUSTC process using a Synposys-based ASIC toolflow: VCS for sim-
ulation, Design Compiler for synthesis, and IC Compiler for place-and-route (PAR).

RTL simulation produces cycle counts. PAR produces cycle time and area estimates.
We investigated alternative strategies to determine power consumption. Table I lists
IC Compiler post-PAR power estimates based on a uniform statistical probability of
bit transitions, and the range of powers reported via PrimeTime across all benchmarks
when using bit-accurate activity for every net simulated on a back-annotated post-PAR
gate-level model. The inaccuracy of the IC Compiler estimates and the large variance
in power across benchmarks motivated us to use only detailed gate-level simulation
for energy estimates.

Complex functional units (e.g., floating-point) are implemented using Synopsys
DesignWare library components, with automatic register retiming to generate
pipelined units satisfying our cycle-time constraint. The resulting latencies were: inte-
ger multiplier (3) and divider (12), floating-point adder (3), multiplier (3), divider (7),
and square-root unit (10).

We did not have access to a memory compiler for our target process, so we model
SRAMs and caches by creating abstracted black-box modules, with area, timing, and
power models suitable for use by the CAD tools. We used CACTI [Muralimanohar
et al. 2009] to explore a range of possible implementations and chose one that satisfied
our cycle-time requirement while consuming minimal power and area. We compared
CACTI’s predicted parameter values to the SRAM datasheet for our target process
and found them to be reasonably close. Cache behavior is modeled by a cache simula-
tor (written in C++) that interfaces with the ports of the cache modules. The latency
between a cache-line refill request and response was set at 50 cycles. We specify the
dimensions of the target ASIC tile and the placement and orientation of the large
black-box modules. The rest of the design (including register files) was implemented
using standard cells, all automatically placed and routed.

4.3. Tile Configurations
We evaluated hundreds of tile configurations using our hardware toolflow. For this arti-
cle, we focus on 25 representative configurations (see Table I). We name configurations
beginning with a prefix designating the style of machine, followed by the number of
cores (c), the number of lanes (v), and physical registers (r), per core or lane. The suffix
denotes various microarchitectural optimizations: b = banked register file, bi = banked
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Table I. Subset of Evaluated Tile Configurations

Per Core Peak Throughput Power Total
Area

Cycle
TimeNum Num Num Arith Mem Statistical Simulated

Configuration Cores Regs µTs (ops/cyc) (elm/cyc) (mW) (mW) (mm2) (ns)
mimd-c4r32§ 4 32 4 4 4 149 137 – 181 3.7 1.10
mimd-c4r64§ 4 64 8 4 4 216 130 – 247 4.0 1.13
mimd-c4r128§ 4 128 16 4 4 242 124 – 261 4.2 1.19
mimd-c4r256§ 4 256 32 4 4 299 221 – 298 4.7 1.27

Per Core Per Lane Peak Throughput Power
Total
Area

Cycle
TimeNum Num Max vlen Num Arith Mem Statistical Simulated

Configuration Cores Lanes Range Regs (ops/cyc) (elm/cyc) (mW) (mW) (mm2) (ns)
vsimd-c4v1r32 4 1 1 – 8 32 4c + 8v 4l + 4s 349 154 – 273 4.8 1.23
vsimd-c4v1r64 4 1 2 – 16 64 4c + 8v 4l + 4s 352 176 – 278 4.9 1.28
vsimd-c4v1r128 4 1 4 – 32 128 4c + 8v 4l + 4s 367 194 – 283 5.2 1.30
vsimd-c4v1r256 4 1 8 – 32 256 4c + 8v 4l + 4s 384 207 – 302 6.0 1.49
vsimd-c4v1r256+bi§ 4 1 8 – 32 256 4c + 16v 4l + 4s 396 213 – 331 5.6 1.37
vsimd-c1v4r256+bi§ 1 4 32 – 128 256 1c + 16v 4l + 4s 224 137 – 252 3.9 1.46
vt-c4v1r32 4 1 1 – 8 32 4c + 8v 4l + 4s 384 136 – 248 5.1 1.27
vt-c4v1r64 4 1 2 – 16 64 4c + 8v 4l + 4s 391 151 – 252 5.3 1.32
vt-c4v1r128 4 1 4 – 32 128 4c + 8v 4l + 4s 401 152 – 274 5.6 1.30
vt-c4v1r256 4 1 8 – 32 256 4c + 8v 4l + 4s 428 162 – 318 6.3 1.47
vt-c4v1r128+b 4 1 4 – 32 128 4c + 8v 4l + 4s 396 148 – 254 5.3 1.27
vt-c4v1r256+b 4 1 8 – 32 256 4c + 8v 4l + 4s 404 147 – 271 5.6 1.31
vt-c4v1r128+bi 4 1 4 – 32 128 4c + 16v 4l + 4s 439 174 – 278 5.6 1.31
vt-c4v1r256+bi 4 1 8 – 32 256 4c + 16v 4l + 4s 445 172 – 298 5.9 1.32
vt-c4v1r256+bi 4 1 8 – 32 256 4c + 16v 4l + 4s 445 172 – 298 5.9 1.32
vt-c4v1r256+bi+d 4 1 8 – 32 256 4c + 16v 4l + 4s 449 196 – 297 6.0 1.41
vt-c4v1r256+bi+1s 4 1 8 – 32 256 4c + 16v 4l + 4s 408 193 – 289 5.8 1.39
vt-c4v1r256+bi+1s+d 4 1 8 – 32 256 4c + 16v 4l + 4s 409 213 – 293 5.8 1.41
vt-c4v1r256+bi+2s 4 1 8 – 32 256 4c + 16v 4l + 4s 409 225 – 304 5.9 1.32
vt-c4v1r256+bi+2s+d§ 4 1 8 – 32 256 4c + 16v 4l + 4s 410 168 – 300 5.9 1.36
vt-c1v4r256+bi+2s§ 1 4 32 256 1c + 16v 4l + 4s 205 111 – 167 3.9 1.42
vt-c1v4r256+bi+2s+mc 1 4 32 256 1c + 16v 4l + 4s 223 118 – 173 4.0 1.42

Note: Multicore and multilane tiles for MIMD, vector-SIMD, and VT patterns. Configurations with § are used in Section 5.4.
statistical power column is from post-PAR; simulated power column shows min/max across all gate-level simulations; config-
uration column: b = banked, bi = banked+int, 2s = 2-stack, d = density-time, mc = memory coalescing; num µTs column is the
number of µTs supported with the default of 32 registers/µT; arith column: xc + yv = x CP ops and y vector unit ops per cycle;
mem column: xl + ys = x load elements and y store elements per cycle.

register file with extra integer ALUs, 1s = 1-stack convergence scheme, 2s = 2-stack
convergence scheme, d = density-time execution, mc = memory coalescing. Each type of
core is implemented with 32, 64, 128, and 256 physical registers. For the MIMD cores,
this corresponds to 1, 2, 4, and 8 µTs respectively. For the vector cores, the maximum
hardware vector length is determined by the size of the vector register file and the
number of registers assigned to each µT (4–32). The vector length is capped at 32 for all
VT designs, even though some configurations (256 physical registers with 4 registers
per µT) could theoretically support longer vector lengths. We imposed this limitation
because some structures in the VT machines (such as the PVFB) scale quadratically
in area with respect to the maximum number of active µTs. Banked vector register file
designs are only implemented for configurations with 128 and 256 physical registers.

4.4. Microbenchmarks and Application Kernels
We selected four microbenchmarks and six larger application kernels to repre-
sent the spectrum from regular to irregular DLP. Figure 13 illustrates the four

ACM Transactions on Computer Systems, Vol. 31, No. 3, Article 6, Publication date: August 2013.



!
!

!
!

!
!

!
!

Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators 6:27

Fig. 13. Microbenchmarks. Four microbenchmarks are used to evaluate the various architectural design
patterns.

microbenchmarks. The vvadd microbenchmark performs a 1000-element vector-vector
floating-point addition and is the simplest example of regular DLP. The cmult
microbenchmark performs a 1000-element vector-vector floating-point complex mul-
tiplication, and illustrates regular DLP with additional computational density and
strided accesses to the arrays of complex number objects. The mfilt microbenchmark
convolves a five-element filter kernel with a 100 × 100 gray-scale image under a
separate mask image. It uses a regular memory access pattern and irregular control
flow. Each iteration of the loop checks whether a pixel in a mask image is selected
and only performs the convolution for selected pixels. The bsearch microbenchmark
uses a binary search algorithm to perform 1000 look-ups into a sorted array of 1000
key-value pairs. This microbenchmark exhibits highly irregular DLP with two nested
loops: an outer for loop over the search keys and an inner while loop implementing a
binary search for finding the key. We include two VT implementations: one (bsearch)
uses branches to handle intra-iteration control flow, while the second (bsearch-cmv)
uses conditional move assembly instructions explicitly inserted by the programmer.

The viterbi kernel decodes frames of convolutionally encoded data using the Viterbi
algorithm. Iterative calculation of survivor paths and their accumulated error are par-
allelized across paths. Each µT performs an add-compare-select butterfly operation
to compute the error for two paths simultaneously, which requires unpredictable ac-
cesses to a lookup table. The rsort kernel performs an incremental radix sort on an
array of integers. During each iteration, individual µTs build local histograms of the
data, and then a parallel reduction and scan is performed to determine the mapping
to a global destination array. Atomic memory operations are necessary to build the
global histogram structure. The kmeans kernel implements the k-means clustering al-
gorithm, classifying a collection of objects, each with some number of features, into a
set of clusters through an iterative process. Assignment of objects to clusters is par-
allelized across objects. The minimum distance between an object and each cluster
is computed independently by each µT and an atomic memory operation updates a
shared data structure. Cluster centers are recomputed in parallel using one µT per
cluster. The dither kernel generates a black and white image from a gray-scale image
using Floyd-Steinberg dithering. Work is parallelized across the diagonals of the im-
age, so that each µT works on a subset of the diagonal. A data-dependent conditional
allows µTs to skip work if an input pixel is white. The physics kernel performs a simple
Newtonian physics simulation with object collision detection. Each µT is responsible
for intersection detection, motion variable computation, and location calculation for a
single object. Oct-trees are also generated in parallel. The strsearch kernel implements
the Knuth-Morris-Pratt algorithm to search a collection of strings for the presence of
substrings. The search is parallelized by having all µTs search for the same substrings
in different streams. The DFAs used to model substring-matching state machines are
also generated in parallel.
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Table II. Microbenchmark and Application Kernel Statistics for VT Implementation

Control Thread Microthread
Name vf vec ld vec st int fp ld st amo br cmv tot loop nregs

µ
bm

ar
k

s vvadd 1 2u 2u 1 2 4
cmult 1 4s 2s 1 6 8 4
mfilt 1 6u 1u 10 1 12 13
bsearch-cmv 1 1u 1u 17 2 1 4 25 × 13
bsearch 1 1u 1u 15 3 5 1 26 × 10

A
p

p
K

er
n

el
s viterbi 3 3u 1u, 4s 21 3 35 8

rsort 3 3u, 2s 3u 14 2 3 1 25 11
kmeans 9 7u, 3s 5u, 1s 12 6 2 2 1 1 2 40 8
dither 1 4u, 1s 5u, 1s 13 1 2 24 8
physics 4 6u, 12s 1u, 9s 5 56 24 4 16 132 × 32
strsearch 3 5u 1u 35 9 5 15 2 96 × 14

Note: Number of instructions listed by type. vec ld/st columns indicate numbers of both unit-stride
(u) and strided (s) accesses; loop column indicates an inner loop within the vector-fetched block; nregs
column indicates number of registers a vector-fetched block requires.

Table III. Microbenchmark and Application Kernel Data-Dependent Statistics

App Vlen Quartiles Active µT Distribution (%)
Name 1q 2q 3q max 1–25 26–50 51–75 76–100

µ
bm

ar
k

s

vvadd 1000 1000 1000 1000 100.0
cmult 1000 1000 1000 1000 100.0
mfilt 1000 1000 1000 1000 3.6 4.1 9.4 82.9
bsearch-cmv 1000 1000 1000 1000 1.0 3.3 5.8 89.9
bsearch 1000 1000 1000 1000 77.6 12.4 5.1 4.8
bsearch (w/ 1-stack) 23.8 23.4 11.7 41.0
bsearch (w/ 2-stack) 10.1 26.8 49.2 13.9

A
p

p
K

er
n

el
s

viterbi 32 32 32 32 100.0
rsort 1000 1000 1000 1000 100.0
kmeans 100 100 100 100 100.0
dither 72 143 185 386 0.2 0.4 0.7 98.7
physics 7 16 44 917 6.9 15.0 28.7 49.3
physics (w/ 2-stack) 4.7 13.1 28.3 53.9
strsearch 57 57 57 57 57.5 25.5 16.9 0.1
strsearch (w/ 2-stack) 14.8 30.5 54.7 0.1

Note: Application vector length distribution indicates number of µTs used per stripmine loop
assuming infinite resources. Distribution of active µTs with a FIFO PVFB unless otherwise
specified in name column. Each section sorted from most regular to most irregular.

Table II reports the instruction counts and Table III shows the application vector
length and distribution of active µTs for the VT implementations of two representative
microbenchmarks and the six application kernels. viterbi is an example of regular DLP
with known memory access patterns. rsort, kmeans, and dither all exhibit mild control-
flow conditionals with more irregular memory access patterns. physics and strsearch
exhibit characteristics of highly irregular DLP code: loops with data-dependent exit
conditionals, highly irregular data access patterns, and many conditional branches.

5. EVALUATION RESULTS
In this section, we first compare tile configurations based on their cycle times and area
before running four microbenchmarks on the baseline MIMD, vector-SIMD, and VT
tiles with no microarchitectural optimizations. We then explore the impact of various
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Fig. 14. Area for tile configurations. Area breakdown for each of the 25-tile configurations normalized to
the mimd-c4r32 tile.

Fig. 15. Example VLSI layouts. ASIC layout designs for mimd-c4, vt-c4v1r256+bi+2s+d, and
vt-c1v4r256+bi+2s, with individual cores/lanes and memory crossbar highlighted.

microarchitectural optimizations, and compare implementation efficiency and area-
normalized performance of the MIMD, vector-SIMD, and VT patterns for the six appli-
cation kernels.

5.1. Cycle Time and Area Comparison
Tile cycle times vary from 1.10–1.49 ns (see Table I), with critical paths usually pass-
ing through the crossbar that connects cores to individual data cache banks. Figure 14
shows the area breakdown of the tiles normalized to a mimd-c4r32 tile, and Figure 15
depicts three example VLSI layouts. The caches are the largest contributers to the
area of each tile. Note that a multicore vector-SIMD tile (vsimd-c4v1r256+bi) is 20%
larger than a multicore MIMD tile with the same number of long-latency functional
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units and the same total number of physical registers (mimd-c4r256) due to the so-
phisticated VMU and the extra integer ALUs per bank. A multilane vector-SIMD tile
(vsimd-c1v4r256+bi) is actually 16% smaller than the mimd-c4r256 tile because the
increased area overheads are amortized across four lanes. Note that we added addi-
tional buffer space to the multilane tiles to balance the performance across vector tiles,
resulting in similar area usage of the memory unit for both multicore and multilane
vector tiles. Across all vector tiles, the overhead of the embedded control processor is
less than 5%, since it shares long-latency functional units with the vector unit.

Comparing a multicore VT tile (vt-c4v1r256+bi) to a multicore vector-SIMD tile
(vsimd-c4v1r256+bi) shows the area overhead of the extra VT mechanisms is only
≈6%. The VT tile includes a PVFB instead of a vector flag register file, causing the
register file area to decrease and the control area to increase. There is also a small area
overhead due to the extra VT instruction cache. For multilane tiles, these VT overheads
are amortized across four lanes making them negligible (compare vt-c1v4r256+bi+2s
to vsimd-c1v4r256+bi).

5.2. Microbenchmark Results
Figure 16 compares the microbenchmark results between the baseline MIMD, vector-
SIMD, and VT tiles. Note that these tiles do not implement any of the microarchitec-
tural optimizations described in Sections 3.3, 3.4, and 3.5. The microbenchmarks are
sorted by irregularity, with more irregular microbenchmarks towards the bottom (see
active µT distribution in Table III).

Figures 16(a), 16(b), and 16(c) show the impact of increasing the number of physical
registers per core or lane. For mimd-c4r*, increasing the number of µTs from 1 to 2 im-
proves area-normalized performance but at an energy cost. The energy increase is due
to a larger register file (now 64 registers per core) and more control overhead. Support-
ing more than two µTs reduces performance due to the nontrivial start-up overhead re-
quired to spawn and join the additional µTs and a longer cycle time. In the vsimd-c4v1
tile and the vt-c4v1 tile with a unified vector register file, adding more vector register
elements increases hardware vector length and improves temporal amortization of the
CP, instruction cache, and control energy. At 256 registers, however, the larger access
energy of the unified register file outweighs the benefits of increased vector length. The
performance also decreases since the access time of the register file becomes critical.
To mitigate these overheads, we consider banking the vector register file and adding
per-bank integer ALUs (Section 3.3), and the results are presented in the next section
(Figure 17).

As shown in Figure 16(d), adding more registers to the VT tile when running bsearch
results in worse area-normalized performance and worse energy consumption. This
is due to the high irregularity of the microbenchmark. According to the active µT
distribution statistics in Table III, only 1–25% of the µTs were active 77.6% of the
time. Without any microarchitectural optimizations such as density-time execution
(Section 3.3) and dynamic fragment convergence (Section 3.4), increases in the vec-
tor length increase the portion of time spent on inactive µTs. In contrast, when vec-
tor flags (in the hand-coded bsearch for vector-SIMD) or conditional-move assembly
instructions (in the hand-optimized bsearch-cmv) are used to encode data-dependent
conditionals, the results look more similar to the preceding microbenchmarks. The
next section illustrates how microarchitectural optimizations such as density-time ex-
ecution and dynamic fragment convergence help to achieve better energy efficiency
and area-normalized performance (Figure 18).

For regular DLP (Figures 16(a) and 16(b)) and mild irregular DLP (Figure 16(c)),
vector tiles surpass the MIMD tiles in both energy efficiency and area-normalized
performance. For highly irregular DLP (Figure 16(d)), the VT tile without any
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Fig. 16. Implementation efficiency and area-normalized performance for baseline MIMD, vector-SIMD, and
VT tiles running microbenchmarks. Results for the mimd-c4*, vsimd-c4v1*, and vt-c4v1* tiles running
four microbenchmarks. Energy vs. performance / area results are shown on the left. Energy and perfor-
mance/area are normalized to the mimd-c4r32 configuration. Energy breakdowns are shown on the right. In
(d), vt-c4v1r256 (outside figure) uses approximately 6× as much energy (78µJ per task) and has 11× poorer
performance normalized by area than mimd-c4r32.

microarchitectural optimizations performs worse than the MIMD tile. Compared
to the vector-SIMD tile, VT has some area overhead, and performance overheads
from the vector fetch instruction and the µT stop instruction, which are primarily
visible because the microbenchmarks only execute a few (1–10) µT instructions (see
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Fig. 17. Impact of additional physical registers, intralane regfile banking, and additional per-bank integer
ALUs. Results for multi-core MIMD and VT tiles running the bsearch-cmv microbenchmark.

Fig. 18. Impact of density-time execution and stack-based convergence schemes. Results for the
mimd-c4r128 and vt-c4v1r256+bi tiles running bsearch and bsearch-cmv. In (b), FIFO (extends outside
figure) uses approximately 59µJ per task.

Table II) for a short period of time. A fairer comparison among vector tiles after
microarchitectural optimizations is presented in Section 5.4.

5.3. Microarchitectural Tradeoffs
Figure 17 shows the impact of register file banking and adding per-bank integer ALUs
when executing bsearch-cmv. Banking a register file with 128 entries reduces regis-
ter file access energy but decreases area-normalized performance due to bank conflicts
(see vt-c4v1+b configuration). Adding per-bank integer ALUs partially offsets this per-
formance loss (see vt-c4v1+bi configuration). With the additional ALUs, a VT tile with
a banked register file improves both performance and energy versus a VT tile with
a unified register file. Figure 14 shows that banking the vector register file reduces
the register file area by a factor of 2×, while adding local integer ALUs in a banked
design only modestly increases the integer and control logic area. Based on analyzing
results across many tile configurations and applications, we determined that banking
the vector register file and adding per-bank integer ALUs was the optimal choice for
all vector tiles.

Figure 18 shows the impact of adding density-time execution and dynamic fragment
convergence to a multicore VT tile running bsearch. Adding just density-time execu-
tion eliminates significant wasted work after divergence, improving area-normalized
performance by 2.5× and reducing energy by 2×. Density-time execution is less useful
on multilane configurations due to the additional constraints required for compression.
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Fig. 19. Impact of memory coalescing. Results for multi-lane VT tile running vvadd.

Our stack-based convergence schemes are a different way of mitigating divergence by
converging µTs when possible. For bsearch, the 2-stack PVFB forces µTs to stay on
the same loop iteration, improving performance by 6× and reducing energy by 5× as
compared to the baseline FIFO PVFB. Combining density-time and a 2-stack PVFB
has little impact here as the 2-stack scheme already removes most divergence (see
Table III). Our experience with other microbenchmarks and application kernels sug-
gest that for codes where convergence is simply not possible the addition of density-
time execution can have significant impact. Note that replacing branches with explicit
conditional moves (bsearch-cmv) performs better than dynamic optimizations for µT
branches, but µT branches are more general and simpler to program for irregular DLP
codes. Table I and Figure 14 show that the 2-stack PVFB and density-time execution
have little impact on area and cycle time. Based on our analysis, the 2-stack PVFB is
used for both multicore and multilane VT tiles, while density-time execution is only
used on multicore VT tiles.

Figure 19 illustrates the benefit of vector memory accesses versus µT memory ac-
cesses on a multilane VT tile running vvadd. Using µT memory accesses limits oppor-
tunities for access-execute decoupling and requires six additional µT instructions for
address generation, resulting in over 5× worse energy and 7× worse performance for
vvadd. Memory coalescing recoups some of the lost performance and energy efficiency,
but is still far behind vector instructions. This small example hints at key differences
between SIMT and VT. Current SIMT implementations use a very large number of µTs
(and large register files) to hide memory latency instead of a decoupled control thread,
and rely on dynamic coalescing instead of true vector memory instructions. However,
exploiting these VT features requires software to factor out the common work from
the µTs. Also note that memory coalescing can still help µT memory accesses used for
nonstructured data accesses in VT implementations (see Figure 20(f)).

5.4. Application Kernel Results
Figure 20 compares the application kernel results between the MIMD, vector-SIMD,
and VT tiles. All vector tiles include a banked vector register file with per-bank
integer ALUs. Both VT tiles (multicore and multilane) use the 2-stack dynamic frag-
ment convergence scheme. On top of these microarchitectural optimizations, the mul-
ticore VT tile implements density-time execution, and one of the multilane VT tiles
includes a dynamic memory coalescer. The upper row plots overall energy/task against
performance, while the lower row plots energy/task against area-normalized perfor-
mance to indicate expected throughput from a given silicon budget for a highly parallel
workload. Kernels are ordered to have increasing irregularity from left to right. We
draw several broad insights from these results.
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Fig. 20. Implementation efficiency and performance for MIMD, vector-SIMD, and VT patterns running
application kernels. Each column is for a different kernel. Legend at top. mimd-c4r256 is significantly worse
and lies outside the axes for some graphs. There are no vector-SIMD implementations for strsearch and
physics due to the difficulty of implementing complex irregular DLP in hand-coded assembly. mcore = multi-
core vector-SIMD/VT tiles, mlane = multi-lane vector-SIMD/VT tiles, mlane+mc = multi-lane VT tile with a
dynamic memory coalescer, r32 = MIMD tile with 32 registers (one µT).

First, we observed that adding more µTs to a multicore MIMD tile is not particu-
larly effective, especially when area is considered. We found parallelization and load-
balancing become more challenging for the complex application kernels, and adding
µTs can hurt performance in some cases due to increased cycle time and nontrivial
interactions with the memory system.

Second, we observed that the best vector-based machines are generally faster and/or
more energy-efficient than the MIMD cores though normalizing for area reduces the
relative advantage, and for some irregular codes the MIMD cores perform slightly
better (e.g., strsearch), though at a greater energy cost.

Third, comparing vector-SIMD and VT on the first four kernels, we see VT is more
efficient than vector-SIMD for both multicore single-lane (c4v1) and single-core mul-
tilane (c1v4) design points. Note we used hand-optimized vector-SIMD code but com-
piled VT code for these four kernels. One reason VT performs better than vector-SIMD,
particularly on multi-lane viterbi and kmeans, is that vector-fetch instructions more
compactly encode work. Each entry in the decoupled command queue of a VT machine
can represent an entire function or inner loop, while a vector-SIMD machine has to
enqueue every vector instruction individually. The CT in a VT machine can therefore
run ahead both faster and further than the CT in a decoupled vector-SIMD machine.

Fourth, comparing c4v1 versus c1v4 vector machines, we see that the multilane
vector designs are generally more energy-efficient than multicore vector designs as
they amortize control overhead over more datapaths. Another advantage we observed
for multilane machines was that we did not have to partition and load-balance work
across multiple cores. Multicore vector machines sometimes have a raw performance
advantage over multilane vector machines. Our multilane tiles have less address
bandwidth to the shared data cache, making code with many vector loads and stores
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perform worse (kmeans and physics). Lack of density-time execution and no ability
to run independent control threads also reduces efficiency of multilane machines on
irregular DLP code. However, these performance advantages for multicore vector
machines usually disappear once area is considered, except for the most irregular
kernel strsearch. The area difference is mostly due to the disparity in aggregate
instruction cache capacity.

Overall, our results suggest a single-core multi-lane VT tile with the 2-stack PVFB
and a banked register file with per-bank integer ALUs (vt-c1v4r256+bi+2s) is a good
design point for Maven.

5.5. Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators
There exists a tradeoff between programmability and efficiency for data-parallel ar-
chitectural design patterns. Generally, patterns that are easier to program (either to
target from a compiler or to code by hand in assembly) are less efficient, while patterns
that are more efficient are less programmable. All four data-parallel design patterns
that we discussed in this article—MIMD, vector-SIMD, vector-thread, and SIMT—
make different tradeoffs between programmability and efficiency. Note that our claims
on programmability are based on our anecdotal experiences from Section 4.1, and our
claims on efficiency are supported by the detailed VLSI results that are presented in
Sections 5.1–5.4.

MIMD is the easiest to program among all the patterns but is usually significantly
less efficient, except on very irregular code. For regular DLP code, vector-SIMD is
slightly harder to program, requiring vectorization of loops but less task distribu-
tion and synchronization, but is more efficient than MIMD. For irregular DLP code,
vector-SIMD can be less efficient compared to MIMD. However, at the cost of additional
software effort to map irregular code into conditional execution, it is possible in some
cases to recoup the lost efficiency.

The Maven vector-thread architecture adds minimal hardware on top of the
traditional vector-SIMD architecture to better support irregular DLP. This new
vector-thread architecture reduces programming complexity and removes additional
instructions required to manipulate mask registers. When compared to vector-SIMD,
the Maven vector-thread architecture provides both greater efficiency and easier
programmability for both regular DLP and irregular DLP code. For regular DLP code,
the primary advantage of the vector-thread architecture is the ability to enqueue
large amounts of work with a single vector-fetch instruction, whereas a traditional
vector architecture requires the control processor to fetch and enqueue every vector
instruction. This allows the control processor to run ahead faster and further than the
vector-SIMD design, given the same size of the command queue.

Although a more detailed comparison of SIMT to other architectures is future work,
our initial results suggest that SIMT provides a simpler programming model than
vector-thread, as there is no need to extract a control thread or vector memory instruc-
tions. But as a result, SIMT cannot provide the same efficiency as vector-thread, due
to the lack of scalar-vector decoupling and the overhead of executing redundant work
in each microthread.

6. CONCLUSIONS
Effective data-parallel accelerators must handle regular and irregular DLP efficiently
and still retain programmability. Our detailed VLSI results confirm that vector-based
microarchitectures are more area and energy efficient than scalar-based microarchi-
tectures, even for fairly irregular data-level parallelism. We introduced Maven, a new
simpler vector-thread microarchitecture based on the traditional vector-SIMD microar-
chitecture, and showed that it is superior to traditional vector-SIMD architectures
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by providing both greater efficiency and easier programmability. Maven’s efficiency is
improved with several new microarchitectural optimizations, including efficient dy-
namic convergence for microthreads, and ALUs distributed close to the banks within
a banked vector register file.

In future work, we are interested in a more detailed comparison of VT to the popular
SIMT design pattern. Our initial results suggest that SIMT will be less efficient though
easier to program than VT. We are also interested in exploring whether programming
environment improvements can simplify the programming of vector-SIMD machines to
reduce the need for VT or SIMT mechanisms, and whether hybrid machines containing
both pure MIMD and pure SIMD might be more efficient than attempting to execute
very irregular code on SIMD hardware.
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Mark Hampton and Krste Asanović. 2008. Compiling for vector-thread architectures. In Proceedings of the

International Symposium on Code Generation and Optimization (CGO).

ACM Transactions on Computer Systems, Vol. 31, No. 3, Article 6, Publication date: August 2013.



!
!

!
!

!
!

!
!

Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators 6:37

John H. Kelm, Daniel R. Johnson, Matthew R. Johnson, Neal C. Crago, William Tuohy, Aqeel Mahesri,
Steven S. Lumetta, Matthew I. Frank, and Sanjay J. Patel. 2009a. Rigel: An architecture and scalable
programming interface for a 1000-core accelerator. In Proceedings of the International Symposium on
Computer Architecture (ISCA).

John H. Kelm, Daniel R. Johnson, Steven S. Lumetta, Matthew I. Frank, and Sanjay J. Patel. 2009b. A
task-centric memory model for scalable accelerator architectures. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT).

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. 2005. Niagara: A 32-way multithreaded
SPARC processor. IEEE Micro 25, 2, 21–29.

Christoforos Kozyrakis, Stylianos Perissakis, David Patterson, Thomas Anderson, Krste Asanović, Neal
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John Wawrzynek, Krste Asanović, Brian Kingsbury, David Johnson, James Beck, and Nelson Morgan. 1996.
Spert-II: A vector microprocessor system. IEEE Comput. 29, 3, 79–86.

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance
model for floating-point programs and multicore architectures. Comm. ACM 52, 4, 65–76.

Sven Woop, Jörg Schmittler, and Philipp Slusallek. 2005. RPU: A programmable ray processing unit for
realtime ray tracing. ACM Trans. Graph. 24 3, 434–444.

Marco Zagha and Guy E. Blelloch. 1991. Radix sort for vector multiprocessors. In Proceedings of ACM/IEEE
Conference on Supercomputing (SC).

Received March 2013; revised March 2013; accepted March 2013

ACM Transactions on Computer Systems, Vol. 31, No. 3, Article 6, Publication date: August 2013.


