- _ _ Ji Kim, Shunning Jiang, Christopher Torng
USIng Intra COre LOOp TaSK ACCEIerators Moyang Wang, Shreesha Srinath, Berkin llbeyi

to Improve the Productivity and Performance Khalid Al-Hawaj, Christopher Batten
Of TaSk'BaSEd Pal‘a||6| PrOgramS Computer Systems Laboratory

School of Electrical and Computer Engineering, Cornell University

1 Abstract 3 LTA Software 4 LTA Hardware 5 Cycle-Level Evaluation
Task-based parallel programming frameworks offer compelling productivity and P . | f Spatial dT | Task C li We utilize a co-simulation framework with gem5 and PyMTL, a Python-based
performance benefits for modern chip multi-processors (CMPs). At the same time, rogramming nterrace patial an emporail Ias oupliing hardware modeling framework. The cycle-level models for LTAs were implemented in
CMPs also provide packed-SIMD units to exploit fine-grain data parallelism. Two PyMTL. Each core and its LTA share the L1 caches and all cores share the L2 cache.
fundamental challenges make using packed-SIMD units with task-parallel // Element-Wise Vector-Vector Addition Space (Lanes) Space (Lanes) We simulate a bare-metal system with system call emulation. We ported 16 C++
programs particularly difficult: (1) the intra-core parallel abstraction gap; and // with LTA _PARALLEL FOR Macro IMU ¢ > IMU ‘ T AD > application kernels to a MIPS-like architecture. We used a cross-compiler based on
(2) inefficient execution of irregular tasks. To address these challenges, we N 0 A 2 1 é :; : ™U \ ﬁg ﬁ 2 5 '2 3 GCC-4.4.1, Newlib-1.17.0, and the GNU standard C++ library. Application kernels
propose augmenting CMPs with intra-core loop-task accelerators (LTAs). We void vvadd(int dest[], int srcO[], int srci[], int size) b T %‘ 2% S . B(01 BT B2 B3 %\ were either ported from Problem Based Benchmark Suite (PBBS) or developed
introduce a lightweight hint in the instruction set to elegantly encode loop-task { ! stall 1 £ I;' "F' 'F' 'f: B[ZCHl Bl BT | E in-house to create a suite with diverse task-level and instruction-level characteristics.
e.xecution.and an LTA microarchitgctural template that. can be gqnfigured at design LTA_PARALLEL_FOR(0, size, (dest,srcO,srcl), ({ F B|10]1]2]|3 @ = = = £ || C[0] B[5¥D[2]D[3 @
time for different amounts of spatial/temporal decoupling to efficiently execute both dest[i] = srcO[i] + srci[il; ST 4[51617] |4 =l 2 <1| CHICI5| F[6]F[7] | o Performance vs. HW Resource
regular and irregular loop tasks. Compared to an in-order CMP baseline, CMP+LTA) N (<\> ({Q ((Q - C 2 g E SIS S| arai ara] ER2IEB E
results in an average speedup of 4.2x (1.8 x area normalized) and similar } \}Q‘ \& \& \}Q‘ D AR T TN [X]| Alid A3 ARO AT m— 0 —a— 8/1xC/* o 8/2xC/8 x 8/4xC/4 8/8xC/2 8/8xC/8
energy efficiency. Compared to an out-of-order CMP baseline, CMP+LTA results = Nl D N2l L ol RN ARAAB - = 03 v 8/2xC/2 ® 8/2xC/16 * 8/4xC/8 8/8xC/4 + 8/8xC/16
in an average speedup of 2.3x (1.5x area normalized) and also improves The LTA_ PARALLEL FOR macro generates an indirect function call in-place with %—_‘Aﬁ-_/‘% E 213 W W . —e—8/*xC/1 * 8/2xC/4 v 8/4xC/2 & 8/4xC/16
energy efficiency by 3.2x. Our work suggests augmenting CMPs with lightweight runtime management code around it. The destination of the indirect function call is g g Execution mriq sarray Geo. Mean
LTAs can improve performance and efficiency on both regular and irregular loop-task the following loop task function. V] F v v o4 6 '
parallel programs with minimal software changes. DMU o LLl6l7] DMU | Q20 .42'2/52/ 5 ' 8 =
// The Loop-Task Function Generated by the Macro pArch Sketch A1632|193191|1j5 pArch Sketch 316 4 ﬁ_‘ 6 ./.ﬁ‘
v GJ12 3
void task_func(void* a, int start, int end, int step=1) Execution O[11({2]]3 8'8 T+ ’
(- ’ ’ ’ 2 g é % Abstract View 7] (5157 Abstract View LA I I 1 . R R
- - args_t* args = static_cast<args_t*>(a); . . . ; T 2 4 8 16 32 64128 1 2 4 8 16 32 64128 1 2 4 8 16 32 64 128
2 Motlvatlon int+ dest o args->dest: Fully Coupled in Space/Time Fully Decoupled in Space/Time Num. Task Groups Num. Task Groups Num. Task Groups
int* srcO = args->src0O; int* srcl = args->srcl; . 128-uthread LTA with aggressive front-end, eight memory ports, and eight LLFUs.
Loop-task parallelism is a common parallel pattern usually captured with the parallel for (int i = start; i < end; i += step) Task Coupling Taxonomy
for primitive, where a loop task functor is applied to a blocked range. There are two dest[i] = srcO[i] + srci[il; 24 g 8
fundamental challenges that make using packed-SIMD units in this loop-task context } A T oo %fg . ./.‘.:GH/’—#::—O X
particularly difficult. = % BE =—— e BEBB 812 \\ 3 . .,.ﬁgs‘:::\‘
In general, a loop task is a four-tuple of a function pointer, an argument pointer, and i [0 [Oood [[IO [Oood S 8 S e S Sl i et [} N R N N N N R
the start/end indices of the range. 3 LT LD - OOOO - 9/1x4/4 2/2x4/4 o 0| oo D 1 2
O 4/1x2/2 4/2x2/2 4/4x2/2 O OO oooc
\\, \, ,K_\\, D, ,/ l g :MLXZM 4/2X§/23h4t/4)(2/1 2/1x4/2 2/2x4/2 41x8/8 4/2x8/8 4/4x8/8 128-uthread LTA with realistic front-end, eight memory ports, and eight LLFUs.
- danes X Imes
jalr.lta $rd, $rs § HE EEEE ot 6 .
P GPP GPP GPP o 2/1x4/1 2/2x4/1 HHEH S 20 | o=t ¢
—— —— — —— S$rs $a0 |Sal | sa2 | sa3 5 . A0EE 516
SIMD SIMD SIMD SIMD " " = 2 Lanes x 4 Chimes AR e R L LE LT T 1
—— —— —— — Ioop_taSk_funC argS O N Step OO OOOO000 OO0OOo gogogoogogaoga 4/1X8/4 4/2X8/4 4_/4_X_8£4 7y 4 1 4 R S
o OO OOOO000 OO0OOo gogogoogogaoga HHH @@ 0l ee———
c | @ MO OMOOOm OO000oood 1 EH E 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
= 11111 O[O0 OOOOOOo goooogogogaog LI LI
We propose a new jalr.lta instruction that has the same semantics as normal indirect = 8/1x4/4 8/2x4/4 8/4x4/4 8/8x4/4 AHHD Num. Task Qroups o Num. Ta§k Groups Num. T?Sk Groups
> Intra-Core Parallel Abstraction Gap — Two fundamentally different parallel function call jalr, but serves as a hint to the underlying hardware that the function has 3 elalz(zlezlz]e u|u|u|w 32-pthread LTA with realistic front-end, eight memory ports, and eight LLFUs.
abstractions reduce productivity: tasks for inter-core parallelism (e.g., TBB) and the special signature of loop task. S AEEEEEER 4/1x8/2 4/2x8/2 4_/A:x_8£2 o A
packed-SIMD for intra-core parallelism (e.g., AVX). Auto-vectorization and explicit S1 8/1x4/2 8/2x4/2 8/4x4/2 8/8x4/2 AHAE Q o0 5 8
vectorization are challenging to perform since tasks can be arbitrarily complex and LTA-Enabled Work-SteaIing Runtime c HHAF § 16 4 .ﬁ\x 6
sizes/alignments are not known at compile time, potentially preventing P EEEEEEEE AHHE Q 1§ .444\’(g ----------- 4 .‘Iﬁ\"
” . . . ” GJ ———- T ' e-n - - =& - Hm =mES = == == == == == = - —
multiplicative speedup’ S| 8/1x4/1 8/2x4/1 8/4x4/1 8/8x4/1 4/1x8/1 4/12x8/1 4/4x8/1 M e 1 ?
o _ | The LTA-enabled work-stealing runtime still recursively partitions loop tasks into = 3L 4 Chi 4L 3 Chi T 2 4 8 16 32 1 2 4 8 16 32 1 2 4 @8 16 32
> Inefficient Execution of Irregular Tasks — Loop tasks are often complex with subtasks to facilitate load balancing until the range is less than the core task size, but Y. anes X Imes anes x Imes R Num. Task Groups Num. Task Groups Num. Task Groups
nested loops and fupctlon ca_lls, data-dependent control f|9W= indirect memory then uses the jalr.lta instruction. If an LTA is available, the GPP can potentially use the More Spatial Coupling More Spatial Decoupling 32-uthread LTA with realistic front-end, two memory ports, and eight LLFUs.
ZCCGSS?_& at?d at(r)]mm. otperq’ilﬁns tclzomparledlto the sc(;alar |l£nplementat|on. LTA to further partition the core task into utasks, each responsible for a smaller range
onverting branches into arithmetic results in wasted work, extra memory of iterations. The LTA groups ptasks into task groups which execute on a set of - - 24 6
. . : 8
alignment anad/or data transformations adds overhead, scatter/gather accesses uthreads in lockstep (i.e., same instruction), exploiting structure for efficient execution. Microarchitecture Template _g' fg i ﬁx 5
often have much lower throughput, and a less efficient algorithm may be required D o 3 4 ﬁ
for vectorization. All of these reasons derive from the fact that the _ L1 Instruction Cache } 328 i 3 o o—a=2—8— off =~~~ T T T N Sy -y S
microarchitecture for packed-SIMD extensions is fundamentally designed to excel task |parallel for e — } MU }IMU S0, Do = 1
at executing regular data parallelism as opposed to the more general loop-task) 0 127 *func|*args steal e;r;n = 1 1 2 FU ||gc t 2 4 8 16 3 1 2 4 8 16 32 1 2 4 8 16 32
parallelism. E"E I_/' \ PIB - 5 e | Num. Task Groups Num. Task Groups Num. Task Groups
= é task 4 task) From | ; — 5 U =g, [RT Moo de 32-uthread LTA with realistic front-end, two memory ports, and four LLFUs.
[scalar [tob [avx [tbb-avx = 0 |63| *func|*args tonl 64127 *func|*args <tonl Task). Iél Iél Iél = i 1Q
C © y ¥ T
: o S Queue L—F T T W ES [Seq]||vEg [Seq]|| v ESTSeq] i . .
20 [B3 o A o = £ | core task P/Core task) core taskmre task) : : : Chip-Multiprocessor(CMP) with LTA
N 5 100 - T 1 1HE & %) 0 31. *func|*args| |32 6{3 *func|*args| |64|95|*func|*args 96127 *func|*args é—%"uep C';-g“uep 9 G'—fo"uep stro| 77| [sero o] [Lsu 77
S sk M ?) - |jalr.1lta |jalr.1lta | |jalr.1ta FPU y y — Y
2 2 _ ~ 7 S R Xbar M AT AT s } | Y omo T 321 g cotaddat sestio NN 10 [CMP+LTA-4/4x8/1 1 CMP+LTA-8/4x4/1
3 ke _ |GPPO LTA GPP 1 LTA GPP 2 GPP 3 LTA 1y y 1] o e | M| R T > o 28 [CMP-IO BB CMP+LTA-4/4x8/2[E CMP-+LTA-8/8x4/1
cﬁ' oball o l T e MDY I T 1 T] : FPU Xbar 3 ?é 1 CMP-O3 I
T;)] § 10 — ki % task group task group task group task group task — Lﬁ_fl Lﬁ_f' Lﬁ_f' S WCU IW — I\l/IDU Xbar (% 15 :
@ 3 o3 32-35 | 36-39 | [40-43 [44-47| [48-51]52-55| [56:59[60-63] N 2 ~ |3 = 4)i _i)i AN K
T SHIML--W"l-MWH- 8 C © l l l l l l l l |BI\{!em Xbar | wQ 9c *ERFERFERF 0))) A S o N0 §
= : ST Mem ... Y 4B > - L T T 9c PSP N R SR JFEL N AR A (VR SR LTS RS @ & e
-H- = 1 I I = _ Mthreadjuthread| [uthreadjthread| |threadjuthread| threadjuthread Ports |11 G':rzgp G'V:Bl?p iﬂ,};@%ﬁoﬁfg $§E§$§E§$§E§ /,,vgmpi o GO (B N & o O B\ @@0\\
0t ' S ' ' e - ' NV FEAH TR T L Data o7 | (0707 y lanes per iane group Compared to CMP-10, CMP+LTA improves average raw performance by up to 4.2x,
Qo™ A ¢ QL @ o™ A ¢ QL Cache v v
o P @0 (¥ (T xS o P @0 (¥ (T A o i i
SO VA R\ ets SO o 4O (P _ _ _ . _ performance per area by 1.8 x (excluding the L2), and energy efficiency by 1.1 x.
O A © A If an LTA is not available (GPP 2 in the above diagram), a jalr.lta can be treated as a Compared to a more aggressive CMP-O3, CMP+LTA improves performance by 2.3 x,
standard jalr executing on the GPP. This approach requires minimal changes to a | | performance per area by 1.5x (excluding the L2), and energy efficiency by 3.2x.
In this paper, we propose intra-core loop-task accelerators (LTAs) to address these standard work-stealing runtime and practically no changes to the parallel program. This work was supported in part by NSF CAREER Award #1149464, NSF XPS Award Using the ialr lta instruction e int ol abstrac 4 al
challenges. A standard runtime schedules tasks across general purpose processors Compare this to the significant software changes required to combine task-parallel #1337240, NSF CRI Award #1512937, NSF SHF Award #1527065, AFOSR YIP Award S',?g tﬁ Jakr. a ||nsfruc '_?_gg (.)SGT © '? ?—core fha rarela ls Lac on gip, lanl Alows
(GPPs) and small software changes enable a GPP to use an LTA to accelerate programming and packed-SIMD extensions. #FA9550-15-1-0194, and donations from Intel, NVIDIA, and Synopsys. The authors porting the Kernets from MpIeMentations With minimat changes. A singie
loop-task execution. acknowledge and thank Scott McKenzie and Alvin Wijaya for their early work on LTA RTL |mple.mer?tat|on Is written and compiled once, then executed on a system with any
modeling, Jason Setter and Wei Geng for their work on scalar processor PyMTL modeling, combination of GPPs and homogeneous or heterogeneous LTAs.
and David Bindel for access to an Intel Xeon Phi 5110P.

Publication: Appears in the Proceedings of the 50th Int’l Symp. on Microarchitecture (MICRO-50), Oct. 2017. URL: http://www.csl.cornell.edu/~cbatten/pdfs/kim-1ta-micro2017.pdf Contact Author: Shunning Jiang, 471 Rhodes Hall, lthaca, NY 14853, sj634@cornell.edu

