
 An Open-Source Python-Based Hardware
 Generation, Simulation, and Verification

Framework

Shunning Jiang, Christopher Torng, Christopher Batten

 Computer Systems Laboratory
 School of Electrical and Computer Engineering

 Cornell University
1

Outline
- Introduction
- PyMTL features
- PyMTL use cases

1

The Traditional Flow

3

Traditional hardware
description language

- Example: Verilog
✓ Fast edit-debug-sim loop
✓ Single language for design
 and testbench

X Difficult to parameterize
X Require specific ways to
 build powerful testbench

* HDL: hardware description language
* DUT: design under test
* TB: test bench
* synth: synthesis

Hardware Preprocessing Frameworks (HPF)

4

✓ Fast edit-debug-sim loop
✓ Single language for design
 and testbench

X Difficult to parameterize
X Require specific ways to
 build powerful testbench

✓ Better parametrization with
insignificant coding style change

X Multiple languages create
 “semantic gap”
X Still not easy to build powerful
 testbench

Traditional hardware
description language

- Example: Verilog

Hardware preprocessing
framework (HPF)

- Example: Genesis2

Hardware Generation Frameworks (HGF)

5

Traditional hardware
description language

- Example: Verilog
✓ Fast edit-debug-sim loop
✓ Single language for design
 and testbench

X Difficult to parameterize
X Require specific ways to
 build powerful testbench

Hardware preprocessing
framework (HPF)

- Example: Genesis2
✓ Better parametrization with

insignificant coding style change

X Multiple languages create
 “semantic gap”
X Still not easy to build powerful
 testbench

Hardware generation
framework (HGF)
- Example: Chisel

✓ Powerful parametrization
✓ Single language for design

X Slower edit-debug-sim loop
X Yet still difficult to build
 powerful testbench (can only
 generate simple testbench)

PyMTL is an Hardware Generation and Simulation framework

5

✓ Powerful parametrization
✓ Single language for design and

testbench
✓ Use host language for verification
✓ Easy to create highly parameterized

generators
✓

PyMTL framework

4

Outline
- Introduction
- PyMTL features
- PyMTL use cases

Eight features that make PyMTL productive
- Multi-level modeling
- Method-based interfaces
- Highly parametrized static elaboration
- Analysis and transform passes
- Pure-Python simulation
- Property-based random testing
- Python/SystemVerilog integration
- Fast simulation speed

9

Multi-level modeling
● Functional-level modeling: quickly

building reference model and
testbench

● Cycle-level modeling: design
space exploration

● Register-transfer-level modeling:
generating hardware

Example: Accelerator designers only want to implement the accelerator in RTL.
How about cache and processor to do end-to-end testing?

Highly parametrized static elaboration
PyMTL embeds the DSL into Python, so
the hardware designs can use full
Python’s expressive power to construct
hardware.

6

PyMTL passes
PyMTL analysis/transform passes
systematically traverse through the
design and/or transform the module
hierarchy by mutating the internal
data structures.

6

Property-based random testing
Since the simulation is just executing a piece of Python code, we can leverage
random testing frameworks that test Python software for testing hardware.

- hypothesis

7

PyMTL/SystemVerilog integration
- PyMTL can import SystemVerilog and co-simulate it with the same Python

test harness.
- PyMTL can also compose multiple PyMTL/SystemVerilog designs and

translate the larger design into SystemVerilog.

8

Fast pure-Python simulation
With Mamba techniques, the next version of PyMTL gets an order of magnitude of
speedup when simulating in a pure-Python environment.

- Design the framework from the ground up with a just-in-time compiler in mind
- Enhance the just-in-time compiler to recognize critical hardware constructs

9

Outline
- Introduction
- PyMTL features
- PyMTL use cases

- PyMTL in teaching: 400+ students across 2 universities
- PyMTL in research: four ISCA/MICRO papers use PyMTL
- PyMTL in silicon prototyping: three tape-outs, two of which completely use PyMTL

PyMTL in Silicon Prototyping: BRGTC1 (2016)

- Fabricated in IBM 130nm
- 2mm x 2mm die, 1.2M transistor

10

PyMTL in Silicon Prototyping: BRGTC2 (2018)

- Advertisement: our open-source modular
VLSI build system used in this tapeout
https://github.com/cornell-brg/alloy-asic 11

- Fabricated in TSMC 28nm
- 1mm x 1.25mm die, 6.7M transistor
- Quad-core in-order RV32IMAF

https://github.com/cornell-brg/alloy-asic

12

We expect a new release in 2019.

PyMTL: https://github.com/cornell-brg/pymtl
Modular ASIC Build system: https://github.com/cornell-brg/alloy-asic

PyMTL:
- Multi-level modeling
- Method-based interfaces
- Highly parametrized static elaboration
- Analysis and transform passes
- Pure-Python simulation
- Property-based random testing
- Python/SystemVerilog integration
- Fast simulation speed

https://github.com/cornell-brg/pymtl
https://github.com/cornell-brg/alloy-asic

