
532168-2356/20©2020 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2021

Editor’s notes:
This article proposes a new model testing and verification methodology,
PyH2, using property-based random testing in Python. PyH2 leverages the
whole Python ecosystem to build test benches and models.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

J AS DENNARD SCALING is over and Moore’s law
continues to slow down, modern system-on-chip (SoC)
architectures have been moving toward heterogene-
ous compositions of general-purpose and specialized
computing fabrics. This heterogeneity complicates the
already challenging task of SoC design and verification.
Building an open-source hardware community to amor-
tize the nonrecurring engineering effort of developing
highly parametrized and thoroughly verified hardware
blocks is a promising solution to the heterogeneity
challenge. However, the widespread adoption of open-
source hardware has been obstructed by the scarcity
of such high quality blocks. We argue that a key missing
piece in the open-source hardware ecosystem is com-
prehensive, productive, and open-source verification
methodologies that reduce the effort required to create

PyH2: Using PyMTL3 to
Create Productive and
Open-Source Hardware
Testing Methodologies
Shunning Jiang, Yanghui Ou, Peitian Pan,
Kaishuo Cheng, Yixiao Zhang,
and Christopher Batten
Cornell University

thoroughly tested hard-
ware blocks. Compared to
closed-source hardware,
verification of open-source
hardware faces several sig-
nificant challenges.

First, closed-source
hardware is usually owned
and maintained by compa-

nies with dedicated verification teams. These verifica-
tion engineers usually have many years of experience
in constraint-based random testing using a universal
verification methodology (UVM) with commercial
SystemVerilog simulators. However, open-source hard-
ware teams usually follow an agile test-driven design
approach stemming from the open-source software
community, where the designer is also responsible for
creating the corresponding tests. Moreover, the steep
learning curve, in conjunction with very limited support
in existing open-source tools, makes the UVM-based
approach rarely used by open-source hardware teams.
We argue that the open-source hardware community is
in critical need of an alternative route for testing open-
source hardware, instead of simply duplicating closed-
source hardware testing frameworks.

Second, unlike closed-source hardware’s
development cycle where most engineers focus
on a specific design instance for the next gen-
eration product, open-source hardware blocks

Digital Object Identifier 10.1109/MDAT.2020.3024144
Date of publication: 14 September 2020; date of current version:
8 April 2021.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 10,2021 at 18:14:39 UTC from IEEE Xplore. Restrictions apply.

54 IEEE Design&Test

Open-Source EDA

usually exist in the form of design generators to
maximize reuse across the community [1]. How-
ever, design generators are significantly more
difficult to verify than design instances due to
the combinatorial complexity in the multidimen-
sional generator parameter space. There is a crit-
ical need to create an open-source framework
that systematically and productively tests design
generators and automatically simplifies both
failing test cases and failing design instances to
facilitate debugging.

Third, performing random testing can be dif-
ficult in important hardware domains. There has
been a major surge in open-source RISC-V processor
implementations. However, due to limited human
resources, most of these implementations only
include a few directed tests, randomly generated
short assembly sequences, and/or very large scale
system-level tests (e.g., booting Linux). There is a
critical need to create an automated random testing
framework to improve the fidelity of open-source
processor implementations.

Fourth, many open-source hardware blocks
are designed to improve reusability by exposing
well-encapsulated timing-insensitive hand-shake
interfaces that can provide an object-oriented
view of the hardware block (e.g., a hardware reor-
der buffer exposes three object-oriented “method”
interfaces: allocate, update, and remove). How-
ever, it is very hard to perform random testing to
test the behavior of concurrent hardware data
structures that have multiple interfaces accept-
ing “transactions” in the same cycle. Converting a
random transaction sequence into cycle-by-cycle
test vectors using traditional testing approaches
requires a cycle-accurate golden model. Manu-
ally creating multitransaction test-vectors only
works for directed testing. One possible solution
is to execute only one random transaction in each
cycle, yet the inability to stress intracycle concur-
rent behavior harms the quality of the tests. There
is critical need to create a novel testing approach
for object-oriented hardware using concurrent
intracycle transactions.

To address these challenges, we introduce PyH2,1
our vision for a productive and open-source testing
methodology for open-source hardware, which is sig-
nificantly different from state-of-the-art closed-source

1Python’s hypothesis for hardware.

hardware testing. Leveraging open-source software,
PyH2 attempts to solve the open-source hardware
testing challenge by holistically using proper-
ty-based testing (PBT) in Python to significantly
reduce designer effort in creating high-quality tests.
The advantage of PBT over constraint-based random
testing is as follows.

 • PBT does not draw all of the random data before-
hand, making it possible to leverage runtime
information to guide the random data generation.

• PBT can automatically shrink the failing test case
to a minimal failing case once a bug is discovered.

Compared to BlueCheck [2], a prior PBT frame-
work for hardware, the key distinctions are as follows.

• PyH2 enables using a high-level behavioral speci-
fication written in Python as the reference model
instead of requiring the reference model to be
synthesizable.

• The random byte-stream internal representa-
tion of hypothesis provides more sophisticated
auto-shrinking, while BlueCheck simply removes
transactions along with ad hoc iterative deepening.

• PyH2 can auto-shrink not only the transactions
but also the design itself by unifying the design
parameter space and the test-case space.

We see coverage-guided mutational fuzzing
(e.g., RFUZZ [3]) as complementary to PBT. PBT
can be used to quickly find bugs with moderate
complexity, while RFUZZ can be used to very
slowly find potentially more complex bugs. Over-
all, PyH2 is able to combine the advantages of com-
plete-random testing (CRT) and iterative-deepened
testing (IDT) to identify a failing test case quickly
and then provide a minimal failing case to facilitate
debugging.

PyH2 is supported by the whole Python ecosystem,
among which three main packages form the foun-
dation of PyH2 (PyMTL3, pytest, and hypothesis).
PyH2 users can use over 100,000 open-source Python
libraries to build test benches and golden models.
PyH2 leverages PyMTL3 [4], [5] to build Python test
benches to drive register-transfer-level (RTL) sim-
ulations with PyMTL3 models and/or external Sys-
temVerilog models leveraging PyMTL3’s Verilator
cosimulation support. PyH2 adopts pytest, a mature
full-featured Python testing tool, to collect, organize,
parametrize, instantiate, and refactor test cases for

Authorized licensed use limited to: Cornell University Library. Downloaded on April 10,2021 at 18:14:39 UTC from IEEE Xplore. Restrictions apply.

55March/April 2021

testing open-source hardware. PyH2 also exploits
pytest plugins to evaluate hardware-specific testing
metrics. For example, PyH2 tracks the line coverage
of behavioral logic blocks of PyMTL3 models during
simulation using coverage.py, a line coverage tool for
normal Python code. The key component of PyH2 is
hypothesis, a PBT framework to test Python programs
by intelligently generating random test cases and rap-
idly auto-shrinking failing test cases.

PyH2 is realized by a collection of PyH2 frame-
works which are discussed in depth in the rest of this
article: PyH2G (PyH2 for RTL design generators),
PyH2P (PyH2 for processors), and PyH2O (PyH2 for
object-oriented hardware).

Background
This section briefly introduces PyMTL3, pytest,

and hypothesis, the three key Python libraries that
form the foundation of PyH2.

PyMTL3
PyMTL3 is an open-source Python-based hard-

ware modeling, generation, simulation, and ver-
ification framework. PyMTL3 supports multilevel
modeling for RTL, cycle-level, and functional-level
models. To provide productive, flexible, and exten-
sible workflows, PyMTL3 is designed to be strictly
modular. Specifically, PyMTL3 separates the PyMTL3
embedded domain-specific language that constructs
PyMTL3 models, the PyMTL3 in-memory intermedi-
ate representation (IMIR) that systematically stores
hardware models and exposes APIs to query/mutate
the elaborated model, and PyMTL3 passes that are
well-organized programs to analyze, instrument, and
transform the PyMTL3 IMIR.

PyMTL3 aims at creating an evolving ecosystem
with its modern software architecture and high inter-
operability with other open-source tools. PyMTL3
emphasizes performing simulation in the Python runt-
ime and automatic Verilator black-box import for
cosimulation. Driving the simulation from Python test
benches to test both PyMTL3 designs and external Sys-
temVerilog modules enables PyMTL3 to combine the
familiarity of Verilog/SystemVerilog with the produc-
tivity features of Python. Tools that take the opposite
approach (e.g., cocotb) embed Python in a Verilog
simulator and drive the simulation from the Verilog
runtime, but this complicates the ability to leverage
the full power of Python. RTL designs built in PyMTL3
can be translated to SystemVerilog accepted by

commercial EDA tools, or Yosys-compatible Verilog
accepted by OpenROAD, a state-of-the-art open-
source EDA flow [6].

PyTest
pytest is a mature full-featured tool for testing

Python programs. Using pytest, the programmer
can create small tests with little effort and also
parametrize numerous complex tests with compo-
sitions of pytest decorators succinctly as shown
in Figure 1a. pytest also provides lightweight com-
mand line options to print out different kinds of error
messages varying from a list of characters indicating

Figure 1. Background on testing
methodologies. (a) Parametrizing
directed tests using a pytest decorator.
(b) Comparison of different testing
techniques. (c) Code for testing a greatest
common divisor function using CRT, IDT,
and PBT.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 10,2021 at 18:14:39 UTC from IEEE Xplore. Restrictions apply.

56 IEEE Design&Test

Open-Source EDA

whether each test fails, to per-test full stack traces.
pytest has hundreds of plugins, such as pytest-cov
that leverages coverage.py to track line coverage.

CRT, IDT, and hypothesis PBT
Traditional testing methodologies usually use a

mix of CRT and IDT. As shown in Figure 1b, CRT can
detect errors quickly because it randomly samples
the input space, but can produce very complicated
failing test cases which are difficult to debug. IDT
finds bugs more slowly because it gradually samples
the input space, but can produce simple counterex-
amples. PBT, first popularized by QuickCheck [7], is
a high-level, black-box testing technique where one
only defines properties of the program under test and
uses search strategies to create randomized inputs.
The original QuickCheck paper also discussed the
integration with Lava [8] to test circuits. Properties
are essentially partial specifications of the program
under test and are more compact and easier to write
and understand than full system specifications. Users
can make full use of the host language when writ-
ing properties and thus can accurately describe the
intended behavior. Most PBT tools support shrink-
ing, a mechanism to simplify failing test cases into
a minimal reproducible counterexample. With these
features, PBT can achieve the benefits of both CRT
and IDT.

Hypothesis [9] is a state-of-the-art Python PBT
library that includes built-in search strategies for differ-
ent data types and supports integrated auto-shrinking
of failing test cases. All hypothesis strategies are built
on top of a unified random byte-stream representa-
tion, and each strategy internally repurposes random
bytes to produce the target random value. Search
strategies in hypothesis are integrated with methods
that describe how to simplify certain types of data,
which makes shrinking effective. Users can compose
built-in search strategies for any user-defined data
type and shrinking will work out-of-the-box.

Complicated stateful systems can also be tested
with RuleBasedStateMachine in hypothesis. The
user inherits from the RuleBasedStateMachine
class to add variables, a prologue, and an epilogue
to create a new test class. The user needs to define
rules and their preconditions and invariants, which
describes conditional state transitions. For stateful
testing, usually the user creates Python assertions
inside the rule to compare against a golden refer-
ence model. Hypothesis repeatedly instantatiates

the test class and executes a sequence of rules on
the state machine.

Figure 1c shows examples of testing the great-
est common divisor function using CRT, IDT, and
hypothesis PBT against math.gcd. The CRT test
(lines 16–20) includes 100 random samples. The IDT
test (lines 22–25) iteratively tries all possible values
for a and b from 1 to 128. We use the @hypothesis.
given decorator to transform a normal function
test_property_based that accepts arguments, into
a randomized PBT test. Consider a bug where line 3
in Figure 1a is changed to while b > 10. CRT can
find the bug quickly, but the failing test case involves
relatively large numbers. IDT finds the bug in exactly
11 test cases [i.e., gcd(1,11)]. PBT can find the bug
quickly with large numbers, but then auto-shrink the
inputs to a minimal counterexample [i.e., gcd(2,1)].

PyH2G: PyH2 for RTL design
generators

PyH2G is a PyH2 framework to productively and
effectively test RTL design generators. We envision
that future open-source SoC designs are heavily based
on chip generators which are composed of numerous
highly parametrized RTL design generators. Unfor-
tunately, verifying design generators is significantly
more challenging than verifying design instances due
to the combinatorial explosion in the multidimen-
sional generator parameter space. Traditional testing
techniques such as CRT and IDT face new challenges
when testing design generators. CRT can find a bug
quickly with a few test cases but often leads to a com-
plicated failing test case with numerous transactions
and a complex design, which makes it more difficult
to debug. IDT can produce a simple failing case with
a small design instance, but may take a very long
time to detect the error due to the iterative deepening
required for the generator parameters.

In response to these challenges, PyH2G uses PBT
to obtain the benefits of both CRT and IDT. Specifi-
cally, PyH2G creates composite search strategies in
hypothesis to interpret part of the generated random
byte stream as the design parameters and the rest
as the test case (see lines 3–4 of Figure 2a). Unify-
ing the design parameter space and the test case
space allows hypothesis to simultaneously shrink
the design parameters (i.e., reducing the complexity
of the generated design instance), the length of the
input transaction sequence, and the complexity of
each transaction to a minimal failing test case.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 10,2021 at 18:14:39 UTC from IEEE Xplore. Restrictions apply.

57March/April 2021

Case study: on-chip network generator
We quantitatively evaluated CRT, IDT, and

PyH2G using the PyOCN [10] ring network gen-
erator against four real-world bugs. PyOCN is a
multitopology, modular, and highly parametrized
on-chip network generator built in PyMTL3.
Figure 2a illustrates an example of a PyH2G test
that uses search strategies to configure the ring
network and generate the test packets. When a test
case fails, hypothesis can simultaneously shrink the
design instance and the packet sequence. We ran

50 trials for each bug, and the results are shown
as box-and-whisker plots in Figure 2b–d. Overall,
PyH2G detects errors quickly with a small num-
ber of test cases and produces a simple failing test
case that has a short sequence of transactions and
a simple design. PyH2G also significantly reduces
the transaction complexity. PyH2G sometimes runs
slightly more test cases than CRT because hypothe-

sis will first generate explicit examples to stress-test
the boundary conditions before exploring values
randomly. However, this also help PyH2G discover
the credit bug more quickly than CRT.

PyH2P: PyH2 for processors
PyH2P is a PyH2 framework to automatically gen-

erate random assembly instruction sequences to
test processors, which makes the case for effective
domain-specific random testing methodologies. Differ-
ent from existing work, PyH2P is able to automatically
shrink a failed long program to a minimal instruction
sequence with a minimal set of architectural regis-
ters and memory addresses. It is possible to combine
auto-shrinking with other sophisticated random pro-
gram generators [11] by carefully using PyH2P random
strategies. PyH2P can also leverage Symbolic-QED [12]
by applying QED transformations to generated random
programs and performing bounded model checking to
accelerate bug discovery.

PyH2P creates composite hypothesis strategies
to generate random assembly programs for effec-
tive auto-shrinking. Specifically, PyH2P creates a
hierarchy of strategies for arithmetic, memory, and
branch instruction strategies using substrategies
for architectural registers, memory addresses, and
immediate values. PyH2P currently implements a
block-based mechanism which first instantiates a
control-flow template of branches, and then fills
random instructions between branches. PyH2P
ensures that each generated assembly program
has well-defined behavior across the test and ref-
erence models. For arithmetic instructions, PyH2P
constrains the range of the immediate value strat-
egy to avoid overflow. For memory instructions,
PyH2P constrains the range of the memory address
strategy to avoid unaligned and out-of-bound
memory accesses. For branch instructions, PyH2P
first generates a sequence of branch instruc-
tions and their corresponding labels, and then
randomly shuffles them to form the control-flow
template. This eliminates the possibility of branch

Figure 2. PyOCN RingNet generator case
study. (a) PyH2G example. (b) CRT. (c) IDT.
(d) PyH2G.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 10,2021 at 18:14:39 UTC from IEEE Xplore. Restrictions apply.

58 IEEE Design&Test

Open-Source EDA

out-of-range errors. Additionally, a set of registers
are dedicated to loop bounds and loop variables
to avoid infinite loops.

Case study: PicoRV32 processor
We demonstrate the effectiveness of PyH2P using

PicoRV32, an open-source, area-optimized RV32IMC
processor implemented in Verilog. We leverage
PyMTL3’s Verilator support to drive the cosimulation
using a PyMTL3 testbench. The imported processor
is connected to a PyMTL3 cycle-level test memory
which stores the assembly program generated by
PyH2P. After executing the program, we extract and
compare the value of PicoRV32 architectural regis-
ters and the test memory against an instruction set
simulator written in PyMTL3.

We inject five directed bugs into the Verilog code,
and ran 50 trials for each methodology and bug com-
bination. The results are shown as box-and-whisker
plots in Figure 3a–c. CRT generally requires a small
number of tests (less than to discover a bug, but the
failing cases usually include more than 50 complex
instructions. IDT significantly reduces the number of
instructions in the failing test case, but needs signif-
icantly more cases to find the failing case. Note that
IDT generates instructions of similar complexity to
CRT because we have to generate random imme-
diate values to avoid prohibitively long runtimes to
find these bugs. PyH2P is able to discover the failing
test case using a similar number of trials to CRT and
can shrink it to a minimal case with similar length
to the cases found by IDT. Moreover, PyH2P is able
to shrink the immediate value so that the average
instruction complexity is significantly reduced.

Figure 3d–g shows the failing cases for the mul_

carry bug discovered by each methodology. This
bug can only be triggered by specific operands. Fig-
ure 3d is the example found by CRT with 41 instruc-
tions, seven unique architectural registers, and large
immediate values. Figure 3e shows the example
found by IDT which uses only one register but a large
random immediate value. Figure 3f and g includes
two minimal failing cases from different PyH2P trials,
which are significantly simpler.

PyH2O: PyH2 for object-oriented
hardware

PyH2O is a PyH2 framework that enables using
method calls to test RTL hardware components
with object-oriented latency-insensitive interfaces.

The key contribution of PyH2O is a novel testing
methodology for concurrent hardware data struc-
tures that are difficult to thoroughly test using
traditional approaches. PyH2O proposes a novel
simulation mechanism called auto-ticking, which
has been implemented as a new PyMTL3 simulation
pass. With merely “transaction-accurate” Python
data structures as reference models, PyH2O uses the
rule-based stateful testing features in hypothesis to
perform a sequence of random method calls on both

Figure 3. PicoRV32 processor case
study. (a) CRT. (b) IDT. (c) PyH2P. (d)
CRT example. (e) IDT example. (f) PyH2P
example 1. (g) PyH2P example 2.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 10,2021 at 18:14:39 UTC from IEEE Xplore. Restrictions apply.

59March/April 2021

the reference model and the auto-ticking simulator
of the RTL model, and then checks if the outcomes
match for each method call.

PyH2O is based on method-based interfaces
which are decoupled handshake interfaces with
four ports: 1) enable; 2) ready; 3) arguments; and
4) return value. Essentially, setting the enable sig-
nal high after making sure the ready signal is high
is equivalent to calling the corresponding ready
method, checking if it returns true, and then call-
ing the actual method. Converting an RTL method
interface to a Python method involves an adapter
that provides a method and a ready method to the
user and sets/modifies the signals inside the adapter.
PyH2O leverages Python reflection to automatically
wrap the RTL method interfaces with a generated
top-level PyMTL3 wrapper with Python methods.

PyH2O applies the AutoTickSimPass to create an
auto-ticking simulator for the wrapped model. Con-
ceptually, auto-ticking is more fine-grained than the
classical delta cycle approach. Auto-ticking divides
the combinational logic into multiple parts based
on logic related to the method interfaces. When
the user calls the enhanced top-level method, not
only the method but also all the logic between this
method and the next method is executed. If the exe-
cuted method is the last method of the cycle, the
simulator advances to the first method of the next
cycle. If the user skips a method in this cycle and
calls another method later in the cycle or a previous
method that is already skipped/called in the current
cycle, the simulator ignores the in-between methods
and executes all the logic until it reaches the called
method. Unlike trivial one-method-per-cycle testing,
this auto-ticking scheme is able to execute multiple
methods in the same cycle if they are called in a
specific order.

Case study: reorder buffer data structure
Figure 4a shows an RTL reorder buffer imple-

mentation which exposes the three methods called
interfaces. allocate is ready if the buffer is not full.
It returns the entry index and advances the tail
pointer. update_ is ready if the buffer has valid ele-
ments. It takes an index/value pair to update the
buffer. remove is ready if the buffer head is valid
and already updated, and returns the index/value
pair. Note that remove and allocate can occur in
the same cycle even if the reorder buffer is full,
because the implementation combinationally

factors whether remove is called into allocate’s
ready signal. Figure 4b shows the execution
schedule generated by the AutoTickSimPass.
The auto-ticking simulator guarantees that a
sequence of three method calls in the order of
update_ < remove < allocate will occur in the
same cycle.

Figure 4. PyH2O reorder buffer case study.
(a) PyMTL3 reorder buffer code snippet.
(b) Auto-tick execution schedule for
reorder buffer. (c) First falsifying example
found by PyH2O. (d) Minimized failing case
after auto-shrinking.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 10,2021 at 18:14:39 UTC from IEEE Xplore. Restrictions apply.

60 IEEE Design&Test

Open-Source EDA

To show the effectiveness of PyH2O, we replace
head+1 with head+0 in line 19 of Figure 4a. This
subtle bug needs at least six transactions in a spe-
cific order to trigger because it requires six transac-
tions to allocate, update and remove two entries,
but must not remove the first one and allocate the
second one in the same cycle. After trying several
sequences with varying length from 5 to 19, PyH2O
discovers a 11-transaction failing case as shown in
Figure 4c. After auto-shrinking, PyH2O successfully
finds one of the minimum failing case as shown in
Figure 4d.

THIS ARTICLE HAS introduced PyH2, which lev-
erages PyMTL3, pytest, and hypothesis to create a
novel open-source hardware testing methodology.
We believe PyH2 is an important first step toward
addressing four key challenges in open-source hard-
ware testing as follows.

• PyH2 is more accessible to open-source hard-
ware designers compared to complex closed-
source hardware testing methodologies.

• PyH2G is well-suited for testing not just design
instances but also design generators which are
critical to the success of the open-source hard-
ware ecosystem.

• PyH2P can improve the random testing of open-
source processor implementations compared to
the more limited directed and random testing
currently used in many open-source projects.

• PyH2O can more effectively test object-oriented
hardware data structures.

We have open-sourced PyMTL3 and PyH2 at
https://github.com/pymtl/pymtl3. �

Acknowledgments
Shunning Jiang and Yanghui Ou contributed

equally to this work. This work was supported in part
by NSF CRI under Award 1512937, in part by DARPA
POSH under Award FA8650-18-2-7852, a research gift
from Xilinx, Inc., and the Center for Applications
Driving Architectures (ADA), one of six centers of
JUMP, a Semiconductor Research Corporation pro-
gram cosponsored by DARPA, as well as equipment,
tool, and/or physical IP donations from Intel, Xilinx,
Synopsys, Cadence, and ARM. We acknowledge
and thank Derek Lockhart for his initial thoughts
on combining PyMTL with hypothesis, and Cheng

Tan for his contributions to PyH2G. We would like
to acknowledge and thank David MacIver and Zac
Hatfield-Dodds for their work on the Hypothesis
framework and thoughtful discussions on how to lev-
erage Hypothesis for hardware. The U.S. Government
is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copy-
right notation thereon. Any opinions, findings, and
conclusions or recommendations expressed in this
publication are those of the author(s) and do not
necessarily reflect the views of any funding agency.

J References
 [1] O. Shacham et al., “Avoiding game over: Bringing

design to the next level,” in Proc. 49th Annu. Design

Autom. Conf. (DAC), Jun. 2012, pp. 623–629.

 [2] M. Naylor and S. Moore, “A generic synthesisable test

bench,” in Proc. ACM/IEEE Int. Conf. Formal Methods

Models for Codesign (MEMOCODE), Sep. 2015,

pp. 128–137.

 [3] K. Laeufer et al., “RFUZZ: Coverage-directed fuzz

testing of RTL on FPGAs,” in Proc. Int. Conf. Comput.-

Aided Design, Nov. 2018, pp. 1–8.

 [4] S. Jiang, B. Ilbeyi, and C. Batten, “Mamba: Closing the

performance gap in productive hardware development

frameworks,” in Proc. 55th ACM/ESDA/IEEE Design

Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

 [5] S. Jiang et al., “PyMTL3: A Python framework

for open-source hardware modeling, generation,

simulation, and verification,” IEEE Micro, vol. 40, no. 4,

pp. 58–66, Jul. 2020.

 [6] T. Ajayi et al., “Toward an open-source digital flow: First

learnings from the OpenROAD project,” in Proc. 56th

Annu. Design Autom. Conf. (DAC), Jun. 2019, pp. 1–4.

 [7] K. Claessen and J. Hughes, “QuickCheck: A

lightweight tool for random testing of Haskell

programs,” in Proc. Int. Conf. Funct. Program. (ICFP),

Sep. 2000, pp. 268–279.

 [8] P. Bjesse et al., “Lava: Hardware design in Haskell,” in

Proc. Int. Conf. Funct. Program. (ICFP), Sep. 1998,

pp. 174–84.

 [9] D. MacIver et al., “Hypothesis: A new approach to

property-based testing,” J. Open Source Softw., vol. 4,

no. 43, p. 1891, Nov. 2019.

 [10] C. Tan et al., “PyOCN: A unified framework for

modeling, testing, and evaluating on-chip networks,” in

Proc. Int. Conf. Comput. Design (ICCD), Nov. 2019,

pp. 437–445.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 10,2021 at 18:14:39 UTC from IEEE Xplore. Restrictions apply.

61March/April 2021

 [11] F. Corno et al., “Fully automatic test program

generation for microprocessor cores,” in Proc. Design

Autom. Test Eur. (DATE), Mar. 2003, pp. 1006–1011.

 [12] F. Corno et al., “Fully automatic test program

generation for microprocessor cores,” in Proc. Design

Autom. Test Eur. (DATE), Mar. 2018, pp. 55–60.

Shunning Jiang is currently pursuing a PhD in
electrical and computer engineering with Cornell
University, Ithaca, NY. Jiang has a BS in computer
science from Zhiyuan College, Shanghai Jiao Tong
University, Shanghai, China (2015). He is a student
member of IEEE.

Yanghui Ou is currently pursuing a PhD in
electrical and computer engineering with Cornell
University, Ithaca, NY. Ou has a BEng in electrical
and computer engineering from the Hong Kong
University of Science and Technology, Hong Kong
(2018). He is a student member of IEEE.

Peitian Pan is currently pursuing a PhD in
electrical and computer engineering with Cornell
University, Ithaca, NY. Pan has a BS in computer
science from Shanghai Jiao Tong University,
Shanghai, China (2018). He is a student member of
IEEE.

Kaishuo Cheng is currently a junior under-
graduate student in computer science with Cornell
University, Ithaca, NY.

Yixiao Zhang has a BS and an MEng in electrical
and computer engineering from Cornell University,
Ithaca, NY (2018 and 2019, respectively).

Christopher Batten is currently an Associate
Professor of Electrical and Computer Engineering
with Cornell University, Ithaca, NY. Batten has a BS in
electrical engineering from the University of Virginia,
Charlottesville, VA (1999), an MPhil in engineering
from the University of Cambridge, Cambridge, U.K.
(2000), and a PhD in electrical engineering and
computer science from the Massachusetts Institute
of Technology, Cambridge, MA (2010). He is a
member of IEEE.

J Direct questions and comments about this article
to Christopher Batten, School of Electrical and
Computer Engineering, Cornell University, Ithaca, NY
14853 USA; cbatten@cornell.edu.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 10,2021 at 18:14:39 UTC from IEEE Xplore. Restrictions apply.

