
MAMBA: CLOSING THE PERFORMANCE GAP IN
PRODUCTIVE HARDWARE DEVELOPMENT FRAMEWORKS

Shunning Jiang, Berkin Ilbeyi, Christopher Batten

School of Electrical and Computer Engineering

Cornell University

0/17

THE TRADITIONAL FLOW

Traditional hardware
description language

- Example: Verilog

✓ Fast edit-debug-sim loop
✓ Single language for design

and testbench

X Difficult to parameterize
X Require specific ways to

build powerful testbench

* HDL: hardware description language
* DUT: design under test
* TB: test bench
* synth: synthesis

1/17

Traditional hardware
description language

- Example: Verilog

✓ Fast edit-debug-sim loop
✓ Single language for design

and testbench

X Difficult to parameterize
X Require specific ways to

build powerful testbench

~12 GRAD STUDENTS TAPED OUT CELERITY IN 9 MONTHS

ChiselÆ Verilog SystemVerilog C++Æ Verilog Æ
PyMTL Æ Verilog

Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawaj, Austin Rovinski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao,
Steve Dai, Aporva Amarnath, Bandhav Veluri, Paul Gao, Anuj Rao, Gai Liu, Rajesh K. Gupta, Zhiru Zhang, Ronald G. Dreslinski,
Christopher Batten, and Michael B. Taylor. "The Celerity Open-Source 511-Core RISC-V Tiered Accelerator Fabric: Fast
Architectures and Design Methodologies for Fast Chips." IEEE Micro, 38(2):30–41, Mar/Apr. 2018. (special issue for top picks
from HOTCHIPS-29)

1/17

HARDWARE PREPROCESSING FRAMEWORK (HPF)

Traditional hardware
description language

- Example: Verilog

Hardware preprocessing
framework (HPF)

- Example: Genesis2

✓ Fast edit-debug-sim loop
✓ Single language for design

and testbench

X Difficult to parameterize
X Require specific ways to

build powerful testbench

✓ Better parametrization with
insignificant coding style change

X Multiple languages create
semantic gap

X Still difficult to build powerful
testbench

1/17

HARDWARE GENERATION FRAMEWORK (HGF)

Traditional hardware
description language

- Example: Verilog

Hardware preprocessing
framework (HPF)

- Example: Genesis2

Hardware generation
framework (HGF)
- Example: Chisel

✓ Fast edit-debug-sim loop
✓ Single language for design

and testbench

X Difficult to parameterize
X Require specific ways to

build powerful testbench

✓ Better parametrization with
insignificant coding style change

X Multiple languages create
semantic gap

X Still difficult to build powerful
testbench

✓ Powerful parametrization
✓ Single language for design

X Slower edit-debug-sim loop
X Yet still difficult to build

powerful testbench (can only
generate simple testbench)

1/17

HARDWARE GENERATION AND SIMULATION FRAMEWORK (HGSF)

✓Powerful parametrization
✓Single language for design

and testbench
✓Powerful testbench (unleash

Python’s full power!)
✓Fast edit-sim-debug loop

Hardware generation
and simulation

framework (HGSF)
- Example: PyMTL

2/17

✓Powerful parametrization
✓Single language for design

and testbench
✓Powerful testbench (unleash

Python’s full power!)
✓Fast edit-sim-debug loop

Sad fact: The loop is only
fast when simulating a small
amount of cycles on a small
design!

HARDWARE GENERATION AND SIMULATION FRAMEWORK (HGSF)

Hardware generation
and simulation

framework (HGSF)
- Example: PyMTL

2/17

Hardware generation
and simulation

framework (HGSF)
- Example: PyMTL

▪ Understanding the performance gap

▪ Background on tracing JIT compiler

▪ Co-optimizing the JIT and the HGSF

▪ Mamba performance

CLOSING THE PERFORMANCE GAP IN HGSFS

3/17

SIMULATION PERFORMANCE OF 64-BIT ITERATIVE DIVIDER

• We implement a 64-bit radix-four iterative divider to
the same level of detail in all frameworks using
control/datapath split

• Higher is better
• Log scale – the gap is larger than it seems

4/17

• CVS is 20X faster than Icarus
• Verilator requires C++ testbench, only works with synthesizable code, takes

time to compile, but is 200+X faster than Icarus

SIMULATION PERFORMANCE OF 64-BIT ITERATIVE DIVIDER

4/17

• Chisel (HGF) generates Verilog and simulates Verilog – the same performance!

SIMULATION PERFORMANCE OF 64-BIT ITERATIVE DIVIDER

4/17

• Using CPython interpreter, Python-based HGSFs are much slower than CVS
and even 10X slower than Icarus

SIMULATION PERFORMANCE OF 64-BIT ITERATIVE DIVIDER

4/17

• Simply applying unmodified PyPy JIT interpreter brings ~10X speedup for
Python-based HGSFs, but they are still significantly slower than CVS

SIMULATION PERFORMANCE OF 64-BIT ITERATIVE DIVIDER

4/17

• Hybrid C/C++ cosimulation improves the performance but:
• Only works with a subset of code
• May require the user to work with C/C++ and Python at the same time

SIMULATION PERFORMANCE OF 64-BIT ITERATIVE DIVIDER

4/17

• Hybrid C/C++ cosimulation improves the performance but:
• Only works with a subset of code
• May require the user to work with C/C++ and Python at the same time.

SIMULATION PERFORMANCE OF 64-BIT ITERATIVE DIVIDER

4/17

SIMULATION PERFORMANCE OF 64-BIT ITERATIVE DIVIDER

4/17

Hardware generation
and simulation

framework (HGSF)
- Example: PyMTL

▪ Understanding the performance gap

▪ Background on tracing JIT compiler

▪ Co-optimizing the JIT and the HGSF

▪ Mamba performance

CLOSING THE PERFORMANCE GAP IN HGSFS

5/17

INTERPRETER AND JUST-IN-TIME COMPILER FOR DYNAMIC LANGUAGES

▪ Dynamic languages provide vast productivity features. As a result, they require
interpreter. (e.g. CPython)

6/17

INTERPRETER AND JUST-IN-TIME COMPILER FOR DYNAMIC LANGUAGES

▪ Dynamic languages provide vast productivity features. As a result, they require
interpreter. (e.g. CPython)

▪ However, interpreters are slow.

▪ Just-in-time (JIT) compiler addresses the performance gap

6/17

HOW TRACING JIT WORKS

def max(a, b):
if a > b:
return a

else:
return b

The first trace is generated
when integers are passed as args
and a is actually greater than b
guard_type(a, int) # type check
guard_type(b, int) # type check
c = int_gt(a, b) # check if a>b
guard_true(c)
return(a)

This is a hot loop
for i in xrange(10000000):

... = max(..., ...)

7/17

HOW TRACING JIT WORKS

The first trace is generated
when integers are passed as args
and a is actually greater than b
guard_type(a, int) # type check
guard_type(b, int) # type check
c = int_gt(a, b) # check if a>b
guard_true(c)
return(a)

bridge out of guard_true(c)
The second trace is generated
when guard_true(c) fails
return(b)

def max(a, b):
if a > b:
return a

else:
return b

This is a hot loop
for i in xrange(10000000):

... = max(..., ...)

7/17

HOW TRACING JIT WORKS

The first trace is generated
when integers are passed as args
and a is actually greater than b
guard_type(a, int) # type check
guard_type(b, int) # type check
c = int_gt(a, b) # check if a>b
guard_true(c)
return(a)

bridge out of guard_true(c)
The second trace is generated
when guard_true(c) fails
return(b)

bridge out of guard_type(a, int)
The third trace is generated
when floats are passed as args
guard_type(a, float) # type check
guard_type(b, float) # type check
c = float_gt(a, b) # check if a>b
guard_true(c)
return(a)

def max(a, b):
if a > b:
return a

else:
return b

This is a hot loop
for i in xrange(10000000):

... = max(..., ...)

7/17

Hardware generation
and simulation

framework (HGSF)
- Example: PyMTL

▪ Understanding the performance gap

▪ Background on tracing JIT compiler

▪ Co-optimizing the JIT and the HGSF

▪ Mamba performance

CLOSING THE PERFORMANCE GAP IN HGSFS

8/17

CHALLENGES OF HGSFS ON TRACING JIT

▪ By nature, event-driven simulation is bad for tracing JIT

▪Control flows in logic blocks turn into guards that fail often

▪ Emulating fix-width data types using Python’s seamless
BigInt is not the most efficient

▪…

9/17

CHALLENGES: EVENT-DRIVEN SIMULATION

▪ Every signal value change check is a frequently failing guard

▪ Event-driven simulation’s inner loop is a bad pattern for
tracing JIT

10/17

CHALLENGES: EVENT-DRIVEN SIMULATION

▪ Event-driven simulation’s inner loop is a bad pattern for
tracing JIT

num_cycles = 1000000
for i in xrange(num_cycles):

while not event_queue.empty():
block = event_queue.pop()
block()

10/17

CHALLENGES: EVENT-DRIVEN SIMULATION

▪ Event-driven simulation’s inner loop is a bad pattern for
tracing JIT # The first trace is for blk1

guard_equal(block, blk1)
< execute the code of blk1 >
jump_to_loop(while_loop)

The second trace is for blk2
guard_equal(block, blk2)
< execute the code of blk2 >
jump_to_loop(while_loop)

The third trace is for blk3
guard_equal(block, blk3)
< execute the code of blk3 >
jump_to_loop(while_loop)

num_cycles = 1000000
for i in xrange(num_cycles):

while not event_queue.empty():
block = event_queue.pop()
block()

10/17

CHALLENGES: EVENT-DRIVEN SIMULATION

▪ Event-driven simulation’s inner loop is a bad pattern for
tracing JIT

N-th block will fail N-1 times
to find the trace. In total it is
O(N2) for N blocks and is the
scaling bottleneck.

The first trace is for blk1
guard_equal(block, blk1)
< execute the code of blk1 >
jump_to_loop(while_loop)

The second trace is for blk2
guard_equal(block, blk2)
< execute the code of blk2 >
jump_to_loop(while_loop)

The third trace is for blk3
guard_equal(block, blk3)
< execute the code of blk3 >
jump_to_loop(while_loop)

num_cycles = 1000000
for i in xrange(num_cycles):

while not event_queue.empty():
block = event_queue.pop()
block()

10/17

CHALLENGES: EMULATING FIX-WIDTH DATA TYPES

▪ Emulating fix-width data types using Python integer is not
the most efficient
• Python seamlessly promote integer to BigInt when overflowing 63-bit

• However, each overflow is a guard failure

• A 100-bit signal can either be BigInt or integer

• We actually know each signal’s bitwidth during elaboration!

• How can we tell JIT engine this information?

11/17

MAMBA

▪Mamba is a set of techniques that improve simulation
performance by co-optimizing the meta-tracing JIT and the
HGSF.
• Goal:

» Minimize the total number of generated traces

» Minimize the total size of generated traces

» Minimize the effect of having too many traces

12/17

MAMBA TECHNIQUES/PERFORMANCE (ALL WITH PYPY)
num_cycles = 1000000
for i in xrange(num_cycles):

while not event_queue.empty():
block = event_queue.pop()
block()

for i in xrange(num_cycles):
for block in static_schedule:
block()

13/17

MAMBA TECHNIQUES/PERFORMANCE (ALL WITH PYPY)
num_cycles = 1000000
for i in xrange(num_cycles):

while not event_queue.empty():
block = event_queue.pop()
block()

for i in xrange(num_cycles):
for block in static_schedule:
block()

for i in xrange(num_cycles):
block1(); block2(); block3();
...; blockN();

13/17

MAMBA TECHNIQUES/PERFORMANCE (ALL WITH PYPY)
num_cycles = 1000000
for i in xrange(num_cycles):

while not event_queue.empty():
block = event_queue.pop()
block()

for i in xrange(num_cycles):
for block in static_schedule:
block()

for i in xrange(num_cycles):
block1(); block2(); block3();
...; blockN();

for i in xrange(num_cycles):
block3(); block1(); block4();
block2(); ...

13/17

MAMBA TECHNIQUES/PERFORMANCE (ALL WITH PYPY)

for i in xrange(num_cycles):
block3();
block1();
jit_break_trace()
block4();
block2(); ...

13/17

MAMBA TECHNIQUES/PERFORMANCE (ALL WITH PYPY)

13/17

“Letting the generate-purpose JIT
recognize RTL simulation constructs” –
As a proof of concept, we implement fix-
bitwidth data types in RPython
framework.

MAMBA TECHNIQUES/PERFORMANCE (ALL WITH PYPY)

13/17

We use Linux perf tool to identify
microarchitectural bottlenecks.

For larger designs (unrolled into a huge
loop body), the instruction TLB becomes
the bottleneck.

Hardware generation
and simulation

framework (HGSF)
- Example: PyMTL

▪ Understanding the performance gap

▪ Background on tracing JIT compiler

▪ Co-optimizing the JIT and the HGSF

▪ Mamba performance

CLOSING THE PERFORMANCE GAP IN HGSFS

14/17

CASE STUDY: SIMULATING RISC-V MULTICORE

▪ Simulated Design:
• 1 / 2 / 4 / 8 / 16 / 32 RV32IM five-stage pipeline processors hooked up

to a multi-port test memory

• No cache, no on-chip network, just 32 processors

• Running a parallel C++ matrix multiplication program

▪Competitors:
• Mamba

• Verilator, Icarus Verilog, CVS

• PyMTL, PyMTL-CSim

15/17

PERFORMANCE (W/ COMPILATION AND STARTUP OVERHEADS)

Simulating 1-core Simulating 32-core

Average Cycle Per Second =
Simulated cycle

𝐂𝐨𝐦𝐩𝐢𝐥𝐚𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 + 𝐒𝐭𝐚𝐫𝐭𝐮𝐩 𝐎𝐯𝐞𝐫𝐡𝐞𝐚𝐝 + Simulation time 16/17

PERFORMANCE (W/ COMPILATION AND STARTUP OVERHEADS)

Simulating 1-core

Average Cycle Per Second =
Simulated cycle

𝐂𝐨𝐦𝐩𝐢𝐥𝐚𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 + 𝐒𝐭𝐚𝐫𝐭𝐮𝐩 𝐎𝐯𝐞𝐫𝐡𝐞𝐚𝐝 + Simulation time

Simulating 32-core

16/17

PERFORMANCE (W/ COMPILATION AND STARTUP OVERHEADS)

Simulating 1-core

Average Cycle Per Second =
Simulated cycle

𝐂𝐨𝐦𝐩𝐢𝐥𝐚𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 + 𝐒𝐭𝐚𝐫𝐭𝐮𝐩 𝐎𝐯𝐞𝐫𝐡𝐞𝐚𝐝 + Simulation time

Simulating 32-core

16/17

PERFORMANCE (W/ COMPILATION AND STARTUP OVERHEADS)

Simulating 1-core

Average Cycle Per Second =
Simulated cycle

𝐂𝐨𝐦𝐩𝐢𝐥𝐚𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞 + 𝐒𝐭𝐚𝐫𝐭𝐮𝐩 𝐎𝐯𝐞𝐫𝐡𝐞𝐚𝐝 + Simulation time

Simulating 32-core

16/17

Hardware generation
and simulation

framework (HGSF)
- Example: PyMTL

▪ Deeply co-optimizing the HGSF and the
underlying general-purpose JIT is the key to
achieve an order of magnitude speedup.

▪ Proposed techniques also shed light on
performance optimizations in existing
hardware generation and simulation
frameworks.

▪ https://github.com/cornell-brg/mamba-dac2018

▪ https://github.com/cornell-brg/pymtl

This work was supported in part by NSF XPS Award
#1337240, NSF CRI Award #1512937, NSF SHF Award
#1527065, AFOSR YIP Award #FA9550-15-1-0194, and a
donation from Intel

CONCLUSION

17/17

https://github.com/cornell-brg/mamba-dac2018
https://github.com/cornell-brg/pymtl

