Published online 23 March 2010

Nucleic Acids Research, 2010, Vol. 38, No. 8 2607-2616

doi:10.1093/nar/gkq165

Algorithms for automated DNA assembly

Douglas Densmore'>*, Timothy H.-C. Hsiau?, Joshua T. Kittleson?, Will DeLoache?3,
Christopher Batten* and J. Christopher Anderson®®

1Department of Fuel Synthesis, Joint BioEnergy Institute, 5885 Hollis St., Fourth Floor, Emeryville CA 94608,
2Department of Bioengineering, University of California, Berkeley, CA 94720, 3Department of Biology, Davidson
College, Davidson, NC 28036, “School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
14853 and °Berkeley National Laboratory, Physical Biosciences Division; QB3: California Institute for
Quantitative Biological Research; 327 Stanley Hall, Berkeley, CA 94720, USA

Received December 1, 2009; Revised February 15, 2010; Accepted March 1, 2010

ABSTRACT

Generating a defined set of genetic constructs
within a large combinatorial space provides a
powerful method for engineering novel biological
functions. However, the process of assembling
more than a few specific DNA sequences can be
costly, time consuming and errorprone. Even if a
correct theoretical construction scheme is de-
veloped manually, it is likely to be suboptimal by
any number of cost metrics. Modular, robust and
formal approaches are needed for exploring these
vast design spaces. By automating the design of
DNA fabrication schemes using computational algo-
rithms, we can eliminate human error while reducing
redundant operations, thus minimizing the time and
cost required for conducting biological engineering
experiments. Here, we provide algorithms that
optimize the simultaneous assembly of a collection
of related DNA sequences. We compare our algo-
rithms to an exhaustive search on a small synthetic
dataset and our results show that our algorithms
can quickly find an optimal solution. Comparison
with random search approaches on two real-world
datasets show that our algorithms can also quickly
find lower-cost solutions for large datasets.

INTRODUCTION

Forward engineering of biological systems has yielded
some interesting and useful results (1-3), but a general
process for designing DNA sequences that reliably
produce specific system-level functionality remains
elusive. The key challenge is simply our incomplete know-
ledge of every relevant biological mechanism and param-
eter. Several analytical tools help engineers mitigate this

biological uncertainty including biophysical modeling
to predict unknown quantities (4), network analysis to
select designs robust to uncertain parameters (5) and
genome-wide topology inference and optimization to
bypass poor parameterization (6,7). These analytical
approaches are in contrast to experimental assays that
attempt to overcome biological uncertainty by evaluating
millions or even billions of variants, often short sequences
encoding for a single biological function, from a
prescribed solution space. For example, panning phage
display libraries regularly yields peptides that bind a
defined target (8), selecting RNA aptamers using selective
immobilization on solid matrices yields sequences with
desired binding specificity (9) and statistically guided
screening of enzyme variants yields high-performance
proteins (10). There has been a recent trend towards
combining these analytical and experimental approaches
in an effort to build much larger biological systems.
Analytical tools can narrow the design space to
hundreds or thousands of promising variants, and experi-
mental evaluation can identify the variant that best meets
the system-level specifications. This trend has motivated
the use of ‘automated DNA assembly’ to build large sets
of multi-kilobase DNA variants, each encoding a similar
yet complex system-level functionality.

Although many methods have been described for
joining existing pieces of DNA (11-19), in this work, we
primarily focus on binary DNA assembly methods. In a
binary assembly method, two pieces of DNA are
combined together in one stage, and multiple stages are
used to gradually assemble the final desired DNA
sequence. The original set of DNA pieces can be from a
previously constructed library or be specially synthesized
for use in assembling a specific DNA sequence. Each
‘piece’ of DNA can also be a mixture of DNA sequences
for the construction of combinatorial libraries or
compounds in diversity-oriented synthesis for medicinal
chemistry. Examples of binary assembly include

*To whom correspondence should be addressed. Tel: +1 510 4344978; Fax: +1 510 4864252; Email: dmdensmore@]1bl.gov

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

2608 Nucleic Acids Research, 2010, Vol. 38, No. 8

ligation-by-selection (15), BioBrick™ assembly, overlap
extension elongation (18) and specific planned ligation
(19). There are different approaches to BioBrick™
assembly, including 3A assembly (16) and 2ab assembly
(17). Theoretically, these methods could be used to con-
struct many variants of single-gene sequences, multi-gene
cassettes or even complete genomes. Unfortunately, trad-
itional DNA assembly protocols are a relatively laborious
manual process, and this significantly limited the size and
number of variants that could be realistically constructed.
However, engineers have recently started to make use of
high-throughput robotic platforms that can help automate
the process of assembling many multi-kilobase DNA
variants.

A robotic platform is just the first step towards fully
automated DNA assembly. The automated hardware
needs to be complemented with automated software that
can quickly determine the most efficient way to assemble
the desired final DNA sequences. As the number of final
sequences and the size of each sequence grow, so does the
number of ways in which we might assemble these
variants. Algorithms for determining how to assemble chi-
maeric genes exist (19), but they focus on the creation of
highly similar DNA sequences and assume that all of the
sequences are assembled in the exact same way. In this
article, we introduce new algorithms that quickly deter-
mine a low-cost way to assemble an arbitrary set of final
DNA sequences. Our algorithms minimize the assembly
time by determining the optimum number of assembly
stages and minimize the assembly work by exploiting
common sub-sequences across variants. While our algo-
rithms can be applied to small sets of manually assembled
short DNA sequences, their true potential is in future
automated DNA assembly platforms where hundreds to
thousands of very long DNA sequences can be quickly
and efficiently assembled.

MATERIALS AND METHODS

This section presents an overview of the proposed algo-
rithms for automated DNA assembly. The Supplementary
Data provide additional details for each algorithm
including pseudocode and run-time complexity analysis.
We begin by briefly reviewing the two binary DNA
assembly methods, 3A and 2ab, for which we are currently
using our algorithms. We then introduce the basic termin-
ology used in the rest of the article and more formally
define the problem we are trying to solve. This section
then describes an algorithm for assembling a single long
sequence of DNA and explains how this algorithm can be
extended for use in assembling hundreds to thousands of
DNA variants. Although these algorithms are directly
applicable to the 3A assembly method, we also describe
how they can be modified to support the more
complicated 2ab assembly method.

Background on 3A and 2ab assembly methods

Our algorithms can be extended for use with a variety of
binary DNA assembly methods, but in this article we
focus on the two assembly methods that we have been

actively using in our research: the 3A assembly method
(16) and the 2ab assembly method (17). The 3A
assembly method relies on restriction digesting the con-
struction vector, the 5° part, and the 3’ part; gel purifying
the parts and then ligating them together. Our algorithms
can handle this assembly method without modification.
The 2ab strategy is a single-pot method that requires no
gel purification steps. DNA sequences can reside in one of
six assembly plasmid types; each type contains two of
three different antibiotic resistance markers separated by
a common restriction site. The most commonly used anti-
biotics are kanamycin (K), ampicillin (A) and chloram-
phenicol (C). Two other restriction sites flank the
desired DNA sequence and are selectively digested to
generate compatible ends for assembly. To join two
DNA sequences x and vy to yield xy, they must have the
correct permutation of antibiotic markers, i.e. if x were in
K/A, y would have to be in A/C while the product xy
would be in K/C. The additional constraint on plasmids
with compatible antibiotic markers will require extensions
to our basic algorithms. The primary advantage of the 2ab
assembly method is its lack of gel purification steps, which
makes it more robust and particularly well suited to auto-
mation with a high-throughput robotic platform. Note
that in both methods, assembling a longer DNA
sequence from two shorter sequences has an associated
cost in terms of time and wetlab work. The time cost is
related to the delay required to actually complete the
assembly protocol, which can range from one to two
days for each assembly due to the need for plasmids to
propagate, while the wetlab work cost is related to the
required amount of reagents or researcher effort.

Terminology and problem statement

Figure 1A illustrates the assembly of a cassette that
expresses both a green and red fluorescent protein.
Assembly methods work with ‘parts’, where each part is
a sequence of DNA that adheres to the requirements of
the assembly method. An engineer begins with a set of
‘primitive parts’ that are gradually assembled to form
the final DNA sequence, which is also called the ‘goal
part’. The example in Figure 1A uses four primitive
parts: a constitutive promoter (Pcon), a red fluorescent
protein coding sequence (RFP), a green fluorescent
protein coding sequence (GFP) and a transcriptional ter-
minator (term). Primitive parts are assumed to have been
created through a separate process such as DNA synthe-
sis. The desired goal part in this example is named
Pcon.RFP.GFP.term and includes all four primitive
parts. Figure 1A is an example of an ‘assembly graph’,
which represents one way of assembling the desired goal
part. An assembly graph is made up of ‘assembly steps’
where each step assembles two smaller parts into a longer
‘composite part’. For example, the Pcon and RFP primi-
tive parts are combined using one assembly step to create
the new composite part named Pcon.RFP. The 5 part,
Pcon, may be referred to as the left part and the 3’ part,
RFP, may be referred to as the right part. The composite
part Pcon.RFP is also called an ‘intermediate part’ since
it is constructed as an intermediate step in assembling the

A
Pcon RFP GFP term---
Assembly \ /
Stage Pcon+RFP GFP+term=-----
1
Pcon.RFP GFP.term ----

Pcon.RFP+GFP.term ====---

Pcon.RFP.GFP.term ---=---

Nucleic Acids Research, 2010, Vol. 38, No.8 2609

....... Assembly Step Y Y
------- Intermediate Part ----------ab cd
....... Assembly Step

_____ abcd
---------- Goal Part-""‘-_

Figure 1. Example assembly graph. Example of an assembly graph for the goal part Pcon.RFP.GFP. term with real world (A) and abstract (B)
representations. The primitive parts include a constitutive promoter (Pcon), red fluorescent protein coding sequence (RFP), green fluorescent protein
coding sequence (GFP) and transcriptional terminator (term). These primitive parts are joined in two assembly steps to form composite parts
Pcon.RFP and GFP. term during the first assembly stage. A second assembly stage, consisting of a single assembly step, completes construction of

the goal part.

desired goal part. Multiple independent assembly steps
can be performed in parallel in what we call an
‘assembly stage’. For example, the assembly steps that
create the Pcon.RFP and GFP. term intermediate parts
can be performed in parallel and are part of the first
assembly stage. The example assembly graph in Figure
1A requires a total of three assembly steps and two
assembly stages. In addition to a selection of primitive
parts, an engineer may have access to a ‘part library’ con-
taining previously assembled composite parts. For
example, if the composite part Pcon.RFP is already
present in a part library, then an engineer can make use
of this previously assembled part and eliminate one
assembly step from the graph in Figure 1A.

In the rest of this article we use a slightly simplified
assembly graph notation as illustrated in Figure 1B.
Since our algorithms are independent of each part’s
precise biological function, we use single letters to repre-
sent primitive parts (e.g. a and b) and multiple letters to
represent composite parts (e.g. ab). Also notice that
arrowheads are omitted but directionality is still assumed.

An assembly graph abstractly captures the cost of
assembling the desired goal part. The number of
assembly stages corresponds to the time cost, while the
number of assembly steps corresponds to the wetlab
work cost. Any given goal part can be assembled with
many different assembly graphs, and each graph can
have a very different assembly cost. Figure 2 illustrates
three different ways of assembling the goal part abcde.
Figure 2A assembles the goal part from five primitive
parts and requires three assembly stages and four
assembly steps. Figure 2B assembles the goal part from
three primitive parts and one composite part (cd)
already present in the part library. This alternative
approach still requires three stages but is able to save one
assembly step. Figure 2C assembles the goal part sequen-
tially from the five primitive parts and requires four stages
and four steps. In this example, Figure 2B has the lowest
cost since it has the minimum number of stages and/or
steps. This assembly graph will result in less time and
wetlab work as compared to the other two assembly
graphs. In general, some graphs may have more stages
but less steps while other graphs will have less stages but
more steps, so an algorithm needs to precisely capture how
to trade-off time versus wetlab work in a ‘cost function’.

Aab cd e

YYIY Y
bc\/de ab\A ab
abc

bcde abcd

abcde abcde abcd

Y

abcde

Figure 2. Diversity in assembly graphs. Examples of different assembly
graphs. Here, assembly graphs are illustrated for the same part abcde
yet with different structures and/or costs in A—C. We assume part cd is
already present in the part library.

Note that, unlike Figure 2B, using a part from the part
library can sometimes result in higher cost than an alter-
native assembly graph that avoids using any parts from the
part library. Cost functions can also include other factors
such as the failure rate of a certain assembly step, the dif-
ficulty in synthesizing a specific primitive part or the like-
lihood that an intermediate part will be used in a different
context.

So far we have examined assembling a single goal part,
but in this work we are more interested in assembling a
‘goal-part set’ that can include hundreds to thousands of
goal parts. Just as we can represent one way to assemble a
single goal part with an assembly graph, we can represent
one way to assemble a goal-part set with a larger and more
complicated assembly graph. The assembly graph for the
goal-part set will include subgraphs for each goal part,
and these subgraphs are often interconnected when we
can share intermediate parts. The number of goal parts,
size of each goal part and size of the part library all
combine to create many valid assembly graphs for a
specific goal-part set. Searching for a minimum-cost
assembly graph is a time-consuming and error-prone
problem for an engineer but is well-suited for computer
optimization. The algorithms presented in this article are
a first step towards solving this problem, which can be
more formally specified as follows:

Given a goal-part set and a part library, find the minimum
cost assembly graph that builds all parts in the goal-part set.

2610 Nucleic Acids Research, 2010, Vol. 38, No. 8

Single-goal-part assembly algorithm

We begin by describing an efficient algorithm for finding
the minimum cost assembly graph given a single goal part.
In the next subsection, we will extend this algorithm for
use in assembling a complete goal-part set. We define the
cost of an assembly graph to be the tuple (stages,steps),
and our initial cost function prioritizes assembly stages
unless they are equal, in which case we compare the
number of steps. Although this cost function strictly pri-
oritizes time over wetlab work, other cost functions with
different trade-offs are possible.

The binary tree structure of assembly graphs for a single
goal part enables us to easily leverage several well-known
results. The total number of possible assembly graphs for
a single goal part is (2n — 1)!/(n — 1)!n! [also known as the
Catalan number (20)] where 7 is the number of primitive
parts in the goal part. The minimum number of stages is
[log, n] and the minimum number of stepsisn— 1. If n is
an even power of two then there is exactly one optimal
assembly graph, otherwise there can be many assembly
graphs with the minimal number of stages and steps (see
Figure 2A for an example with cost (3,4)). Note that these
bounds make two important assumptions about the part
library and sharing of intermediate parts. First, these
bounds assume that the part library is empty. If the
library already contains intermediate parts that are in
one of the optimal assembly graphs, then these parts can
be used to reduce the number of steps and possibly the
number of stages (see Figure 2B for an example with cost
(3,3)). The second assumption is that the assembly graphs
do not exploit ‘intra-goal-part sharing’ (intra-GPS).
Intra-GPS occurs when the goal part includes the same
sequence of primitive parts multiple times. For example,
the goal part abcabc includes the primitive part sequence
abc twice. If we do not exploit intra-GPS, then the min-
imum cost is simply ([log, 6], 6 — 1) = (3,5). Figure 3A
illustrates an alternative assembly graph for this goal part
that exploits intra-GPS. The graph assembles the inter-
mediate part abc once and then reuses it in the final
step to assemble the goal part abcabc. Exploiting
intra-GPS reduces the cost to (3,3). Unfortunately, ex-
ploiting intra-GPS can sometimes lead to assembly
graphs with ‘higher’ cost than the straight-forward
graph that does not exploit intra-GPS (see Figure 3B for
an example). In this work, we assume that intra-GPS will
be rare in practice, since it requires long DNA sequences
to appear multiple times in a single goal part. We will use
real-world datasets in the Results section to help validate
this assumption.

A brute-force algorithm for finding the minimal cost
assembly graph would enumerate all (2n—1)!/(n—1)!n!
assembly graphs and then exhaustively search for the
minimal cost graph. A slightly less naive algorithm can
use a simple divide-and-conquer approach. The algorithm
begins by examining all possible ways in which we might
perform the final assembly step. For example, with the
goal part abcde the naive algorithm examines
a+bcde, ab+cde, abc +de and abcd+e. For each
of these potential assembly steps, the naive algorithm re-
cursively examines all possible assembly steps for forming

A a Dboc Ba bcd

Yy

ab ab

abc abc
abcabc abed
abcdabc

Figure 3. Intra-GPS. Examples of sharing within an assembly graph
for a single goal part. Panels A and B illustrate how intra-GPS can
either decrease (A) or increase (B) the cost of an assembly graph.

the left part and the right part. We can view the naive
algorithm as searching a tree where each node in the
tree is an intermediate part, and the edges represent all
possible ways of assembling that intermediate part.
Unfortunately, the naive algorithm has an exponential
running time as a function of the number of primitive
parts in the goal part, and this can make it slow for goal
parts containing tens of primitive parts.

Dynamic programming is a generic algorithmic tech-
nique specifically for these types of problems (20).
Dynamic programming is only applicable because our
problem has two specific properties: ‘optimal substructure’
and ‘sub-problem reuse’. Our problem has optimal sub-
structure because the minimal-cost assembly graph for a
specific intermediate part is optimal regardless of how it is
assembled with a second part. For example, assume we are
trying to find the minimal-cost assembly graph for the
goal part abcdefgh. The optimal assembly graph for
the intermediate part cdef is still optimal regardless if it
is used in the assembly step ab+cdef, b+cdef,
cdef +g or cdef +gh. Note that while this is true for
the stage- and step-based cost function described earlier in
this subsection, it may not be true for all possible cost
functions. The optimal substructure property is,
however, still true when using a part library. A part
from the library has zero cost regardless of context. The
optimal substructure property allows us to calculate the
cost for an intermediate part once and reuse this calcula-
tion in many different contexts. This leads us to
sub-problem reuse. Dynamic programming is only
helpful if the same calculation is used many times, which
is indeed the case in our assembly problem. We can view
dynamic programming as essentially merging some of the
nodes in the search tree used by the naive algorithm. This
allows us to search a part of the tree once and then reuse
the result multiple times. Our dynamic programming al-
gorithm has a polynomial running time and is guaranteed
to find an optimal assembly graph ignoring intra-GPS.
Exploiting intra-GPS would significantly complicate the
algorithm, since intra-GPS essentially violates the
optimal substructure property. This is because the cost
of assembling a specific intermediate part depends on its
context; it depends on whether or not that intermediate
part is reused elsewhere. The Supplementary Data provide

more detailed pseudocode and run-time analysis for
our single-goal-part algorithm based on dynamic
programming.

Multiple-goal-part assembly algorithm

In this section, we describe how the single-goal-part algo-
rithm can be used as a basis for determining a
near-optimal way to assemble a full goal-part set.
Initially, we will consider the cost of an assembly graph
for a goal-part set to still be the tuple (stages,steps) with
the same cost function as in the single-goal-part algorithm.
Since we can assemble goal parts in parallel, the number of
stages for a full goal-part set is equal to the maximum
number of stages over all disjoint assembly subgraphs.
This implies that a goal-part set with a few longer goal
parts will be limited, in terms of the time cost, by the many
stages required to assemble these longer goal parts.

The most straight-forward approach is to use the
single-goal-part algorithm as currently described for
each goal part in isolation. This approach is guaranteed
to find a full assembly graph with the minimum number of
assembly stages, but it misses opportunities for reducing
the number of assembly steps through ‘inter-goal-part
sharing’ (inter-GPS). Inter-GPS occurs when two goal
parts share a common sequence of primitive parts. For
example, assume the goal-part set includes the goal parts
abcde and abcgh. Applying the single-goal-part algo-
rithm on each part in isolation results in two disjoint
assembly subgraphs each with a cost of (3,4) and thus a
total cost for the goal-part set of (3.8). Figure 4A illus-
trates how we might exploit inter-GPS in this example, by
building the intermediate part bc once, and reusing it to
build both goal parts. This reduces the total cost to (3,7).
It is actually possible to achieve even greater savings by
sharing the longer intermediate part abc as shown Figure
4B. Unlike intra-GPS, exploiting inter-GPS is guaranteed
to reduce the number of assembly steps without increasing
the number of assembly stages. Intuitively this can be seen
by noticing that intra-GPS involves sharing an intermedi-
ate part in two contexts that might have been previously
connected, while inter-GPS involves sharing an intermedi-
ate in two completely disjoint contexts. Also unlike
intra-GPS, inter-GPS is quite common in realistic
goal-part sets. Engineers often want to experiment with
many variants where only one or two parts are different
across goal parts. For example, an experiment to tune
gene expression levels might use a goal-part set where
each goal part has the same promoter, protein coding
sequence and terminator, but a different ribosomal
binding site. We will use real-world datasets in the
Results section to help validate the assumption that
inter-GPS is common. The rest of this section illustrates
techniques for exploiting inter-GPS to reduce the total
number of required assembly steps for a specific
goal-part set.

Note that applying the basic single-goal-part algorithm
to each goal part may serendipitously result in shared
intermediate parts between some of the assembly
subgraphs. Unfortunately, since there can be many
equally optimal assembly subgraphs for each goal part,

Nucleic Acids Research, 2010, Vol. 38, No.8 2611

abcde

abcgh abcde abcgh

bc de f£f b c¢cd Dae f b cd

YY

ab cd ef bc ef bc
abcd bcd bcd
efbcd abcd efbcd
Ea bcd e ab c¢cg h

abcde abcgh

Figure 4. Inter-GPS, slack and iterative refinement. Inter-GPS is
shown in (A-B) and allows assembly graphs for different goal parts
to share common intermediate parts reducing the assembly cost from
(3, 8) to (3, 7) in A and (3, 6) in B. Slack is shown in (C-D) and allows
suboptimal solutions to increase the potential for inter-GPS reducing
the assembly cost from cost from (3, 7) in C to (3, 5) in D. Iterative
refinement helps ensure common intermediate parts are constructed in
the same way. For example, iterative refinement can turn the assembly
graph in E into the assembly graph in B.

there is no guarantee that the single-goal-part algorithm
will choose the subgraph that has the most shared inter-
mediate parts. In order to bias the single-goal-part algo-
rithm towards subgraphs with many shared intermediate
parts, we need to somehow leverage global information
about all goal parts in the single-goal-part algorithm. To
this end, our multiple-goal-part algorithm first calculates
the ‘sharing factor’ for every possible intermediate part.
The sharing factor is the number of redundant times each
sequence of primitive parts appears across all goal parts.
For the goal parts abcde and abcgh, the sharing factor
for all intermediate parts is zero except for the parts ab,
bc and abc. These intermediate parts have a sharing
factor of one, since they appear in both goal parts. We
then pass the sharing factors for all possible intermediate
parts into a modified version of the single-goal-part algo-
rithm, and we extend the cost tuple to be (stages, steps,
sharing). We update our cost function so that if the
number of stages are equal, we consider the number of
steps minus the sharing factor. Essentially, this new cost
function optimistically assumes that any intermediate part
that can be shared is indeed maximally shared, even

2612 Nucleic Acids Research, 2010, Vol. 38, No. 8

though there is no guarantee that this sharing will actually
take place. There may be cyclic sharing dependencies
between goal parts which prevent maximal sharing, or
two goal parts may assemble a shared intermediate in
two different ways. Regardless, this approach biases the
single-goal-part algorithm towards locally optimal
assembly subgraphs that are also likely to result in
shared intermediates with the assembly subgraphs for
other goal parts. The recursive nature of our dynamic
programming algorithm explicitly favors long shared
intermediates that can amortize many assembly steps.
The Supplementary Data include detailed pseudocode
illustrating how we can modify the basic single-goal-part
algorithm to include sharing factors.

The modified single-goal-part algorithm described so
far will always find a locally optimal assembly subgraph,
but we may be able to increase opportunities for shared
intermediates by considering locally suboptimal assembly
subgraphs. For example, assume our goal-part set includes
the parts abcd and efbcd. Figure 4C illustrates one
assembly graph where both goal parts use locally
optimal assembly subgraphs. Notice, however, that
efbcd requires three stages, while abcd only requires
two stages. We call the difference between the locally
optimal number of assembly stages for a specific goal
part and the maximum number of assembly stages
across all goal parts the ‘slack factor’. Goal parts with a
slack factor greater than zero can potentially use locally
suboptimal assembly subgraphs to increase opportunities
for shared intermediate parts without impacting the cost
of the overall assembly graph. Figure 4D illustrates a dif-
ferent assembly graph where abcd now requires three
assembly stages, which is greater than the locally
optimal number of two stages, but is now able to reuse
the intermediate part bcd. This reduces the overall cost to
three stages and five steps. To include the slack factor in
our single-goal-part algorithm, we simply add the slack
factor to our cost function so that subgraphs with more
stages but available slack are not automatically
eliminated. The Supplementary Data include detailed
pseudocode illustrating how we can modify the basic
single-goal-part algorithm to include the slack factor.

Even after modifying the single-goal-part algorithm to
include the sharing and slack factors, there is still no guar-
antee that the single-goal-part algorithm will choose
graphs with the maximum number of shared intermediate
parts. This is because, even with these additional factors,
there will still be many minimal-cost assembly subgraphs
for each goal part. For example, assume our goal part set
includes the parts abcde and abcgh. We would like to
ultimately find the assembly graph shown in Figure 4B,
but it is equally likely that we will find the assembly graph
shown in Figure 4E. This is because when we are
determining the optimal assembly subgraph for the inter-
mediate part abc both subgraphs have equal cost. So the
issue is that although the single-goal-part algorithm cor-
rectly biased its search based on the sharing factors, it
ended up being biased in two equal yet different directions
for the intermediate part abc. To address this issue we
add ‘iterative refinement’ to our multiple-goal-part algo-
rithm. Iterative refinement first runs the single-goal-part

algorithm on each goal part. Then we ‘pin’ the assembly
subgraph for one of the goal parts by effectively making
all intermediate parts in that subgraph zero cost. We then
rerun the single-goal-part algorithm on all non-pinned
goal parts. We continue to pin one goal part after each
iteration until all goal parts are pinned. Pinning a goal
part effectively biases later iterations towards the pinned
intermediate parts. We have experimented with various
heuristics for determining which goal part to pin including
the longest goal part and the goal part with the least
degrees-of-freedom (DOF). DOF is the number of
minimal-cost assembly subgraphs for a given goal part,
so pinning the goal part with the least DOF enables goal
parts with more DOF to reconfigure so as to better match
the pinned graph. We have found choosing the longest
goal part to be simple to implement and to perform well
across a range of goal-part sets, and we use this approach
throughout the rest of the paper. The Supplementary Data
include detailed pseudocode for our final multiple-goal-
part algorithm which combines iterative refinement with
the sharing and slack factors.

Extensions to support 2ab assembly method

The single-goal-part and multiple-goal-part algorithms
described so far are directly applicable for use in the 3A
assembly method. The 2ab assembly method requires an
additional post-processing step to handle the antibiotic
markers. The post-processing consists of assigning anti-
biotic markers to parts in the graph, identifying any con-
flicts in this assignment, determining the lowest cost
common node of the two conflicting subgraphs,
breaking the sharing of the corresponding intermediate
part and merging the resulting graphs.

The assignment of antibiotic markers is termed
‘coloring’ for short. The coloring algorithm considers the
assembly graph for each goal part and assigns the markers
to parts in a deterministic fashion (K/A and A/C combine
to form K/C, A/K and K/C combine to form A/C and so
on). The algorithm is analogous to a breadth-first search
in that it colors both the parents and the children of a part;
if two goal parts share subparts, their assembly subgraphs
are connected and colored at the same time. Sometimes,
the algorithm attempts to recolor a previously-colored
part and a coloring conflict arises if the two colors
disagree (see Figure 5A). If we consider the assembly
graph as an undirected graph, a conflict can only arise
from a cycle in the graph (a cycle being a closed path
with no repeated nodes or edges other than the starting
and ending nodes). An example of a cycle,
abcde —bcde — de —bedede, is shown in Figure 5A.

For the sake of brevity, the example is of an intra-GPS
cycle, but the concept remains the same for inter-GPS
cycles. All cycles must have a lowest-cost part because
edges only connect two parts of unequal cost. In order
to resolve the coloring conflict in the most economical
manner, we find the lowest-cost part in the cycle and du-
plicate its graph and subgraphs as shown in Figure 5B.
The coloring algorithm is then called again to color the
duplicated subgraphs and to discover if coloring conflicts
still exist as shown in Figure 5C. Once all coloring

Nucleic Acids Research, 2010, Vol. 38, No.8 2613

A KA AC CK KA B C KA AC CK KA AK KC
b c d e b c d e d e b c d e d e
Y Y. YYY YYY

bc\(de de bc de de
AC a bcde
CA KC CA KC
abcde bcdede abcde bcdede abcde bcdede

Figure 5. Assembly graph coloring. Breaking assembly graph ‘cycles’ allows for 2ab coloring extensions. In A, an assembly graph is presented with a
coloring conflict from bcdede to de. In B, a cycle is broken at part de. Now the graph can be colored as shown in C. However, upon inspection,
there may be a number of duplicate parts once coloring is taken into account. These are then merged in the final step of post-processing.

conflicts are resolved, we make the final assembly graph by
traversing the graph, making a record of each unique
graph and attempting to recapture any potential subpart
sharing with coloring taken into account by merging the
duplicate nodes (same part and same color).

RESULTS

In this section, we demonstrate the effectiveness of our
algorithms by running them on two real-world goal-part
sets. The first goal-part set is for a phagemid project from
the Anderson lab and contains 131 goal parts. In order to
screen for a correctly functioning device, this ‘phagemid’
dataset encoded three specific biochemical functions into a
device and varied the transcriptional regulation. These
three biochemical functions were distributed into one or
more operons and each operon was under control of one
of four promoters. The order of these operons was also
varied. The second goal-part set was designed by a group
of students at the University of California at Berkeley as
part of the 2008 International Genetically Engineering
Machines competition (17). This ‘1GEM-2008" dataset
contains 397 goal parts that were used as devices for sim-
plifying in vivo cloning reactions. Part lengths in these
datasets range from 2 to 14 primitive parts. Preliminary
analysis of both datasets found that there were no in-
stances of intra-GPS and many instances of inter-GPS,
confirming our earlier assumptions. For example, in the
1GEM-2008" dataset the average sharing factor for a
subpart was four with a maximum of 238. For the
‘phagemid’ data set the average sharing factor was 6
with a maximum of 130. Both datasets are available in
the Supplementary Data.

We have implemented our algorithms using Java as part
of the Clotho framework (21). Clotho is a ‘platform-based
design’ environment for the engineering of biological
systems. It enables the development of independent tools
that communicate in well-structured ways and provides a
rich data-interface for the retrieval of biological informa-
tion. Clotho allows our assembly algorithms to cleanly
communicate with high-throughput robotic platforms
and easily access standard part libraries. The source
code for our assembly algorithms and the rest of the

Clotho framework and documentation are available at
http://www.clothocad.org.

Results for the single-goal-part algorithm

The polynomial run-time of the single-goal-part algorithm
allows it to efficiently find the optimal assembly graph for
a single goal part. For example, finding a solution for a
goal part with 50 primitive parts requires milliseconds
with our dynamic programming approach, but requires
5-10min for the naive exponential-time method on a
standard general-purpose workstation. Since the single-
goal-part algorithm is used many times by the multiple-
goal-part algorithm, this difference in run-time can result
in significant speed-up when working with large
goal-part sets.

Results for the multiple-goal-part algorithm

To evaluate our multiple-goal-part algorithm, we measure
not only the approximate run-time but also the quality of
the final assembly graph. We begin by examining the per-
formance of our algorithm on a small synthetic goal-part
set. Figure 6 shows the results for three different algorith-
mic approaches: exhaustive search, random search and
our multiple-goal-part algorithm. Note that all three algo-
rithmic approaches will always produce assembly graphs
with the optimal number of stages. The primary difference
is in how well the algorithmic approaches minimize the
total number of steps. In the ‘exhaustive search
approach’, we enumerate all possible assembly subgraphs
that are locally optimal for each goal part. We then
examine all combinations of these assembly subgraphs
to exhaustively search all possible graphs for the entire
goal-part set. Figure 6 shows the distribution of the
number of assembly steps for the final combined
assembly graphs. Notice that most of the graphs have
15-16 steps, but graphs that better exploit inter-GPS are
able to reduce the cost to a minimum of 13 steps. In the
‘random search approach’, we also enumerate all possible
assembly subgraphs that are locally optimal for each goal
part. We then randomly pick a subgraph for each goal
part and combine them to take advantage of shared inter-
mediate parts. Since the random search approach does not
examine all possible combinations, it is much faster than

2614 Nucleic Acids Research, 2010, Vol. 38, No. 8

the exhaustive search. Figure 6 shows that the random
search approach still produces a similar distribution of
assembly graphs as the exhaustive search approach.
Notice that very few assembly graphs actually contain
the minimum number of assembly steps. This implies
that while serendipitously shared intermediate parts are
possible, a more targeted algorithm is needed to quickly
find the optimum solution. Figure 6 also shows the solu-
tions found with our multiple-goal-part algorithm. With
the sharing factors and iterative refinement, our algorithm

0.8

Exhaustive

8 M RandomSearch
c n=1820
g 0.6
§ Sharing/Slack/IR
o
5 04 Sharing/IR
N
©
€ 02
)
=2

0 o

11 12 13 14 15 16

Cost in Steps

Figure 6. Comparison of solutions found for the small synthetic
goal-part set. A comparison of exhaustive search, random search,
and our algorithm’s output for a small set of goal parts. The x-axis
provides the number of steps required and the y-axis shows the
normalized occurrence of assembly graphs of that size. As shown, a
random search with 1820 graphs compares favorably with locally
optimal exhaustive search, with a best solution of cost 13 (denoted
by an asterisk), while our algorithm is able to provide an assembly
graph with lower cost due to the slack factor. This result also demon-
strates we can use random search as a point of comparison with our
algorithm.

1Slack

IR/Sharing

5

4 4
IR/Sharing/

3

2

200 250 300 350 400

(@]
Normalized Occurrence (1072)

5
4
3 1 IR/Sharing/Slack
2 IR/SI:aring

. 1
*
0 — T

200 250 300 350 400

Cost in Steps

is able to quickly find the optimal solution with 13
assembly steps. With the addition of the slack factor,
our algorithm is actually able to find a solution that
requires only 11 assembly steps. This solution is not
found by the other approaches, since they rely on locally
optimal subgraphs, but the slack factor enables locally
suboptimal subgraphs to be used when they produce a
more optimal global result.

For real-world datasets an exhaustive search of all
possible solutions is not feasible, so we only compare
our multiple-goal-part algorithm to the random search
approach. Figure 7A-B shows the results for the
‘phagemid’ and “1GEM-2008" datasets. We show the
solution chosen by three variants of our multiple-goal-
part algorithm. The ‘IR’ solution corresponds to our
algorithm with iterative refinement but without using
sharing or slack factors. The ‘IR /sharing’ solution corres-
pond to our algorithm with iterative refinement aug-
mented with sharing factors, and the ‘IR/sharing/slack’
solution corresponds to our complete multiple-goal-part
algorithm. Notice that the random search approach
produces roughly Gaussian distributions, meaning that
very few solutions are near the lower-cost tail. Even with
a large random search, the best solution is still significant-
ly worse than our ‘IR’ solution. Adding the sharing and
slack factors further reduces the required number of steps.
Ultimately, our algorithm is able to reduce the number of
assembly steps by 23% for the ‘phagemid’ dataset and by
37% for the 1IGEM-2008" dataset. This reduction in
assembly steps directly corresponds to reduced assembly
work in terms of engineer effort and reagents. The running
time for our algorithm on the ‘phagemid’ and
1GEM-2008" datasets was on the order of minutes while
the random search approach took many hours on

B 30 1

25 1
20 -IR/Sharing/SIack
15 1y IR/Sharing

10 1 IR
18!

*
0 r v

800 1000 1200 1400

()
Normalized Occurrence (10°3)

30 1

25 1

20 1 IR/Sharing/Slack
15 1 | IR/Sharing

10 1 IR

il

*
0 : T T r
800 1000 1200 1400
Cost in Steps

Figure 7. Comparison of solutions found for the phagemid and iGEM datasets. These figures show the assembly cost (in terms of assembly steps)
for the ‘phagemid’ (A, C) and IGEM-2008" (B, D) datasets for 3A assembly (A-B) and 2ab assembly (C-D). The arrows indicate the number of steps
for the solution found with just iterative refinement (‘IR’), for iterative refinement with sharing factors (‘IR/sharing’), and our complete multi-goal-
part algorithm (‘IR/sharing/slack’). The asterisk indicates the lowest cost solution found by the random search.

standard general-purpose workstation. Replacing our
dynamic programming single-goal-part algorithm with
one based on the naive exponential approach increased
the running time of our multiple-goal-part algorithm by
several orders-of-magnitude.

Results for extensions to support 2ab assembly method

The Materials and methods section introduced a coloring
post-processing step for determining the correct antibiotic
markers in the 2ab assembly method. This post-processing
step can be applied to solutions generated by both the
random search approach and our multiple-goal-part algo-
rithm. Unfortunately, coloring conflicts can cause an
increase in the number of steps. Figure 7C and D illus-
trates the impact of these conflicts for the two real-world
datasets. As expected, the total number of steps is
increased due to coloring conflicts, but our algorithms
still find lower cost solutions than the random search
approach. For the 2ab assembly method, our algorithm
is able to reduce the number of assembly steps by 31% for
the ‘phagemid’ dataset and by 39% for the ‘IGEM-2008’
dataset.

DISCUSSION

This article has presented algorithms for automated
binary DNA assembly that are particularly relevant
when constructing large goal-part sets with a high degree
of inter-GPS. Our basic algorithm uses dynamic
programming to efficiently find optimal assembly graphs
for a single goal part. We augment this basic algorithm for
use in our multiple-goal-part algorithm with three tech-
niques to bias the search towards graphs with many
shared intermediate parts: ‘sharing factors’ capture
global sharing information when performing local opti-
mization, ‘slack factors’ enable locally suboptimal solu-
tions that can benefit the global result and ‘iterative
refinement’ ensures that common intermediate parts are
assembled in the same way. We have used two real-world
datasets to demonstrate that our algorithms efficiently
generate cost-saving assembly graphs.

Analogous problems have been explored for assembly
plan optimization when manufacturing goods (21).
However, such approaches have to deal with scheduling
multiple different operations in order to build one
product. Manufacturing operations also have ordering
constraints, e.g. for the construction of a pen ink, cart-
ridges must be placed inside the bodies before end caps are
attached. In contrast, for binary assembly of DNA se-
quences, a single ligation operation is repeated in order
to build multiple goal parts. In general binary assembly
there are no ordering constraints. It does not matter which
junctions are made first, but planning becomes non-trivial
when an optimal assembly graph for multiple goal parts is
desired.

There are many directions for future work. Other heur-
istic algorithms are possible for searching how to combine
the assembly subgraphs for each goal part. For example,
one might employ a genetic algorithm that keeps highly
shared subgraphs while exploring other assembly

Nucleic Acids Research, 2010, Vol. 38, No.8 2615

subgraphs for remaining goal parts. Another interesting
direction for future work is to factor assembly risk into
our assembly algorithm. In our experience, assembly
failure arises from two sources: randomly distributed
failure and part-specific failure. Randomly distributed
failure affects all parts equally; to combat this type of
error, the assembly would be duplicated in a
post-processing step to increase the chances of having at
least one correct assembly for each part. Duplicating the
assembly graph is a necessary consequence of the error
rates that still pervade sequence construction and would
be obviated only if the efficiency of the assembly step is
improved drastically. Part-specific failure is due to cloning
difficulties, known or unknown, associated with a certain
sequence. For known problematic sequences, the cost
function can be used to make the assembly algorithms
avoid combinations of parts, but this may impact the
optimal substructure property. For example, enzymes
that synthesize toxic intermediates should not be
completed before downstream, toxicity-relieving compo-
nents. Errors due to unknown problematic sequences
can only be avoided by speculative pursuit of different
assembly trajectories and a subsequent loss of savings.

Design automation in synthetic biology is not only
going to depend on the development of algorithms such
as those outlined here, but also on the development of
efficient design flows that make use of these algorithms.
If these design flows are not robust, then any performance
advantages gained by the algorithmic work are lost. It can
be argued that the design flows are as critical to actual
users as the algorithms themselves. Key to making this
process robust is that design flows be modularized
around specific design activities. Future work should
focus on rules that generate appropriate goal parts to
test for a biological function and recapturing assembly
failure information to identify cloning issues with
specific DNA sequences.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Ann Van
Devender for her early contributions to the development
of the Clotho algorithm manager and associated support
for importing algorithms into Clotho. Nathan Hillson
provided feedback on the paper. Nina Revko, Thien
Nguyen and Bing Xia provided software tools which
made the testing of the algorithms presented here
possible. Finally, the Synthetic Biology Engineering
Research Center (SynBERC) was vital in making the
interdisciplinary nature of this work possible.

FUNDING

National Science Foundation Graduate Research
Fellowships (to T.H.H. and J.T.K.); Department of
Defense National Defense Science and Engineering

2616 Nucleic Acids Research, 2010, Vol. 38, No. 8

Graduate Fellowship (to T.H.H.); Amgen Scholars
Program (to W.D.) and the Center for Hybrid and
Embedded Software Systems (CHESS) at University of
California, Berkeley. CHESS receives support from the
National Science Foundation [NSF awards
#CCR-0225610 (ITR), #0720882 (CSR-EHS: PRET),
#0647591 (CSR-SGER) and #0720841 (CSR-CPS)]; US
Army Research Office (ARO #WO9I11NF-07-2-0019); US
Air Force Office of Scientific Research (MURI
#FA9550-06-0312 and AF-TRUST #FA9550-06-1-0244);
Air Force Research Lab (AFRL), the State of California
Micro Program and the following companies: Agilent,
Bosch, Lockheed Martin, National Instruments, Thales
and Toyota. Funding for open access charge:
The Synthetic Biology Engineering Research Center
(SynBERC).

Conflict of interest statement. None declared.

REFERENCES

1. Ro,D.K., Paradise,E.M., Ouellet,M., Fisher,K.J., Newman,K.L.,
Ndungu,J.M., Ho,K.A., Eachus,R.A., Ham,T.S., Kirby,J. et al.
(2006) Production of the antimalarial drug precursor artemisinic
acid in engineered yeast. Nature, 440, 940-943.

2. Livet,J., Weissman,T.A., Kang,H., Draft, R W., Lu,J.,
Bennis,R.A., Sanes,J.R. and Lichtman,J.W. (2007) Transgenic
strategies for combinatorial expression of fluorescent proteins
in the nervous system. Nature, 450, 56-62.

3. Levskaya,A., Weiner,0.D., Lim,W.A. and Voigt,C.A. (2009)
Spatiotemporal control of cell signalling using a light-switchable
protein interaction. Nature, 461, 997-1001.

4. Salis,H.M., Mirsky,E.A. and Voigt,C.A. (2009) Automated design
of synthetic ribosome binding sites to control protein expression.
Nat. Biotechnol., 27, 946-950.

5. Batt,G., Yordanov,B., Weiss,R. and Belta,C. (2007) Robustness
analysis and tuning of synthetic gene networks. Bioinformatics,
23, 2415-2422.

6. Carrera,J., Rodrigo,G. and Jaramillo,A. (2009) Towards the
automated engineering of a synthetic genome. Mol. Biosyst., S,
733-743.

7. Lun,D.S., Rockwell,G., Guido,N.J., Baym,M., Kelner,J.A.,
Berger,B., Galagan,J.E. and Church,G.M. (2009) Large-scale
identification of genetic design strategies using local search.
Mol. Syst. Biol., 5, 296.

1

1

1

1

16.

17.

1

20.

2

oo

Nel

0.

—

2.

3.

9.

—_

. Brissette,R. and Goldstein,N.I. (2007) The use of phage display

peptide libraries for basic and translational research. Methods
Mol. Biol., 383, 203-213.

. Collett,J.R., Cho,E.J. and Ellington,A.D. (2005) Production and

processing of aptamer microarrays. Methods, 37, 4-15.

Fox,R.J., Davis,S.C., Mundorff,E.C., Newman,L.M.,
Gavrilovic,V., Ma,S.K., Chung,L.M., Ching,C., Tam,S., Muley,S.
et al. (2007) Improving catalytic function by ProSAR-driven
enzyme evolution. Nat. Biotechnol., 25, 338-344.

. Gibson,D.G., Young,L., Chuang,R.Y., Venter,J.C.,

Hutchison,C.A. III and Smith,H.O. (2009) Enzymatic assembly of
DNA molecules up to several hundred kilobases. Nat. Methods,
6, 343-345.

Li,M.Z. and Elledge,S.J. (2007) Harnessing homologous
recombination in vitro to generate recombinant DNA via SLIC.
Nat. Methods, 4, 251-256.

Shao,Z. and Zhao,H. (2009) DNA assembler, an in vivo genetic
method for rapid construction of biochemical pathways. Nucleic
Acids Res., 37, el6.

. Engler,C., Gruetzner,R., Kandzia,R. and Marillonnet,S. (2009)

Golden gate shuffling: a one-pot DNA shuffling method based on
type Ils restriction enzymes. PLoS ONE, 4, ¢5553.

. Kodumal,S.J., Patel,LK.G., Reid,R., Menzella,H.G., Welch,M. and

Santi,D.V. (2004) Total synthesis of long DNA sequences:
synthesis of a contiguous 32-kb polyketide synthase gene cluster.
Proc. Natl Acad. Sci. USA, 101, 15573-15578.

Shetty,R.P., Endy,D. and Knight,T.F. Jr (2008) Engineering
BioBrick vectors from BioBrick parts. J. Biol. Eng., 2, 5.
Layered Assembly. http://2008.igem.org/Team:UC_Berkeley/
LayeredAssembly (2008) (13 March 2010, date last accessed).

. Linshiz,G., Yehezkel, T.B., Kaplan,S., Gronau,l., Ravid,S.,

Adar,R. and Shapiro,E. (2008) Recursive construction of perfect
DNA molecules from imperfect oligonucleotides. Mol. Syst. Biol.,
4, 191.

Saftalov,L., Smith,P.A., Friedman,A.M. and Bailey-Kellogg,C.
(20006) Site-directed combinatorial construction of chimaeric genes:
general method for optimizing assembly of gene fragments.
Proteins, 64, 629-642.

Cormen,T.H., Leiserson,C.E., Rivest,R.L. and Stein,C. (2009)
Introduction to Algorithms, 3rd edn. The MIT Press,

Cambridge, MA.

. Densmore,D., Devender,A.V., Johnson,M. and Sritanyaratana,N.

(2009) A platform-based design environment for synthetic
biological systems. In: Proceedings of The Fifth Richard Tapia
Celebration of Diversity in Computing Conference: Intellect,
Initiatives, Insight, and Innovations. ACM, Portland, Oregon, New
York, NY, pp. 24-29.

