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The Case for Malleable Stream Architectures

Key Characteristics of Stream Programs

Types of Parallelism

• DLP : Data-Level Parallelism

• KLP : Task-Level Parallelism

• KLP : Pipeline Parallelism

Other Characteristics

• Data-dependent control flow

• Communication patterns

• Real-time constraints
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The Case for Malleable Stream Architectures

Mapping Stream Programs to Stream Architectures

Temporal Data-Level Parallelism

Spatial Data-Level Parallelism

Temporal Kernel-Level Parallelism

Spatial Kernel-Level Parallelism
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The Case for Malleable Stream Architectures

Comparison of Stream Program Mappings
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The Case for Malleable Stream Architectures

Example Stream Processors
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The Case for Malleable Stream Architectures

Our Position: Exploit DLP First Then KLP

Programmers and architects should first leverage
DLP execution whenever possible

Energy Efficiency • Memory Bandwidth Utiliation • Load Balancing
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The Case for Malleable Stream Architectures

Our Position: Exploit DLP First Then KLP

Programmers and architects should first leverage
DLP execution whenever possible

Energy Efficiency • Memory Bandwidth Utiliation • Load Balancing

Programmers and architects must still be able to
efficiently exploit KLP, but only after DLP

Minimize Buffering • Reduce Latency • Data-Dependent Conditionals
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The Case for Malleable Stream Architectures

Maven: Malleable Array of Vector-Thread Engines
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