
The Case for Malleable Stream Architectures

Christopher Batten1,3, Hidetaka Aoki 2, Krste Asanović 3

1 Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge, MA

2 Central Research Laboratory
Hitachi, Ltd., Tokyo, Japan

3 Department of Electrical Engineering and Computer Science
University of California, Berkeley, CA

Workshop on Streaming Systems
November 8, 2008



The Case for Malleable Stream Architectures

Key Characteristics of Stream Programs

Types of Parallelism

• DLP : Data-Level Parallelism

• KLP : Task-Level Parallelism

• KLP : Pipeline Parallelism

Other Characteristics

• Data-dependent control flow

• Communication patterns

• Real-time constraints

MIT/UCB Christopher Batten 2 / 7



The Case for Malleable Stream Architectures

Mapping Stream Programs to Stream Architectures

Temporal Data-Level Parallelism

Spatial Data-Level Parallelism

Temporal Kernel-Level Parallelism

Spatial Kernel-Level Parallelism

MIT/UCB Christopher Batten 3 / 7



The Case for Malleable Stream Architectures

Mapping Stream Programs to Stream Architectures

Temporal Data-Level Parallelism Spatial Data-Level Parallelism

Temporal Kernel-Level Parallelism

Spatial Kernel-Level Parallelism

MIT/UCB Christopher Batten 3 / 7



The Case for Malleable Stream Architectures

Mapping Stream Programs to Stream Architectures

Temporal Data-Level Parallelism Spatial Data-Level Parallelism

Temporal Kernel-Level Parallelism Spatial Kernel-Level Parallelism

MIT/UCB Christopher Batten 3 / 7



The Case for Malleable Stream Architectures

Comparison of Stream Program Mappings

MIT/UCB Christopher Batten 4 / 7



The Case for Malleable Stream Architectures

Example Stream Processors

MIT/UCB Christopher Batten 5 / 7



The Case for Malleable Stream Architectures

Our Position: Exploit DLP First Then KLP

Programmers and architects should first leverage
DLP execution whenever possible

Energy Efficiency • Memory Bandwidth Utiliation • Load Balancing

MIT/UCB Christopher Batten 6 / 7



The Case for Malleable Stream Architectures

Our Position: Exploit DLP First Then KLP

Programmers and architects should first leverage
DLP execution whenever possible

Energy Efficiency • Memory Bandwidth Utiliation • Load Balancing

Programmers and architects must still be able to
efficiently exploit KLP, but only after DLP

Minimize Buffering • Reduce Latency • Data-Dependent Conditionals

MIT/UCB Christopher Batten 6 / 7



The Case for Malleable Stream Architectures

Maven: Malleable Array of Vector-Thread Engines

MIT/UCB Christopher Batten 7 / 7


