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Abstract

This work investigates both the theoretical and practical aspects of autofocus-
ing and astigmatism correction in the scanning electron microscope. A general
framework is used to divide the problem into four primary areas of concern:
noise reduction, regions of interest, sharpness measures, and maximum sharp-
ness search algorithms. Each of these areas is investigated in detail and several
novel concepts are introduced including: the use of reduced domain median fil-
ters to mitigate limited bandwidth distortion, a method for confining the region
of interest to specimen features, more sophisticated maximum sharpness search
algorithms such as the variable stepsize search and the Fibonacci search, and
interpolation based on a model of variance as a function of defocus.

A development testbed was established which allowed for rapid prototyping in
MATLAB, implementation in Visual C++, and then final packaging as an Ac-
tiveX control. The theoretical work was implemented in a modular component
(called SEMimage) for use with the Leo 440 SEM located in the Scientific Imag-
ing Group at the Cambridge University Engineering Department. The framework
was used to develop algorithms for full autofocusing, fine autofocusing, real-time
autofocusing, and astigmatism correction. Real-time autofocusing enables the
software to automatically determine when an image has become defocused and
to then take appropriate action to move the image back into focus. Real-time
beam alignment and signal to noise calculation were also implemented.

SEMimage was tested on the instrument and provided an effective means for au-
tomated focusing and astigmatism correction. The fine autofocusing provided by
SEMimage is relatively fast and accurate, and the real-time autofocusing provides
a unique method for keeping the instrument in focus.
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Chapter 1

Introduction

Over the past fifty years, the scanning electron microscope (SEM) has grown
from a specialized research device to a universal industrial tool. SEMs can be
found on the IC fabrication assembly line, in aircraft engine maintenance hangars,
and in small research laboratories. This wide array of applications means that
SEM users are no longer solely seasoned experts, but also include technicians,
mechanics, and professionals. There is a growing need for simpler SEM interfaces
with greater automated control to effectively hide the device’s complexity.

This is a key time for work on such automated SEM control, since recent
advances in general purpose microprocessors have made complex software im-
age processing a feasible alternative to traditional hardware and simpler software
approaches. In an effort to take advantage of this opportunity, this thesis will
investigate various autofocusing and astigmatism correction algorithms and then
discuss a software prototype implemented for the LEO 440 SEM. This chapter
will provide a general background on the scanning electron microscope and pre-
vious automated approaches, and will also introduce a framework for algorithm
development.

1.1 The Scanning Electron Microscope

This section provides a brief overview of the scanning electron microscope
and is intended to familiarize the reader with the basic structure and operation
of an SEM. Oatley and Wells provide more comprehensive discussions in [17]
and [24] respectively. An SEM has three main components: the optical column,
the specimen chamber, and the appropriate electronics. These components are
illustrated in Figure 1.1.
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Section 1.1: The Scanning Electron Microscope
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Figure 1.1: The Modern Scanning Electron Microscope

A focused electron beam is scanned over a specimen such that the interaction
between the beam and the specimen excites various forms of radiation including
backscattered electrons, secondary electrons, and x-rays. This radiation is then
detected and analyzed to reveal information concerning the specimen’s compo-
sition and topography. A surface SEM detects low energy secondary electrons
(less than 50eV) by accelerating these electrons into a scintillator. The scintilla-
tor gives off visible light that is detected by a photomultiplier and converted into
an amplified current signal. In traditional SEMs this signal is further amplified
and used as the input to a cathode-ray tube (CRT). The specimen and the CRT
are scanned synchronously, and magnification is achieved by varying the ratio
between the CRT size and the beam scan area. In this way, the brightness of any
point on the CRT is proportional to the number of secondary electrons emitted
when the beam scans the corresponding point on the specimen. Modern SEMs
digitize the current signal from the detector and use a digital computer to display
and analyze the image. This computer is responsible for various other functions
including control of the deflection coils and the focusing lenses. The work pre-
sented here is applicable to an SEM with such computer controlled scanning and
image processing.

The electron gun should be a stable source of electrons, which can be achieved
through thermal or field emission. Common emitter materials include tungsten
and lanthanum hexaboride (LaB6). This work assumes a thermal emission LaB6
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Chapter 1: Introduction

source, although the fundamental concepts are generally applicable to any scan-
ning electron microscope. In addition to the electron gun, the optical column
includes various electromagnetic lenses and the deflection coils necessary for
scanning the electron beam over the specimen. The lenses are responsible for
demagnifying the electron beam in order to minimize the size of the beam at
the specimen (spot size). Both two and three stage lens systems are possible,
with the deflection coils usually being positioned directly before the final lens.
Stigmators are used to adjust the shape of the electron bean, while alignment
and shift coils are used to slightly reposition the center of the beam.

The specimen chamber includes a stage for mounting the specimen and any
required detectors. The working distance is defined as the distance between the
final lens and the specimen. When using the secondary electron detector, the
specimen is usually tilted to increase the number of electrons reaching the detec-
tor. As mentioned above, the scintillator/photomultiplier system is a common
secondary electron detector system.

Current amplifiers and other analog electronics can be used to enhance the
signal before it is digitized. The digitized signal is usually stored in a frame store,
and most SEMs include dedicated hardware to manipulate and analyze the image.
Software running on the computer is used for image processing, monitoring, and
control. Most SEMs provide a graphical user interface that allows an operator to
easily manipulate the instrument.

1.2 Overview of Previous Approaches

Autofocusing techniques usually fall into one of two categories: active methods
and passive methods. Active methods use a separate subsystem to determine the
distance between the final lens and the specimen. Passive methods determine
defocus information solely from the final image.

Active methods are more common in the optical domain. Most modern auto-
matic cameras use a range finding subsystem to accurately measure the optimal
focal length. Unfortunately, the scale of such subsystems make them impractical
for electron microscopy.

Passive autofocusing methods can be divided into two subcategories: image
sharpness measures and predictive imaging models. The traditional approach is
to apply an image sharpness measure over a range of focal lengths, and select the
focal length with the maximum sharpness as the best focus [3, 5, 7, 21]. Further
detail on previous passive sharpness measure approaches will be presented later in
this work where necessary. As an alternative to the sharpness measure approach,
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Section 1.3: Framework for Algorithm Development

a general imaging model has been developed that allows defocus information to
be determined from just a few images [16]. This model relates the point spread
function of an image to the focal length.

Astigmatism information can best be determined through passive methods.
Work has been done on determining astigmatism information from sharpness
measures and also directly from the shape of the Fourier transform of the image.
To use a sharpness measure, the image sharpness is determined for a range of
stigmator values. Then the stigmator values providing the maximum sharpness
are chosen as yielding the best beam shape [7]. Iterating between focusing and
astigmatism correction is usually required with this approach. Work has been
done recently on using the shape of the Fourier transform to determine the shape
of the beam [18, 19]. The shape of the beam indicates which elements of the
stigmator need to be adjusted. Autofocusing and astigmatism correction can
usually be adjusted at the same time with this approach.

Although automated, previous autofocusing approaches rely on an operator
to indicate when an adjustment is necessary. In contrast, many optical systems
implement real-time focusing. These systems are able to determine when an
image is out of focus and automatically initiate a real-time focusing operation.
Most modern video cameras have real-time focusing.

This work further develops the traditional passive method of using sharpness
measures for focusing and astigmatism correction. Improvements in selecting
a region of interest and the use of more efficient maximum sharpness search
algorithms are investigated. This work will also investigate the potential for
real-time focusing in scanning electron microscopy. A development testbed for
the LEO 440 SEM located in the Scientific Imaging Group at the Cambridge
University Engineering Department has been established to aid in the practical
implementation of this theoretical work. A modular component based prototype
has been developed that provides full focusing, fine focusing, real-time focusing,
astigmatism correction, beam alignment, and signal to noise calculation.

1.3 Framework for Algorithm Development

The development of an effective and robust autofocusing or astigmatism cor-
rection algorithm can be considerably simplified if the problem is separated into
different areas of concern. One can then investigate each area separately, before
making design decisions in one area that will influence choices in other areas. This
work separates the problem into the following four areas: noise reduction, regions
of interest, sharpness measures, and maximum sharpness search algorithms.
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Chapter 1: Introduction

These areas of concern are interrelated, and a collective set of choices should
target the overall objective of the algorithm. To illustrate, consider two examples:
developing a coarse astigmatism correction algorithm and developing a real-time
fine focusing algorithm.

A coarse astigmatism correction algorithm does not require a high degree of
accuracy, should be relatively fast, and should not make any assumptions on the
current state of the stigmator. This means the developer may decide to tolerate
a poor signal to noise ratio in an effort to reduce the number of frames needed
for each image. Consequently, a more robust sharpness measure will be needed
that can hopefully handle the additional noise. The developer may decide to use
a reduced region of interest to further increase the speed of the algorithm. These
design decisions mean that a simple fixed stepsize search will probably be used
when determining the maximum sharpness.

A real-time fine focusing algorithm has a very different purpose than the pre-
vious example. Fine focusing requires a high degree of accuracy and can assume
that the initial focal length is relatively near the best focus. Real-time algo-
rithms must be particularly fast and the transition from a defocused to focused
image should be relatively smooth. These constraints mean that the developer
will probably make very different design decisions. The developer may choose an
average amount of noise reduction to balance speed and effectiveness. A search
algorithm that only moves in one direction may be used to guarantee a smooth
transition, and thus a sharpness measure will be needed which steadily changes
over a wide range of focal lengths.

The details of these design decisions will be discussed in the following chap-
ters. The key concept is that once one understands each of these four areas of
concern, one will have a fundamental framework that can then be used to meet
the objectives of a specific autofocusing or astigmatism correction algorithm.

1.4 Outline of Thesis

The next four chapters (Chapter 2 to Chapter 5) will discuss each of the areas
of concern that form the framework for algorithm development: noise reduction,
regions of interest, sharpness measures, and maximum sharpness search algo-
rithms. These chapters concentrate on the application of each area to focusing.
Chapter 6 will broaden this work to astigmatism correction and also examine
beam alignment as an additional real-time automated operation. Chapter 7 will
discuss the development testbed and the prototype written for the LEO 440 SEM.
Finally, general conclusions and suggestions for future work will be presented.
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Chapter 2

Noise Reduction

The stochastic nature of electron microscopy means that the signal to noise
ratio (SNR) for unprocessed high resolution secondary electron images is often
very low. Various forms of noise reduction can be used to increase this signal
to noise ratio, but such improvements require additional processing time. This
tradeoff between noise reduction and processing time can significantly impact
other design decisions when forming autofocusing algorithms.

This chapter discusses the different types of noise in scanning electron mi-
croscopy and also provides a method for quantitatively measuring noise in an
image. Various noise reduction methods are then discussed including frame aver-
aging, pixel averaging, and median filtering. Each of these methods are examined
within the context of their impact on the signal to noise ratio and overall pro-
cessing time.

2.1 Types of Noise

A basic understanding of the origin of noise in SEM images can aid in devel-
oping effective noise reduction techniques. There are two primary forms of noise
in a SEM: noise due to the statistical nature of electron collision and emission,
and noise due to the SEM detector and signal processing electronics [19, 24].

The number of electrons hitting the specimen and then the corresponding
emission of secondary electrons is inherently a statistical process. This results in
shot noise extending up to high frequencies in the image. Shot noise is usually
assumed to be both zero mean and independent [6,9,19]. Noise can also originate
from stray high-energy backscattered electrons colliding with either the detector
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Section 2.1: Types of Noise

or the chamber walls and emitting additional secondary electrons.

Wells notes that the noise bottleneck for an SEM using a secondary elec-
tron detector is usually between the specimen and the detector, and that the
noise due to a scintillator/photomultiplier system is largely negligible [24]. Even
so, two practical limitations of the LEO 440 SEM electronics were observed to
cause noise-related distortions in the final image: amplifier saturation and limited
bandwidth.

A careful balance was needed between the photomultiplier voltage and any
amplifier bias to avoid amplifier saturation. Amplifier saturation manifests itself
in the final image as a disproportionate number of white pixels and can be seen
in the image histogram (see Figure 2.1(c)). The limited bandwidth of the video
chain at fast scan rates was determined to be responsible for the spreading of high
frequency shot noise between several pixels in the same scan line [1]. This limited
bandwidth distortion can be clearly seen as a one dimensional horizontal peak in
the image’s autocorrelation function (see Figure 2.1(b)). Care must taken when
working with images containing limited bandwidth distortion since the noise in
these images is obviously spatially correlated.

8



Chapter 2: Noise Reduction

Figure 2.1: Example of Practical Distortions - The horizontal dashes in (a) are
limited bandwidth distortion. This can be more clearly seen in the corresponding
autocorrelation function (b). The disproportionate number of white pixels in (c)
is due to amplifier saturation.

2.2 Measuring the SNR

If two different images are captured of the same specimen area within a short
period of time, the correlation between these two images will be directly related
to the SNR [9]. Assuming negligible drift effects, only the noise changes between
images. For images g1 and g2 the cross-correlation coefficient is defined as

r =

M∑
x=1

N∑
y=1

(g1 − g1)(g2 − g2)√
M∑

x=1

N∑
y=1

(g1 − g1)
2

M∑
x=1

N∑
y=1

(g2 − g2)
2

(2.1)

where g indicates the image’s mean intensity. Since r is a measure of the correla-
tion between two images, it is representative of the signal in the image, while 1−r

9
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Section 2.3: Frame Averaging

is the uncorrelated portion of the image and thus is representative of the noise in
the image. The correlation coefficient can therefore be related to an image SNR
as [7, 9]

SNR =

√
r

1− r
(2.2)

2.3 Frame Averaging

Frame averaging is the most common type of noise reduction and most modern
SEMs implement some form of hardware frame averaging. The simplest type of
frame averaging involves summing pixel values over N frames and then dividing
by N . The SNR improvement due to this form of frame averaging has been shown
to be

SNRimprovement =
SNRN

SNR1

=
√

N (2.3)

where SNRN is the SNR after averaging N frames [7]. The primary disadvantage,
however, is that if scanning a frame requires T milliseconds, this technique only
produces an image every N × T milliseconds. This means it will not be possible
to perform significant frame averaging and still maintain a display at television
refresh rates. It is for this reason that recursive averaging filters are usually used
in most modern SEMs, including the LEO 440 SEM.

Figure 2.2 shows the theoretical SNR improvement and the experimental
SNR improvement as a function of frame averaging. Frame averaging was per-
formed using the LEO 440 image processing hardware and also in software using
MATLAB. The SNR improvement for N frames of averaging in hardware was
obtained as follows:

• Calculate SNR for no frame averaging ten times and use mean as SNR1

• Use LEO 440 hardware to average N frames and capture averaged image

• Use hardware to average another N frames and capture a second image

• Determine SNRN using these two images

The SNR improvement for N frames of averaging in software was obtained as
follows:

• Capture 2N + 20 raw images (no frame averaging)

• Use MATLAB and 20 of the captured images to determine SNR1

• Use MATLAB and the remaining images to determine SNRN

10



Chapter 2: Noise Reduction

The experimental SNR improvement for frame averaging performed with the
LEO 440 hardware actually exceeds the theoretical maximum. The author ex-
perimented with a variety of operating conditions, but the SNR improvement
remained consistently higher than expected. It is suspected that this is an arti-
ficial improvement and is a consequence of the specific hardware implementation
used by LEO. This can be confirmed by comparing hardware and software frame
averaging. Figure 2.2 shows that the SNR improvement of images using software
frame averaging corresponds well to theory. The author was unable to further
investigate this discrepancy since detailed documentation on the LEO 440 image
processing hardware was unavailable.

0 10
0

2

4

6

8

10

12

14

16

18

20

Log of the Number of Frames Averaged

S
N

R
 Im

pr
ov

em
en

t (
dB

)

Experimental (Hardware)
Experimental (Software)
Theoretical            

Figure 2.2: SNR Improvement vs. Frame Averaging

2.4 Pixel Averaging (Scan Rate)

In purely analog instruments, one could increase the SNR by decreasing the
beam scan rate. A longer exposure per pixel increases the number of signal
electrons reaching the detector, although this also slows the display refresh rate
and can increase specimen damage [24]. In modern instruments a similar effect
is implemented through pixel averaging. The beam rests on a specific pixel and
a digitized value is stored at a constant rate. The average of these values is then
recorded before the beam moves onto the next pixel. In the LEO 440 SEM there
is a close relationship between pixel averaging and scan rate. The LEO notation
for the scan rate level is an integer number n such that the number of pixels
averaged is 2n. This means that higher scan rate levels correspond to more pixel
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Section 2.5: Median Filtering

averaging and slower scan rates. Figure 2.3 shows the SNR for increasing levels
of pixel averaging.

The theoretical SNR improvement due to pixel averaging is the same as that
achieved through frame averaging. Experimentally, however, it was found that
decreasing the scan rate improved the SNR significantly less than expected, prob-
ably due to quantization and limited bandwidth effects. Decreasing the scan rate
increases the available bandwidth in the video chain and thus reduces the pixel
spreading observed at fast scan rates. This can be seen both in the autocorrela-
tion function and in the frequency domain (see Figure 2.4). It is suspected that
the limited bandwidth distortion acts as a high frequency filter and thus performs
a form of smoothing. This smoothing would artificially raise the SNR at fast scan
rates. This would explain the large discrepancy in SNR improvement at fast scan
rates seen in Figure 2.3.
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Figure 2.3: SNR Improvement vs. Pixel Averaging

2.5 Median Filtering

In addition to frame and pixel averaging, which are usually implemented
in hardware, there is the potential for noise reduction preprocessing in soft-
ware. This alternative has become more feasible with the drastic performance
increases in general purpose microprocessors, as well as the recent addition of
SIMD support in high end systems.1 Although gaussian smoothing filters as well

1SIMD stands for Single-Instruction Multiple-Data and refers to computers that can perform
the same operation on a large set of data in parallel. This is particular useful for image
processing.
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Chapter 2: Noise Reduction

Figure 2.4: Limited Bandwidth Distortion vs. Scan Rate

as other more complicated non-linear filters were briefly investigated, median fil-
tering seems to offer the best combination between performance, effective noise
reduction, and preservation of specimen features.

If the noise in the LEO 440 SEM images was truly spatially uncorrelated,
then the SNR improvement should be proportional to the number of elements
over which the median was calculated and should be independent of the domain
shape. It was predicted, however, that different domains would result in varying
degrees of noise reduction due to the horizontal nature of the limited bandwidth
distortion. The domains considered are shown in Figure 2.5. Computational
constraints (processing time as well as the need for an odd number of domain
elements to eliminate interpolation) dictated that a 3x3 pixel domain would be the
best filter size. If the optimum partitioning algorithm is used, then the amount
of processing time required to apply a median filter is directly proportional to
the number of domain elements [4]. Thus the domains are shown in decreasing
processing time from left to right.

Figure 2.6 shows the SNR for each of these domains as well as the SNR
for images without median filtering. All of these images were captured with
no pixel averaging. As expected the 3x3 square domain produces the greatest
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Section 2.5: Median Filtering

gain in SNR, but the X domain produces nearly the same gain in SNR yet uses
four less pixels. The vertical domain performs better than the cross domain
even though it only uses three pixels. It was observed that this is a result of
limited bandwidth distortion, since at slower scan rates (where limited bandwidth
distortion is reduced) the cross domain begins to perform better than the vertical
domain. This seems reasonable, since the vertical domain specifically addresses
limited bandwidth distortion by using three pixels from three different scan lines.

A benchmark utility was written in C to determine the approximate time
needed to perform each of the median filters on the target SEM platform. The
benchmark data was largely consistent at various frame averaging and scan rate
levels, and all tests were done on 512x512 pixel images. Results are shown in the
following table:

Domain Time (ms)

3x3 Square Domain 440

X Domain 220

Cross Domain 210

Vertical Domain 150

To better determine the tradeoff between the SNR increase from median fil-
tering and the additional required processing time, the SNR for each domain is
plotted against the total processing time in Figure 2.7. If the desired processing
time is less than 300ms then median filtering is not a viable option. If a higher
processing time is acceptable then the SNR increase due to X domain and vertical
domain filtering outweighs the increased processing time.
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Chapter 2: Noise Reduction

3x3 X Cross Vertical

Figure 2.5: Median Filter Domains
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Figure 2.6: SNR Improvement for Various Domains vs. Frame Averaging
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Figure 2.7: SNR Improvement for Various Domains vs. Frame Time
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2.6 Comparisons and Analysis

Since frame averaging, pixel averaging, and median filtering all improve the
SNR by different amounts and at different processing costs, it is important to
consider a combination of the three in order to maximize the ratio between SNR
and processing time. Figure 2.8 examines the SNR improvement for various com-
binations of frame averaging and pixel averaging. At any level of frame averaging,
increasing the pixel averaging further increases the SNR improvement. Unfortu-
nately, this increase in the SNR requires a significant increase in the processing
time. To better analyze this tradeoff, Figure 2.9 shows the SNR improvement
as a function of total processing time. Notice that the SNR improvement from
decreasing the scan rate will never outweigh the increase in capture time. In
other words, for any desired SNR, the optimal combination will be to use the
fastest possible scan rate and then the appropriate amount of frame averaging.
This also influences the usefulness of the median filters introduced in Section 2.5.
Since the effectiveness of reduced domain median filters decreases as the scan rate
slows down (owing to less bandwidth distortion), using median filters at slower
scan rates will still not outweigh the required capture and processing time.

Figure 2.7 shows that for the fastest possible scan rate, median filtering with
the X or vertical domain is a viable option if capture and processing times between
300ms and 1300ms are acceptable. Of course, these conclusions are specific to the
particular system used for this work. Since the SEM control computer used for
median filtering is several years old, newer systems may find a stronger argument
for median filtering, especially to mitigate limited bandwidth distortion.
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Figure 2.8: SNR Improvement vs. Scan Rate and Frame Averaging
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Figure 2.9: SNR Improvement vs. Frame Time
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Chapter 3

Regions of Interest

Most autofocusing algorithms examine a reduced region of interest in an effort
to decrease the time required for capturing and processing an image, but reduced
regions of interest can also exclude essential sharpness information [21]. This
chapter will briefly examine several possible alternatives including 1D spatial
slices and reduced 2D regions. The ideal region of interest would be limited to
the most important features in the image and exclude less significant features
and featureless regions. Unfortunately, traditional feature detection algorithms
are poorly suited to handle the level of noise commonly found in SEM images.
This chapter introduces a sub-block method that identifies regions within the
image that contain the greatest amount of sharpness information and thus allows
for an efficient reduced region of interest.

3.1 1D vs. 2D Methods

Regions of interest used in previous autofocusing systems are diverse. Some
early systems used dedicated hardware to process an entire 1024x512 pixel im-
age [7], or used low level assembly programs to process reduced 64x64 pixel
images [21]. Manufacturers have investigated 1D regions including lines along
the primary axes, lines at 45◦ to the primary axes, and circular scans [5]. A
more recent system uses the 1D data from a figure-eight beam scan for coarse
focusing and then larger 2D regions for fine focusing [19]. The rising performance
of general purpose microprocessors has allowed some researchers to analyze full
images in software [15,23].
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Section 3.1: 1D vs. 2D Methods

Three 1D regions were considered and compared to a reduced 2D region. The
three 1D regions are as follows:

• Circle Method : Pixels which lie on a circle whose radius is one quarter
the width of the image

• Two Line Method : Pixels which lie on either of the two lines passing
through the center of the image, one in the x direction and the
other in the y direction

• Four Line Method : Same as above except also including those points
which lie on lines which are at 45◦ to the x-y axes

The full-size image store for the LEO 440 SEM is 1024x768 pixels. It was
decided that a reasonable reduced 2D region of interest would be a 512x512
centered square. A variance sharpness measure was applied over each of the
three 1D domains as well as the entire 512x512 image for various noise levels.
The specimen used is shown in Figure 3.1, and the results are shown in Figure
3.2 (see Section 4.5 for more on the variance sharpness measure). Note that the
1D domains were taken from the reduced 512x512 region and not from the entire
image. As expected the 1D regions are more noisy than the full 512x512 domain,
yet all four methods still peak at the same focus. More pixels in the domain result
in a smoother sharpness curve. The 2D domain’s robustness to noise will be a
key advantage when considering the more sophisticated peak search algorithms
introduced in Chapter 5.

Figure 3.1: Sample Used For Domain Tests - Gold on Carbon 50,000x
White lines indicate all three 1D regions of interest

A primary concern with these and any reduced region of interest, is that
the reduced region may not include a feature or edge. Therefore, a common
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(b) 1D: Four Line Method

V
ar

ia
nc

e 
S

ha
rp

ne
ss

 M
ea

su
re

Focus Steps

0 4 8 12 16 20 24 28 32
0

200

400

600

800

1000

1200

1400
(d) 1D: Circle Method

V
ar

ia
nc

e 
S

ha
rp

ne
ss

 M
ea

su
re

Focus Steps

Figure 3.2: Sharpness Curves for Various Regions of Interest - Each plot includes
seven increasing levels of noise reduction (dark solid line having the greatest while the
thin long dashed line having the least).

assumption is that the user has positioned the specimen such that the item of
interest is in the center of the screen (and thus in the center of the image). This
assumption explains why the reduced 512x512 region is centered and also explains
the importance of the radius used in the circle method. If the radius is too large,
then the circle could miss a small feature at the center of the image. If the radius
is too small then the circle could fail to cross an edge of a larger feature. Several
experiments were made, and the optimum radius was found to vary for different
specimens.

A reduced region of interest will theoretically improve performance in two
ways: reducing the time to capture the image and reducing the time to process
the image. Ideally, the SEM would just scan the region of interest, but the LEO
440 SEM only allows for rectangular reduced raster scans. This means that the
circle method and the four line method (due to the 45◦ lines) cannot be scanned
directly and must be approximated by selecting pixels from a rectangular image.
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Section 3.2: Sub-block Method

In addition, the maximum scan rate possible in the LEO 440 SEM for narrow
regions (i.e. short scan lines) is less than the maximum scan rate possible for wider
regions. This restriction is due to hardware constraints on the maximum speed
for scan line buffering [13]. Thus scanning a single vertical line for the two line
and four line methods is disproportionately slow when compared to scanning the
same length line in the horizontal direction. These practical limitations severely
reduce the advantage gained from 1D regions of interest.

3.2 Sub-block Method

In any image there are areas that contain a large amount of useful sharpness
information such as edges, textures, and contours. There are also areas that
can contain misleading or very little sharpness information such as high-noise
areas or low contrast features. This implies that the optimum region of interest
is strongly dependent on the specific specimen and noise conditions. Traditional
feature detection methods such as thresholding based on an intensity distribution
and edge detection were investigated in an attempt to determine the optimum
region of interest, but these techniques had little success due to the high noise
levels inherent in electron microscopy.

The sub-block method attempts to determine a near optimal region of inter-
est by comparing the relative sharpness of smaller statically sized regions. The
image is first divided into 16 128x128 pixel ‘sub-blocks’. Then, using a selection
method, the four blocks with the greatest sharpness information are chosen as
the region of interest. The sub-block method not only reduces computation and
processing time, but also increases a focusing algorithm’s robustness to noise by
eliminating noisy portions of the image from consideration. The following subsec-
tions examine the sub-block selection method and practical considerations when
attempting to use the sub-block method to reduce the image capture size.

3.2.1 Sub-block Selection Method

One can either select sub-blocks during a focus sweep (in-sweep selection) or
select sub-blocks after a preliminary coarse focus sweep (post-sweep selection).
In-sweep selection requires the sharpness measure to be normalized over different
sized domains, since the domain will change throughout the sweep. In-sweep
selection also raises the question of when during the sweep sub-blocks should
begin to be removed. If sub-blocks are removed too early then the wrong blocks
could be removed, but if they are removed too late then the gain due to reducing
the region of interest is small. Post-sweep selection avoids these complications,
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Chapter 3: Regions of Interest

and since most full autofocusing algorithms include a coarse focus sweep, there
is little overhead.

Figure 3.3 shows the variance for each sub-block for a standard focus sweep.
Notice that some sub-blocks have higher peaks than others indicating that these
sub-blocks contain relatively more sharpness information. Figure 3.4(a) shows
the test sample used in Figure 3.3 and the selected sub-blocks. Sub-blocks with
sharper peaks correspond to edges or areas of high contrast in the image. There-
fore, the method used was to select the four sub-blocks with the greatest variance
peaks during the coarse focus sweep. The region of interest is then reduced to
these four sub-blocks for a fine focus sweep. Figure 3.4(b) shows that the sharp-
ness measure from just the four selected sub-blocks still peaks at the same focus
step even though it only uses one fourth the number of pixels. Comparing the
three curves, one can see that the curve from the unselected sub-blocks flattens
out more towards the tails. Chapter 5 will show that more sophisticated peak
search algorithms require the sharpness curve to be monotonically decreasing
away from the maximum over a large range of focus values. Eliminating the
unselected sub-blocks extends this range.
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Figure 3.3: Individual Variance Curves for Each Sub-block

3.2.2 Using Sub-block Method to Reduce Capture Time

Once a sub-block selection method is used to reduce the region of interest,
the time required to capture an image should also be reduced. Ideally, the SEM
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Figure 3.4: Selected Sub-blocks and Total Variance Curves

would only scan the selected sub-blocks and thus the time to capture the sub-
blocks would be one fourth the time to scan the entire 512x512 image. Three
practical limitations of the LEO 440 SEM reduce this gain in capture time: the
SEM can only scan a single continuous rectangular region at a time, there is a
required overhead for any image capture, and the maximum scan rate decreases
as the width of the region to be captured decreases.

These limitations complicate the process of determining the size of the image
capture regions which will obtain the selected sub-blocks. Simply capturing each
128x128 sub-block separately will always take longer than capturing the whole
image. For example, capturing a full 512x512 image at the fastest possible scan
rate with no frame averaging takes 67 milliseconds. Individually capturing four
128x128 sub-blocks at the fastest possible scan rate takes a total time of 220
milliseconds. Obviously, if the capture speed is to be increased, more clever
methods will be required.

There are many different ways to capture any specific set of selected blocks.
An optimum solution can be found by performing an exhaustive search of all
possible capture combinations and then choosing the fastest one. Performing
this exhaustive search is an extremely time consuming process, so the optimum
capture combination would need to be calculated beforehand for every possible
set of selected blocks and stored in a lookup table. Simply storing and searching
such a lookup table would in itself be very expensive, so instead a non-optimal
solution was adopted. This solution uses four methods to determine four different
capture combinations, and then chooses the fastest one. The four methods are
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Chapter 3: Regions of Interest

described below and illustrated in Figure 3.5.

• Full Image: Capture the entire 512x512 pixel image

• Single Bounding Rectangle: Capture the smallest rectangle that still
includes all selected sub-blocks

• Multiple Bounding Rectangles : If there is a row with no selected
blocks in between two rows with selected blocks then make two
captures, one for the upper portion and one for the lower portion

• Quadrants : If the selected blocks are only in opposite quadrants cap-
ture just those quadrants

It is difficult to quantify the overall speedup from using the sub-block method
owing to the dependence of the capture time on which sub-blocks are selected.
Regardless, timing analysis of the processing time shows that calculating the
variance (and probably most other sharpness measures) for the four sub-blocks
takes one fourth the time for the entire image. Since the overhead involved in
determining the best capture size is relatively small, the sub-block method should
always be faster than capturing and processing the entire image. With the LEO
440 SEM, however, it will never be four times as fast.

Even larger performance gains can be expected if the full 1024x768 image is
divided into 48 sub-blocks. Another key advantage of this method is the potential
for parallelism. If implemented in software, several sub-blocks could be assigned
to individual processors, or if implemented in hardware, each sub-block could
have its own variance calculation logic. The fundamental idea behind the sub-
block method is a novel way to efficiently reduce the region of interest and is
applicable to any focusing operation.
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Full Image (811ms) Single Rect (550ms) Multiple Rect (551ms) Quadrants (n/a)

Full Image (811ms) Single Rect (544ms) Multiple Rect (n/a) Quadrants (660ms)

Full Image (811ms) Single Rect (811ms) Multiple Rect (n/a) Quadrants (660ms)

(a) 

(b) 

(c) 

Figure 3.5: Image Capture Reduction Methods - Each of the four methods will pro-
duce a way to capture the four selected sub-blocks (marked with an X). The gray
regions indicate the regions to capture. Notice that the smallest captures are not nec-
essarily the fastest owing to the overhead required for each capture. The capture times
given refer to scan rate level 2 and averaging 6 frames. Different noise reduction levels
yield different results.
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Chapter 4

Sharpness Measures

A great deal of research has been invested in analyzing various sharpness mea-
sures and focus functions. Work has been done on measures which rely on image
gradients [12, 21], cellular logic [8], spectrum analysis [19, 23], histogram thresh-
olding [11], image correlation [19], and image variance [6, 7]. Groen et al. and
Firestone et al. offer a good review of sharpness measures for optical microscopy,
although they are also readily applicable to electron microscopy [8, 11].

This chapter will identify the key properties of a good sharpness measure
and will then examine four specific sharpness measures: the gradient method,
the frequency domain method, the auto-correlation method, and the variance
method. It was found that the variance measure yields the best balance between
complexity and robustness to noise.

4.1 Evaluating Sharpness Measures

Before discussing specific sharpness measures it is important to identify key
properties which make one measure better than another. The following are the
basic criteria for a suitable sharpness measure [11,25].

• Unimodality : Produces a single maximum

• Accuracy : Produces a maximum at the best focus

• Reproducibility : Has a sharp top

• Monotonicity : Is monotonically decreasing above and below focus

• Applicability : Works well for any reasonable specimen and conditions

• Implementation: Is able to be implemented easily and efficiently
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Section 4.2: Gradient Method

Of particular importance are the unimodality and monotonicity properties. If
these assumptions are true for a certain level of noise reduction then efficient
maximum sharpness search algorithms can be used.

4.2 Gradient Method

Gradient sharpness measures are quite common in the literature largely due
to the ease with which they can be implemented. Such measures were some of
the first to be used in electron microscopy [12,21], and can also be found in more
recent implementations and literature [3,5]. Even so, it is widely recognized that
the gradient measure is particularly sensitive to noise and thus requires additional
noise reduction to produce reliable results [3, 7].

If i(x, y) is a digitized image, then the 2D normalized gradient for i(x, y) and
a given integer parameter n is defined as

fgrad,n =
1

MN

M−n∑
x=1

N−n∑
y=1

√
[i(x + n, y)− i(x, y)]2 + [i(x, y + n)− i(x, y)]2 (4.1)

The squared gradient is sometimes used to accentuate sharper edges, but this can
also accentuate high frequency noise [25]. In most of the literature n is set to one,
although reference is also made to the Brenner measure where n = 2 [3, 8, 25].
Large n is equivalent to a low pass filter, and thus it increases noise robustness but
can also cause the measure to miss small features. Although Brenner’s method
is usually given as an acceptable tradeoff in the literature, it was found that
n ≤ 10 will still yield accurate results since it is unlikely the user will be viewing
a specimen with no features greater than 10 pixels. Therefore, n was chosen to
be ten.

Figure 4.1 demonstrates the influence of the parameter n on the gradient. The
sample used was gold on carbon at 50,000x magnification, which included both
coarse (100-200 pixels) and fine detail (< 100 pixels). The image was scanned at
scan rate level 0 and three frames averaged. As n increases the measure becomes
more robust to noise but also misses very fine detail in the specimen. Notice that
for small n the gradient actually decreases through the optimum focus due to the
overwhelming presence of high frequency noise.
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(b) n = 2
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(c) n = 4
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(d) n = 8
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(f) n = 32

Figure 4.1: Gradient for Various n

4.3 Frequency Domain Method

Frequency domain methods work on the principle that as an image moves into
focus edges become sharper and thus the high frequency components increase in
magnitude. It was noted very early on that frequency domain sharpness measures
should be more robust to noise than gradient methods [7], but computational
limitations prevented simple calculation of the power spectrum. Performance
increases in general microprocessors over the past ten years and the efficient
fast Fourier transform (FFT) algorithm have made frequency domain methods
a feasible alternative. Exactly how to use the frequency domain to calculate
a sharpness measure varies. Some examples include calculating the number of
pixels above a specified threshold in a ratio of two FFTs obtained at different
focus values [19] and using parameters from the spectral ‘moment of inertia’ [23].

For this work, the frequency component magnitudes below a certain threshold
frequency were summed. This sharpness measure is defined below, where F (x, y)
is the Fourier transform of the image f(x, y) and Ω is the discrete threshold
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Section 4.4: Auto-Correlation Method

frequency in pixels.

ffreq,Ω =
1

4Ω2

Ω∑
u=−Ω

Ω∑
v=−Ω

|F (u, v)| (4.2)

Figure 4.2 is similar to Figure 4.1, but instead of performing a low pass filter
in the spatial domain (using the parameter n) it performs a low pass filter in
the frequency domain (using the parameter Ω). As in the spatial domain, care
must be taken when choosing a threshold frequency. If it is too low then higher
frequency signal data could be missed. Experiment suggested that Ω = 50 seemed
to provide a reasonable balance between these concerns.

0 10 20 30
8.42

8.43

8.44

8.45

8.46

8.47

8.48
(a)  = 256 pixels

Focus Steps

F fre
q

0 10 20 30
8.83

8.84

8.85

8.86

8.87

8.88

8.89
(b)  = 200 pixels

Focus Steps

F fre
q

0 10 20 30
9.27

9.28

9.29

9.3

9.31

9.32

9.33
(c)  = 150 pixels

Focus Steps

F fre
q

0 10 20 30
9.82

9.84

9.86

9.88

9.9
(d)  = 100 pixels

Focus Steps

F fre
q

0 10 20 30

10.4

10.5

10.6

10.7

10.8
(e)  = 50 pixels

Focus Steps

F fre
q

0 10 20 30

10.6

10.8

11

11.2

11.4

11.6

11.8
(f)  = 25 pixels

Focus Steps

F fre
q

Figure 4.2: Sum Of Frequency Components for Various Ω

4.4 Auto-Correlation Method

Since the auto-correlation function (ACF) is the inverse Fourier transform
of the power spectrum [10], it is expected that the ACF will contain sharpness
information. Defocused images contain large smooth regions that result in a low
broad central ACF peak. Focused images contain small highly correlated regions
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Chapter 4: Sharpness Measures

that result in a tall sharp central ACF peak. The height of the ACF has been
used before to measure defocus [19].

Two sharpness measures were calculated from the 2D ACF. The first uses
the difference between ACF values at two locations along the x-y axes, while the
second uses the area under the central ACF peak. If a(x, y) is the ACF for an
image, then the first sharpness measure is defined below for the given parameters
n and m

fACFdiff,n,m = [a(0, n)− a(0, n + m)] + [a(n, 0)− a(n + m, 0)] (4.3)

Parameter n was chosen to be 5 in order to avoid the noise-influenced portion of
the ACF near the origin (see Figure 2.1). Parameter m was chosen to be 10. The
second sharpness measure is defined below for the given parameter n

fACFsum,n =
1

4n2

n∑
x=−n
x6=0

n∑
y=−n
y 6=0

[a(x, y)− amin] (4.4)

where 2n is the size of the central square over which to sum the ACF and amin is
the minimum ACF value within this central square. Through experiment it was
decided to set n = 50. The ACF can be efficiently calculated in the frequency
domain using the following relationship [10]

A(u, v) = F (u, v)F ∗(u, v) (4.5)

where F (u, v) is the Fourier transform of image f(x, y), A(u, v) is the Fourier
transform of the ACF, and ∗ is the the complex conjugate.

4.5 Variance Method

Image variance has been used as a sharpness measure [5,7], and its robustness
to noise has been previously noted [25]. Variance should peak at the best focus,
since images in focus will have greater intensity variation than blurred defocused
images. Erasmus and Smith provide a theoretical explanation for the dependence
of variance on the beam radius (and thus on defocus) [6]. The variance sharpness
measure is defined as

fvar =
1

MN

N∑
x=1

M∑
y=1

[g(x, y)− g]2 (4.6)

where g is the mean intensity in the image g(x, y).

It should be noted that the covariance is sometimes used instead of the vari-
ance [6]. In such cases two consecutive images are captured from the SEM, and
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the covariance between them used as a sharpness measure. It is argued that such
a measure is more robust to noise, but it should also be noted that the covari-
ance requires two separate image captures. Each image capture adds overhead in
addition to the time required for noise reduction. To achieve a reasonable pro-
cessing time such a system would probably use lower amounts of noise reduction
per frame. The same general result can be achieved by simply using the variance
of one image with higher noise reduction.

4.6 Comparisons and Analysis

The sharpness measures discussed in the previous sections are all related.
The gradient method uses the spatial domain to measure the amount of high
frequency information, while the frequency domain method uses the power spec-
trum for the same reason. The ACF is just the inverse Fourier transform of the
power spectrum, and the variance is the ACF at the origin (ignoring the effect
of the mean intensity). Although related, each measure performs differently with
respect to the properties laid out in Section 4.1.

We will first examine each method at various focus step intervals. This will
primarily reveal information concerning each method’s repeatability and accu-
racy. Ideally we desire a measure which has a sharp top even at small focus
step intervals. We can also observe the sharpness measure’s monotonicity at the
larger stepsizes. Figure 4.3 shows each sharpness measure for three different fo-
cus stepsizes. The sample used was sublimated titanium at 3,000x magnification.
Extensive noise reduction was used in an effort to better examine the measure’s
sharpness at the maximum. Each image was captured with a pixel averaging of
16 and a frame averaging of 25. All plots in the same column have the same
vertical scale.

Figure 4.3 reveals several important points. Although fACFsum is quite wide
at its base indicating strong monotonicity, it has extremely low repeatability due
to the very flat curve at small stepsizes. fACFdiff is slightly better, but is still
poor when compared to the other three measures. The remaining three measures
have relatively sharp tops at small stepsizes with fgrad being slightly sharper
than fvar which is in turn sharper than ffreq. Also notice that fvar and ffreq have
better monotonicity at the tails, as compared to fgrad which has very flat tails.
These results were found to be typical of most specimens.

Figures 4.4 and 4.5 illustrate how each sharpness measure responds to various
noise levels. An ideal sharpness measure should change little as the noise level in-
creases, and should also maintain its unimodality and monotonicity. The sample
used in Figure 4.4 was sublimated titanium while the sample used in Figure 4.5
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Figure 4.3: Sharpness Measures at Various Focus Stepsizes

was gold on carbon. All sharpness results were divided by the maximum value
in that sweep so that all results peak at one.

Of the various sharpness measures, fgrad seems to be the most susceptible to
noise even with a spacing of 10 pixels. fACFdiff shows excellent noise robustness,
except for images with bandwidth distortion (i.e. pixel averaging of 1). fACFsum

response to noise is inconsistent. In 4.4(a) the measure actually increases at severe
defocus and high noise levels due to the large correlation in limited bandwidth
distortion. Obviously, bandwidth distortion plays an important part in the two
ACF sharpness measures.

ffreq and fvar both seem to be quite robust to noise. Both remain unimodal
and maintain their monotonicity near the tails as the noise level increases. A
key advantage of the variance measure over the frequency method is its ease of
implementation. Let N be the number of pixels in the image such that N = 2n

and n ≥ 1. Then the variance measure requires N additions to determine the
mean, N subtractions, and N multiplications. The FFT requires 1

2
Nn com-

plex multiplications and Nn complex additions [10]. This is equivalent to 2Nn
simple multiplications and 2Nn simple additions. In addition, the frequency do-
main sharpness method requires 4Ω2 additions to compute the sum (where Ω is
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Figure 4.4: Sharpness Measures at Various Noise Levels - Specimen #1
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Figure 4.5: Sharpness Measures at Various Noise Levels - Specimen #2
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the threshold frequency). Since 4Nn + 4Ω2 > 3N the total operations for the
frequency domain method outnumber the operations required for the variance
method (for any n or Ω).

The following table shows the actual time required for each sharpness mea-
sure. Sharpness measures were calculated for a 512x512 image on the SEM control
computer. Each sharpness measure was calculated using the MATLAB C++ li-
braries, and no real attempt was made to optimize these implementations. Thus
these results should mainly be treated as a relative measure of performance. As
expected, fvar is by far the fastest sharpness measure, and the ACF measures
are the slowest. As seen in Equation 4.5, the ACF measures use both a Fourier
transform and an inverse Fourier transform, and it is therefore reasonable that
the ACF measures are more than twice as slow as the ffreq measure. Since the
SEM control computer is relatively old, it is expected that these results can be
considerably improved upon by simply using a faster computer.

Method Time (sec)

fgrad 2.20

ffreq 1.79

fACFdiff 4.06

fACFsum 4.19

fvar 0.51

Another key advantage of the variance method is that it does not call for any
parameters or thresholds. The other methods require assumptions concerning the
amount of detail in an image or the size of features in order to assign reasonable
parameters. The variance measure was chosen as the primary sharpness mea-
sure for this work because of its strong repeatablity, accuracy, unimodality and
monotonicity properties regardless of noise, as well as its simple implementation.
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Chapter 5

Maximum Sharpness Search
Algorithms

Traditionally, the chosen sharpness measure is applied to a linearly increasing
set of objective lens excitations, and the excitation corresponding to maximum
sharpness is considered to be the best focus. Although it has been noted that
more efficient search algorithms are possible (assuming unimodality and mono-
tonicity) [16, 25], there seems to be little practical work on implementing such
algorithms for electron microscopy. This is probably due to the complications
arising from hysteresis effects and the low SNR of most SEM images. This chap-
ter will investigate several maximum sharpness search algorithms including the
traditional fixed stepsize search, the iterative search, the variable stepsize search,
and the Fibonacci search. Interpolation based on a model of variance as a func-
tion of defocus will also be examined.

5.1 Preliminary Considerations

Several factors can influence the success of more sophisticated search algo-
rithms. These include the chosen level of noise reduction, hysteresis effects, and
the desired level of accuracy. More sophisticated search algorithms usually re-
quire greater noise reduction than traditional fixed stepsize sweeps. The under-
lying idea is that the decrease in the number of images needed due to a more
sophisticated search algorithm will outweigh the increase in processing time re-
quired for greater noise reduction. This was found to be reasonably true for the
algorithms investigated.
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Section 5.1: Preliminary Considerations

5.1.1 Hysteresis

A current applied to an electromagnetic lens aligns magnetic regions in the
ferromagnetic material of the lens and thus produces a magnetic field related to
the strength of the applied current. The magnetic material in the electromagnetic
lenses causes the relationship between applied current and magnetic field to be
non-linear and is known as the hysteresis effect [20]. Hysteresis is of particular
importance in autofocusing since it implies that the sharpness at a specific lens
excitation is dependent on the history of the lens, and thus if we return to the
same lens excitation at a later time in the search the sharpness may not be the
same.

Figures 5.1 and 5.2 illustrate the hysteresis effect. In Figure 5.1, a set of lin-
early increasing focus values have been swept in the same direction three times.
The focal length was set to a small value between sweeps to help minimize hys-
teresis effects. This is a common technique and is usually adequate [21], although
more extensive cyclic approaches are possible [20]. The sharpness values corre-
spond well between iterations except for an overall offset due to the gradual
deterioration of the sample and slight drift effects between sweeps. In Figure 5.2,
the same focus range has been swept in alternating directions. Obviously, the
relationship between focal length and sharpness is different for each sweep owing
to the history of the lens.
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Figure 5.1: Hysteresis: Several Forward Sweeps

Hysteresis effects influence search algorithms in two ways: during the actual
search and in returning to the best focus. Hysteresis is not a significant factor
during a fixed stepsize search or a variable stepsize search, since these searches
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Figure 5.2: Hysteresis: Sweeps in Both Directions

only move the lens in a single direction. Hysteresis will play an important part
between sweeps in the iterative search and during the Fibonacci search. More
detail will be provided in the description of each search algorithm. Throughout
this chapter the term ‘online’ will refer to running a search algorithm in real-
time on the SEM. The term ‘offline’ will refer to running a search algorithm
on a previously saved set of variance data, and thus offline searches will avoid
hysteresis effects.

Almost all searches, including traditional fixed stepsize sweeps, will require
returning the focus to the best focus. There is little reference in the literature
to a practical method for resetting the instrument to the best focus following
a focus sweep. An inefficient approach would be to clear hysteresis and then
repeat the focus sweep with the exact same values, stopping at the desired best
focus. This work uses a more efficient approach. It was observed that the offset
due to hysteresis was relatively constant near the maximum sharpness. The
following sequence of steps use this concept to compensate for hysteresis effects
when returning the instrument to best focus (see Figure 5.3):

1. Perform focus search and determine best focus (fbest1) as well as the
sharpness of the image obtained at best focus (sdesired).

2. Set the instrument to fbest1 without any preliminary hysteresis removal
efforts, and determine sharpness of corresponding image (sactual).

3. If |sdesired − sactual| < Θ where Θ is a given threshold, then finished.
Otherwise determine the focus value (fbest2) which corresponds to sactual

from the initial focus sweep, using interpolation as necessary.
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4. Determine the offset d = fbest1−fbest2, and set the instrument to ffinal =
fbest1 + d.

Initial Focus Sweep        
Sweep in Opposite Direction

f
best2

 f
best1

 

d 

s
actual

 

s
desired

 

f
final

 

Figure 5.3: Hysteresis Adjustment Algorithm

This algorithm was tested with several of the search algorithms and worked rea-
sonably well. If a hysteresis adjustment was deemed necessary (|sdesired−sactual| >
Θ), then the image at ffinal was almost always sharper than the image at fbest1.

5.1.2 Accuracy and Distance to Tails

The region of uncertainty is the focus interval in which the best focus is known
to lie. A search algorithm is successful if it can narrow the region of uncertainty
such that the image will appear to be equally sharp throughout this region. Or
in other words, if the region of uncertainty is less than the depth of field. The
accuracy of a search algorithm is simply the smallest region of uncertainty it
can achieve. The distance to the tails is defined as the distance in millimeters
between the best focus and where the monotonicity property breaks down. The
desired accuracy and the distance to the tails play an important part in any
search algorithm and are usually heavily dependent on both the specimen and
the level of magnification. A general method was developed that allows these
two intervals to be approximated from a given level of magnification. Figure 5.4
illustrates the symbols to be used in this method.
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Figure 5.4: Calculating Accuracy and the Distance to Tails - a is the
aperture diameter, f is the focal length, d is the actual working distance,
and s is the spot size.

The focal length, working distance, aperture diameter, and spot size are related
by the following equation.

a

s
=

f

|d− f |
(5.1)

The accuracy α will now be derived from Equation 5.1. Half the accuracy is
the amount of defocus necessary before the spot size exceeds the pixel width p,
causing the image to become slightly blurred. Substituting α

2
for |d − f | and p

for s and then solving for α yields

α =
2pf

a
(5.2)

As mentioned above, the level of defocus can be written as

|d− f | = α

2
(5.3)

Solving Equation 5.3 for f , substituting into Equation 5.2, and solving for α
yields

α =
2pd

a + p
(5.4)

Equation 5.4 provides an approximation for the required accuracy at a given
magnification. The working distance d is not known but can be approximated
during a coarse focus sweep.

Realizing that the image will become completely blurred when the spot size
exceeds the size of the largest feature in the image, we can use a similar derivation
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for the distance to the tails. If k is the size of the largest feature in the image in
pixels and dtails is the distance to the tails then

dtails =
kpd

a + kp
(5.5)

The feature size k cannot be determined without knowledge of the specimen. A
satisfactory solution is to choose k such that it gives the lower limit of dtails. For
this work k = 20, and thus it is assumed that the specimen has at least one feature
that is greater than 20 pixels. If this is true, then the monotonicity assumption
will be valid over the interval: bestfocus ± dtails. Both Equations 5.4 and 5.5
assume a constant spot size across the specimen, a reasonable approximation for
d, and beam linearity. Thus this technique is not expected to give better than
order of magnitude approximations for α and dtails. Nevertheless, this method
was found to be a useful way to determine a reasonable level of accuracy and the
distance to the tails for a given magnification.

5.2 Fixed Stepsize Search

A fixed stepsize search uses only a single sweep through the desired focus
range, with a stepsize equal to one half the desired accuracy. We will use the
minimum number of image captures required for a specific search algorithm at a
given accuracy as a measure of its efficiency. If α is the desired accuracy, then
the required number of image captures for an inclusive fixed stepsize search will
be

N =

⌈
2l

α
+ 1

⌉
(5.6)

where l is the length of the interval to search. Fixed stepsize searches are useful
for coarse focusing when the desired accuracy is low [19]. Examples of fixed
stepsize sweeps can be seen in Figure 5.1.

An approach to further reduce N is to monitor the image sharpness during
the sweep and stop the search once a peak in the sharpness measure has been
detected. Ong’s algorithm looks for changes in sharpness that exceed a given
threshold, although he also notes that if this threshold is too low the sweep can
stop prematurely [19]. This approach is more appropriate for sharpness measures
that have a small range of monotonicity and very high accuracy. The variance
sharpness measure has a much larger range of monotonicity and thus a threshold
approach to peak detection is unlikely to be effective. An alternative was in-
vestigated that looks for an increasing variance value followed by two decreasing
variance values. This method was easily trapped by local maxima due to noise,
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so a moving average of the past three variance values was used instead. This
approach worked for medium to high SNR images (see Figure 5.5).
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Figure 5.5: Peak Detection

5.3 Iterative Search

An iterative search is one of the most common, and it involves several sweeps
with gradually smaller stepsizes [3, 19, 21].1 After each iteration, the point of
peak sharpness is determined and the region of uncertainty is narrowed. The
next sweep searches over this smaller region. The number of image captures for
each iteration is assumed to be constant. If the initial interval to search is l, then
the accuracy for the first iteration will be

α1 =
2

η − 1
l (5.7)

where η is the number of image captures for each iteration. The next iteration
will search over an interval of size α1, and thus it can be seen that iteration i will
search over an interval of size αi−1. The accuracy of iteration i is thus

αi =

(
2

η − 1

)i

l (5.8)

1Although magnification can be adjusted between iterations, this work assumes the magni-
fication remains constant throughout a specific search.
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Since η is constant, the total number of image captures Ni required at iteration
i is simply ηi. Equation 5.8 can now be written as

αi =

(
2

η − 1

)Ni
η

l (5.9)

Solving for Ni yields the following for the total number of image captures required
for the entire search at a final accuracy α

N =

η
log

(
α
l

)
log

(
2

η−1

)
 (5.10)

Note that since i = N
η
, the number of iterations i may not be an integer. This

simply means that if on any iteration αi < α, then we set the accuracy of that
sweep to α. In Figure 5.6, N is plotted as a function of η for an arbitrary α.
The optimum value for η is 7.3, and thus the optimum integer value for η is 8.2

Note that N may be slightly higher in practice than the theory indicates due
to the specifics of how the implementation handles intervals that are not evenly
divisible by the stepsize.
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Figure 5.6: Image Captures Per Iteration vs. Total Image Captures

Figure 5.7 illustrates an online iterative focus sweep. Notice the slight dis-
crepancy in variance measurements for the same focal length between iterations.
This is due to hysteresis effects and setting the instrument to a small focal length
prior to each iteration helped minimize this effect.

2Note that this differs from the optimum calculated by Beveridge and Schechter in [2] for
two reasons: their derivation excludes the endpoints of each iteration and reuses overlapping
data points between iterations. Hysteresis effects prevent us from using their approach.
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Figure 5.7: Online Iterative Focus Sweep (η = 8)

5.4 Variable Stepsize Search

A variable stepsize search is a common method used in optimization problems,
but due to the noise inherent in SEM images it has yet to be explored for electron
microscopy. The approach presented here attempts to decrease the stepsize as the
variance increases until the stepsize achieves the desired accuracy. If the desired
accuracy has not been achieved by the time a peak is detected, another fixed
stepsize sweep is used over the interval of uncertainty with the desired accuracy.
This approach is useful for real-time focusing where a smooth transition from a
defocused image to a focused image is desired.

This section will first provide an overview of the method used for reducing the
stepsize and then provide a more algorithmic description. The variable stepsize
search is based on a moving average of three variance values v, similar to that
used for peak detection in Section 5.2. First, the change in the moving average
∆V is calculated between points 1 and 2 (see Figure 5.8). Then the variance at
point 3 is calculated. If the variance is assumed to continue to increase linearly
with the same slope as found between points 2 and 3, then the stepsize can be
reduced to s2 in order to keep the change in variance constant. To help increase
noise robustness, the stepsize is constrained so that it never increases or becomes
less than half the desired accuracy. Since the variance is not increasing linearly,
this procedure will be repeated. In this way, the stepsize is decreased proportional
to the change in variance. An algorithmic description is provided in Figure 5.9.
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Figure 5.8: Illustration of the Variable Stepsize Algorithm

R = false
f1 = initial focus
s = initial stepsize

capture four images at f1, f1 + s, f1 + 2s, and f1 + 3s
determine v1 and v2

f3 = f1 + 4s

for i = 3 to maximum number of steps allowed
capture image and determine vi

if not R and vi > vi−1 and si > α
2

R = true
∆V = vi − vi−1

else if R and vi − vi−1 > ∆V and si > α
2

R = false

s = ∆V fi−fi−1

vi−vi−1

end if

if peak has been found then break
fi+1 = fi + si

end for

k = index of maximum variance
interval of uncertainty = fk−1 to fk+1

Figure 5.9: Variable Stepsize Search Algorithm
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Figure 5.10 illustrates the variable stepsize search algorithm operating at an
accuracy of 0.1 mm. Notice that the change in variance stays approximately
constant in (a) while the decrease in stepsize can be clearly seen in (b). The
variable stepsize sweep required 15 images. Since the final interval of uncertainty
is 0.2 mm and the desired accuracy is 0.1 mm, a fixed size sweep is necessary over
the interval of uncertainty. Thus the total number of required image captures is
20.
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Figure 5.10: Offline Variable Stepsize Focus Sweep

A general solution for the total number of image captures is difficult to develop
since the algorithm is heavily dependent on the initial stepsize and the specific
variance curve. The total number of image captures N is the sum of the number
of image captures required for the variable stepsize search Nv and the number of
image captures required for the final fixed stepsize search Nf . Figure 5.11 shows
N , Nv, and Nf for an offline variable stepsize search as a function of increasing
accuracy. This variable stepsize search uses three times the desired accuracy as
the initial stepsize, and the maximum number of image captures is set sufficiently
high so that a peak is always found. Notice that for large desired accuracy values,
N is dominated by Nf . This is because the initial stepsize is so large that the
variable stepsize search quickly moves past the peak sharpness before it is able to
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reduce the stepsize. As the accuracy value becomes smaller, Nv increases since
the algorithm is able to reduce the stepsize before it reaches the peak. At very
small accuracy values, the variable stepsize search is able to reduce the stepsize
almost to the desired accuracy and so Nf is very small.

The initial stepsize is an important parameter that has considerable impact on
the algorithm’s effectiveness. If the initial stepsize is too small then the algorithm
reduces to a fixed stepsize search with peak finding. If the initial stepsize is too
large, then it is unlikely the stepsize will be small enough by the time we reach the
peak. The ideal stepsize would be such that Nf is zero for the desired accuracy.
It was found that three times the desired accuracy is a reasonable initial stepsize
in most situations.
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Figure 5.11: Number of Image Captures for Variable Stepsize Search

5.5 Fibonacci Search

Although the Fibonacci search has been used as a maximum sharpness search
algorithm in optical microscopy [25], it seems to have been avoided in electron
microscopy due to complications arising from hysteresis. This section will con-
sider the Fibonacci search and a mechanism for handling hysteresis effects. This
work will adopt the notation given in [2]. If F0 = 1 and F1 = 1 then for n > 1,
the Fibonacci number Fn is defined as Fn−1 + Fn−2.

The Fibonacci search is essentially an iterative search where η = 1, thus on
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each iteration we will attempt to significantly reduce the region of uncertainty
with a single image capture. Figure 5.12 illustrates a few example iterations of the
Fibonacci search. First divide the search interval by half the desired accuracy,
and then determine M = F−1

(
2l
α

)
where F−1(x) is the order of the smallest

Fibonacci number that is greater than or equal to x. For a search interval from a
to b, determine the variance at f1 = a + FM−2

FM
(b− a) (point 1 in Figure 5.12) and

f2 = b − FM−2

FM
(b − a) (point 2 in Figure 5.12). If point 1 is greater than point 2

then the maximum sharpness must be between a and point 2. If point 2 is greater
than point 1 then the maximum sharpness must be between point 1 and b. A
single additional variance measurement is now used to further reduce the region of
uncertainty. The variance at point 3 (which is the same distance from b as point 2
is from point 1) is determined and compared to the previously obtained variance
at point 2. By using Fibonacci numbers to partition the search interval, a single
variance measurement can be compared to a previous measurement to reduce
the region of uncertainty. These steps are repeated until the desired accuracy
is achieved. A more comprehensive discussion of this and other optimization
techniques can be found in [2]. See Figure 5.13 for an algorithmic description of
the Fibonacci search.
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Figure 5.12: Fibonacci Search Example
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a = start of focus range
b = end of focus range
α = desired accuracy

M = F−1
(

2(b−a)
α

)
f1 = a + FM−2

FM
(b− a)

f2 = b− FM−2

FM
(b− a)

v1 = variance of image at f1

v2 = variance of image at f2

for m = M - 1 down to 3
if v1 < v2 then

a = f1

f1 = f2

v1 = v2

f2 = b− Fm−2

Fm
(b− a)

v2 = variance of image at f2

else
b = f2

f2 = f1

v2 = v1

f1 = a + Fm−2

Fm
(b− a)

v1 = variance of image at f1

end if
end for

if f1 > f2

interval of uncertainty = f1 − α
2 to f1 + α

2
else
interval of uncertainty = f2 − α

2 to f2 + α
2

end if

Figure 5.13: Fibonacci Search Algorithm [25]
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Equation 5.11 gives the number of required image captures N for the Fi-
bonacci search where F−1(x) is the order of the smallest Fibonacci number that
is greater than or equal to x.3

N = F−1

(
2l

α

)
− 1 (5.11)

Because the lens will be changing direction often, hysteresis effects will sig-
nificantly influence the Fibonacci search. The Fibonacci search uses previous
variance measurements in conjunction with the current variance measurement to
reduce the region of uncertainty. Hysteresis can make using previous variance
measurements unreliable. To investigate this, the image variance was measured
for a set of random focal lengths. It was found that by setting the instrument
to a small focal length prior to each random focal length, the monotonicity as-
sumption could be preserved. Figure 5.14 shows a Fibonacci search and a fixed
stepsize search for the same specimen and operating conditions. The Fibonacci
search identifies a different best focus than a fixed stepsize search, but the final
image is of similar sharpness. This will be a common approach when comparing
search algorithms: we will rely on the sharpness of the best focus image instead
of the absolute focal length, since two different search algorithms can find equally
sharp images but at different focal lengths owing to hysteresis. An unexpected
benefit of the Fibonacci search algorithm is that it is not necessary to use the hys-
teresis correction method described in Section 5.1.1. Once the search is finished
the instrument is already at or near the best focus.

Note that the total number of required image captures given in Equation
5.11 is not completely accurate. A brief period of time will be required before
each image capture to set the SEM to a small focus and then return it to the
desired focal length. This overhead was found to be negligible when compared
to the savings gained by using significantly less image captures than other search
algorithms.

3This is slightly different from the results presented by Beveridge and Schechter in [2]. Their
search algorithm uses a final dichotomous step to further reduce the region of uncertainty and
thus N = F−1( l

α ).
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Figure 5.14: Online Fibonacci Sweep

5.6 Interpolation

Following a search algorithm, interpolation can be used to further improve
the estimate of the best focus [2]. This also gives rise to the possibility of using
a search algorithm with a large stepsize and then using interpolation to achieve
the desired accuracy without the need for additional image captures. Quadratic
interpolation was briefly considered, but most variance curves are poorly ap-
proximated by a quadratic function. This section will examine using a more
appropriate approximation for interpolation.

Erasmus and Smith have developed a derivation for image variance as a func-
tion of defocus [6]. The general relationship for the non-astigmatic case is

v =
π|F |2I2

β2z2 + r2
(5.12)

where F is the Fourier transform of the image, I is the total beam current, β is
the beam semiangle, z is the amount of defocus, and r is the spot size radius.
This equation can be rewritten as a function of focal length f and several general
parameters p.

v =
1

p1(f − p2)2 + p3

+ p4 (5.13)

Parameter p2 is the actual working distance and parameter p4 is an offset due
to the noise variance. This model makes three important assumptions: that the
current distribution of the electron beam is gaussian, that the noise variance is
constant with respect to defocus, and that the power spectrum of the specimen
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is constant. The first two assumptions are acceptable for reasonable operating
conditions, but the third assumption is only valid for a small subset of specimens.
Even so, it was found that there was general agreement between this model and
most specimens. Figure 5.15 shows the model given in Equation 5.13 fitted to the
variance data from several specimens at several magnifications. Figure 5.15(c)
shows that the model fits well over an interval where the monotonicity property
is valid, while (d) shows that the model fits equally well over an interval with flat
tails. The experimental variance data was observed to deviate from the model
for specimens with a large depth of field or for specimens at low magnifications
(as seen in (f)). At low magnifications, the image rotates during a focus sweep
due to the electromagnetic properties of the lens system.
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Figure 5.15: Variance Model for Various Specimens

To interpolate the best focus using this model, variance data is first gathered
from a fixed stepsize sweep. Non-linear regression4 is then used to fit the model
in Equation 5.13 to the variance data, and then the best focus is simply given
by parameter p2. The dependence of this method on the number of steps in

4The Levenberg-Marquardt method was used for non-linear regression and is described in
[14]. This method makes use of both a steepest-descent method and a Taylor series based
method.
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the fixed stepsize sweep was tested by first collecting variance data from a fixed
stepsize sweep with a relative accuracy of 0.017. The model was then used offline
to interpolate the best focus for various stepsizes. The results can be found in
Figure 5.16.
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Figure 5.16: Interpolated Best Focus for Various Stepsizes

The fixed stepsize maximum in Figure 5.16(b) is the focal length associated
with the maximum variance for the fixed stepsize sweep shown in (a). The depth
of focus was qualitatively determined by examining the images collected from
the sweep in (a). An experienced SEM operator determined the interval over
which these images appeared to be equally sharp. Notice that the interpolated
best focus becomes more consistent as the relative accuracy increases, and that
at relative accuracies greater than 0.25 the interpolated best focus lies within the
depth of focus. These results suggest that the model presented in Equation 5.13
is an effective way to interpolate the best focus from a fixed stepsize sweep. The
overhead required for non-linear regression, however, will not be negligible and
must also be considered.

5.7 Comparisons and Analysis

This chapter has presented four maximum sharpness search algorithms: the
traditional fixed stepsize search, the iterative search, the variable stepsize search,
and the Fibonacci search. The theoretical performance of these searches can
be compared by examining the required number of image captures N for a given
accuracy. As discussed in Section 5.4, the number of image captures required for a
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variable stepsize search is dependent on specimen characteristics, magnification,
and initial stepsize. Therefore Figure 5.17 shows the theoretical performance
for each search, except for the variable stepsize search. Similar to Figure 5.11,
the number of image captures required for two different offline variable stepsize
searches are shown.
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Figure 5.17: Number of Image Captures vs. Relative Accuracy

The Fibonacci search requires the minimum number of image captures, al-
though each image capture requires a short period of time (approximately 200ms)
to set the SEM to a small focal length. The traditional fixed stepsize search ob-
viously requires the greatest number of image captures in order to achieve the
same desired accuracy. To better examine the practical performance, the actual
time required for each search method as a function of relative accuracy is shown
in Figure 5.18.

Except for the variable stepsize search, these results are largely independent
of the specimen and are only a function of desired accuracy. The interpolation
search consisted of a standard fixed stepsize search at three times the desired
accuracy followed by the nonlinear regression necessary to determine the best
focus (see Section 5.6). Notice that the overhead of performing the nonlinear
regression outweighs the reduced number of image captures. Using even less
image captures for the interpolated search is a possibility, but as was seen in
Figure 5.16, this can reduce the accuracy of the interpolated best focus. Figure
5.18 also shows that the time needed to set the instrument to a small focal length
between each image capture in the Fibonacci search is negligible when compared
to the other searches.
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Figure 5.18: Practical Performance of Search Algorithms

Figures 5.17 and 5.18 are useful for comparing the required number of image
captures and search time, but one would also like to qualitatively compare the
accuracy of each search. Does each search actually select the best focus? Hys-
teresis effects make this question much more difficult to answer. Two different
searches could identify the same best focus, but at different effective focal lengths
owing to hysteresis. Thus Figure 5.19 compares the sharpness of the best focus
chosen by each method. Figure 5.20 shows the specimens used in Figure 5.19.

The dashed horizontal lines in Figure 5.19 indicate the maximum sharpness
found during the fixed stepsize search. Notice that the actual sharpness for the
fixed stepsize search may be below this line due to hysteresis. The vertical arrows
indicate where hysteresis adjustment was used to compensate for this effect (see
Section 5.1.1 for details on the hysteresis adjustment algorithm, Θ was set to 50).
The wide discrepancy in best focus sharpness for the titanium sample is due to
the large depth of field in that sample as different search methods bring different
parts of the image into focus. Notice the scale for each figure. The results in (b)
and (d) are actually quite close to the maximum sharpness found during the fixed
stepsize sweep. Following hysteresis adjustment, all searches generally performed
well, although the variable stepsize sweep produced slightly inconsistent results.

Of the five search methods, the Fibonacci search appears to be a strong choice.
It requires the fewest number of image captures, is the fastest when actually im-
plemented, and produces sharp results. The main disadvantage of the Fibonacci
search is its dependence on the monotonicity assumption. The iterative search
also performs well and could be used to narrow the region of uncertainty until
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Figure 5.19: Best Focus Sharpness for Various Search Methods - The search
methods used are fixed stepsize (FIX), interpolated (ITP), iterative (ITR), vari-
able stepsize (VAR), and Fibonacci (FIB). The dashed horizontal line indicates
the maximum sharpness found during the fixed stepsize sweep. The vertical
arrows represent any necessary hysteresis adjustment.
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Figure 5.20: Specimens Used for Search Algorithm Tests
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the monotonicity assumption becomes valid. It is important to note, although
difficult to quantify, that the fixed stepsize and iterative searches will still work
well at lower SNR levels while the variable stepsize and Fibonacci searches may
not. This reveals a key concept mentioned earlier. The more sophisticated algo-
rithms attempt to decrease the overall calculation time by using less images at a
slightly higher SNR level. Qualitatively, it was found that the more sophisticated
algorithms, especially the Fibonacci search, worked well even at lower SNR levels.
At lower SNR levels the variable stepsize algorithm still worked, but had trouble
appropriately reducing the stepsize.
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Additional Automated Functions

The work presented in the previous four chapters primarily concentrated on
applying each area of the framework to focusing. This chapter will further apply
this work to astigmatism correction, and also introduce beam alignment as an
additional real-time automated operation.

6.1 Astigmatism Correction

The previous four chapters have assumed that the beam current distribution
is relatively symmetric around the optical axis. Contamination in the column
and especially in the spray aperture and final aperture can cause the beam to
become asymmetric, resulting in a directional smear in the image. Compensa-
tion for an asymmetric beam is possible through use of the stigmators located
within the optical column. Automatic astigmatism correction algorithms have
been developed which use the directional information provided in the Fourier
transform of an image. It has been observed that the directional smearing due to
astigmatism in an under-focused image is rotated with respect to the directional
smearing in an over-focused image. Several systems have been developed which
rely on this information to determine the amount and direction of astigmatism
correction [18,19,21].

An alternative approach was chosen for this work largely due to its simplicity
and the relevance of the work presented in the previous four chapters. Erasmus
and Smith have proposed sweeping both the x-stigmator and y-stigmator currents
in turn and determining the image variance for each value [6]. The maximum of
the variance curve then corresponds to the best beam shape. Figure 6.1 shows
the experimental image variance as a function of stigmator values.
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Figure 6.1: Online Astigmatism Sweeps

The framework developed in the previous chapters is readily applicable to this
form of astigmatism correction algorithm. For example, since hysteresis effects
are not present in the stigmators, the Fibonacci search is an ideal technique for
finding the maximum variance. Figure 6.1 illustrates the use of a Fibonacci search
to determine the best stigmator values. A general autofocusing and astigmatism
correction algorithm would involve first finding the best focus, then determining
the best x-stigmator value, and finally determining the best y-stigmator value.
Depending upon the initial level of astigmatism, an additional focusing step may
be necessary.

6.2 Beam Alignment

If the electron beam is not aligned with the electron-optical axis, then the
number of electrons reaching the detector will be severely reduced and conse-
quently the mean image intensity will be artificially low. Beam alignment is
possible both physically and electromagnetically, although it is nearly impossible
to achieve the required precision when using manual physical alignment. There-
fore, most modern SEMs include additional electromagnetic coils responsible for
either shifting or tilting the electron beam [3]. Alignment is usually required
several times after the beam is initially turned on, and may also be necessary af-
ter changing operating conditions (particularly accelerating voltage). Gradually,
the instrument stabilizes and alignment becomes less necessary. Beam alignment
is an ideal candidate for real-time automation. Alignment should occur in the
background without user interaction, so that the maximum number of electrons
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are always reaching the detector.

Most auto-alignment algorithms perform a sweep of potential gun tilts and
then determine which gun tilt results in the maximum image brightness [3]. This
technique is inappropriate for real-time beam alignment since a gun tilt sweep
can be very time consuming. Real-time beam alignment should ideally be both
fast and transparent to the operator. For this work, beam alignment information
was gathered from the emission image. Note that this technique is primarily
applicable to microscopes using a LaB6 source where the spot in the emission
image is small and well defined. If the ideal spot location in the emission image
is known, then one should theoretically be able to align the beam in a single step.
Unfortunately switching to the emission image will obviously be noticed by the
user. This raises a key concept in real-time automated operations: the need for
a dual frame buffer image processing system.

The fundamental ideal behind real-time operations such as beam alignment
and autofocusing is to seamlessly perform these operations whenever needed with-
out user interaction. This is hindered, however, by the fact that an image pro-
cessing auxiliary system (such as the one presented here) can only access what
the operator is seeing on the display. The key to real-time operations is an image
processing system that can scan two frame buffers as needed. One frame buffer is
always displayed to the operator, but the second frame buffer could be available
only to the image processing system. Thus one could scan the specimen, display
it to the operator, switch to emission mode, scan the emission image, and then
return to scanning the specimen. The operator would simply see a slight delay
(the time it takes to scan the emission image) between two frames. Such a tech-
nique is not limited to real-time beam alignment, and could also allow reduced
regions of interest during real-time autofocusing.

Figure 6.2(a) shows a common LaB6 emission image. The spot location was
determined by first finding the maximum brightness in the emission image in each
column and in each row. Thus the 2D emission image is reduced to two 1D arrays.
These arrays were smoothed using a gaussian filter, and then the maximum value
found for each array. The location of the maximum was considered to be the
spot location in the emission image. The goal of beam alignment is to then move
the spot center to a predetermined ideal location in the emission image. This
ideal location can be found through a preliminary calibration step using the gun
tilt sweep method mentioned above. Calibration is only occasionally necessary,
although it is definitely required if the emitter is replaced. The algorithm for
moving the spot location to the ideal location in the emission image is shown in
Figure 6.3.

This algorithm first determines how far the spot is from the ideal location
in pixels. A conversion factor from pixels to gun tilt units is used to determine
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Figure 6.2: Example Emission Images

Θ = threshold from ideal location
g = current gun tilt
pc = current spot location
pp = previous spot location
pi = ideal spot location
t = initial gun tilt per pixel conversion factor

while |pc − pi| > Θ
g = g + t|pc − pi|
capture emission image and determine pc

t = t
∣∣∣ pp−pi

pp−pc

∣∣∣
pp = pc

end while

Figure 6.3: Beam Alignment Algorithm

how far to tilt the gun in order to align the beam. The gun is then tilted, a new
emission image captured, and the new spot location determined. The ratio of
the predicted distance the spot would move and the actual distance the spot did
move is used to adjust the conversion factor for the next iteration. This process
is continued until the spot location is within a predetermined threshold of the
ideal spot location.

Two problems were encountered with this method of beam alignment: ab-
normal spot shape in the emission image and low electron yield at the center
of the emission image. Figure 6.2(b) illustrates how the electromagnetic optics
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can deform the spot shape at extreme gun tilts. The beam was reasonably well
shaped for gun tilts near the ideal location, and therefore this problem was largely
negligible. If the specimen has a low electron yield at the center of the image,
then moving the beam to the center can severely darken the spot in the emission
image. A potential solution is to notify the operator and perform a gun tilt sweep
if the spot cannot be moved to the ideal location in the emission image after a
predetermined number of iterations.
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Chapter 7

Implementation

The theory developed in the previous chapters provided the foundation for
an autofocusing and astigmatism correction prototype implemented for the LEO
440 SEM. This chapter will discuss the development testbed used for preliminary
testing, software coding, and final implementation. The actual implementation
and the specific design decisions made for the fine focusing, full focusing, real-time
focusing, and astigmatism correction algorithms will also be discussed.

7.1 The Development Testbed

A primary objective of this work was the establishment of a development
testbed that allows for efficient testing and implementation of autofocusing and
astigmatism correction algorithms. The testbed should enable a researcher to
easily try new ideas and then develop these ideas into efficient implementations.

The instrument is manipulated through an ActiveX control supplied by the
SEM manufacturer and known as the LEO API. This control provides a layer of
abstraction between the developer and the actual instrument so that the devel-
oper can concentrate on the algorithms and not on the mechanics of instrument
control. MATLAB was used for preliminary algorithm testing and development.
The newer MATLAB releases support ActiveX, and should be able to use the
LEO API ActiveX control. Unfortunately, a slight technical complication pre-
vented MATLAB from being able to access certain functions within the LEO
API. To solve this problem, an interface program was written that wraps around
the LEO API and allows MATLAB to communicate with the instrument.

There are significant advantages to using MATLAB for preliminary testing
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and development. MATLAB makes available sophisticated mathematical and
image processing libraries that can allow a researcher to test new ideas quickly.
MATLAB has extensive data visualization capabilities, and the graphical inter-
face libraries can allow a developer to create an entire application completely
from within MATLAB.

Once a researcher has tested a theory and developed an algorithm in MATLAB,
it is then possible to port this work to a more efficient implementation. Visual
C++ was chosen as the final implementation environment. Porting of MATLAB
scripts was made easier by the MATLAB C++ math libraries. These libraries al-
low a C++ application to make use of standard MATLAB functions. Since Visual
C++ applications can also act as ActiveX containers, the same LEO API control
is used to communicate with the instrument. The MATLAB compiler can also
aid in porting scripts to C, although this technique is limited since the compiler
does not support the image processing toolbox.

A wide variety of scripts were written by the author to test the theories and
ideas introduced in the previous chapters. These scripts allow for online and
offline focus sweeps using various regions of interest, sharpness measures, and
search algorithms. In addition, scripts were written for noise analysis, nonlinear
interpolation, and beam alignment.

7.2 Prototype Description

COM technology, or more specifically ActiveX, is a powerful design strat-
egy for developing modular and robust software. Vašina et al. have noted the
advantages of using ActiveX to hide the complexities inherent in controlling a
scanning electron microscope [22], and thus ActiveX will also be used for the
implementation introduced in this section.

The prototype developed by the author includes both a graphical interface
and an underlying image processing ActiveX control known as SEMimage (see
Figure 7.1). SEMimage implements both lower level image processing functions
as well as the higher level autofocusing and astigmatism correction algorithms.
The Autofocuser graphical interface allows the user to control and monitor these
algorithms. SEMimage interacts directly with the LEO API ActiveX control.
The LEO32 software is the standard user interface supplied by the manufacturer.
This modular approach can allow other applications to access SEMimage directly
and thus make use of its automated operations. For example, SEMimage can
be used easily by a performance benchmark utility or by XpertEze. XpertEze
is largely written in Win-Prolog and is designed to make intelligent parameter
decisions when forming an SEM image [3]. Because SEMimage is an ActiveX
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Figure 7.1: Implementation Hierarchy
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control it can be used by any COM enabled container such as Visual C++, Visual
Basic, and even MATLAB.

The implementation can monitor the image sharpness in order to determine
when to perform real-time autofocusing. Continually monitoring sharpness is a
computationally intensive task, and thus a multi-threaded implementation was
necessary. The Autofocuser interface creates the Sharpness Monitor Thread,
which then communicates directly with the SEM through its own LEO API con-
trol (see Figure 7.1). Section 7.2.3 will describe real-time autofocusing in further
detail.

The graphical interface for the prototype is shown in Figure 7.2. The control
buttons allow the operator to run an automated algorithm when desired, or the
operator can initiate real-time operations through the Options button. Imple-
mented real-time operations include beam alignment, fine autofocusing, and SNR
measurement. The status flags indicate which real-time operations are enabled.
Each of these operations are discussed in more detail below. Unless otherwise
mentioned, all operations use reduced domain images of 512x512 pixels that are
averaged over 10 frames at the fastest possible scan rate. The speed of all opera-
tions could be significantly improved with a faster SEM control computer1, and
possibly a smaller region of interest and lower SNR. The objective of the proto-
type, however, was both speed and robustness, and therefore more conservative
parameters were chosen.

SNR & Progress Indicator

Status bar

Status flags

Control Buttons

Figure 7.2: Graphical Interface for Prototype

1The LEO 440 SEM used in this work had a Pentium 200MHz processor with 48 megabytes
of RAM

68
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7.2.1 Full Autofocusing

Full autofocusing determines the best focus regardless of the initial focal
length. This requires a preliminary coarse focus sweep at low magnification to
determine a low accuracy region of uncertainty. SEMimage uses an accuracy of
2mm at 200x magnification for this coarse focus sweep. Following the coarse
sweep, the desired accuracy and distance to tails are approximated using the
method outlined in Section 5.1.2. If the distance to tails is greater than the accu-
racy of the coarse sweep, then the monotonicity assumption should be valid over
the region of uncertainty and a Fibonacci search is used to find the best focus.
Otherwise, an iterative search is used to further reduce the region of uncertainty
until it is possible to use a Fibonacci search. The full autofocus algorithm is
listed in Figure 7.3.

fmin = lower limit for focal length
fmax = upper limit for focal length
α0 = accuracy for coarse focus sweep
α = final desired accuracy

set to low magnification
f0 = FixStepsizeSearch( fmin to fmax at α0 )

set to original magnification
if ( dtails > α0 )

fbest = FibonacciSearch(f0 − α0
2 to f0 + α0

2 at α)
else

fitr = IterativeSearch(f0 − α0
2 to f0 + α0

2 at dtails)

fbest = FibonacciSearch(fitr − dtails
2 to fitr + dtails

2 at α)
end
set focal length to fbest

Figure 7.3: Full Autofocusing Algorithm

At very high magnifications, the stepsize for the first iteration of the iterative
sweep can be so large that it completely misses any portion of the sharpness
peak. To address this, the algorithm could be modified to include an additional
sweep at an intermediate magnification after the coarse focus sweep. The time
to perform full autofocusing varied from 30 seconds to over a minute depending
on the desired magnification.
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7.2.2 Fine Autofocusing

Fine autofocusing assumes that the initial amount of defocus is less than
the distance to the tails. This means that the sharpness measure should be
monotonically increasing between the initial focus and the best focus. Using this
assumption, a preliminary test is made to determine whether the initial focus fi

is above or below the best focus. This test captures several images at slightly
increasing focal lengths and then determines if the image variance is increasing or
decreasing. SEMimage allows a user to choose between either a variable stepsize
search or a Fibonacci search. The variable sweep uses an initial stepsize of three
times the desired accuracy and moves in the direction indicated by the preliminary
test. If the initial focal length is below focus, then the Fibonacci search uses a
search interval of fi + 2dtails. If instead the initial focal length is above focus,
then a search interval of fi−2dtails is used. The Fibonacci search worked well for
specimens with features less than 100 pixels, but occasionally failed for specimens
with larger features. For specimens with many large features, choosing k = 20
makes dtails a poor approximation and thus the Fibonacci search interval is too
small (see Section 5.1.2 for more on choosing k). The time for fine focusing using
the variable stepsize search is usually around 30 seconds. Using the Fibonacci
search decreases this time to a consistent 20 seconds.

7.2.3 Real-time Autofocusing

Real-time autofocusing enables the software to automatically determine when
an image has become defocused and to then take appropriate action to move the
image back into focus. The image variance was monitored in a separate thread
to determine when the image becomes defocused. Once a moving average of
the image variance exceeds a threshold, the sharpness is further monitored to
determine when the sharpness has stabilized. The sharpness monitor thread then
notifies the Autofocuser that the focus has changed and needs to be corrected.
The Autofocuser uses the SEMimage component to move the instrument back
into focus. A preliminary test similar to that described in the previous section
determines the direction to search, and a variable stepsize search allows for a
smooth transition between the defocused and focused images.

Real-time autofocusing was tested on several specimens at various magnifi-
cations and was found to be an effective method for automatically keeping the
image in focus. The stage can be moved for a focused image, and the software
will detect the change in sharpness and refocus the instrument. The variance
threshold that determines when an image has changed sharpness is an important
parameter. If this threshold is too low then the system will incorrectly initiate a
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focusing operation, but if this threshold is too high then the system will fail to
detect subtle changes in sharpness. In addition to defocus, image brightness and
contrast can also influence the variance and cause false focusing operations. A
more effective way to automatically determine when to initiate a focusing opera-
tion would be to monitor the position of the stage and other operating conditions.
Unfortunately, the LEO 440 SEM available to the author uses a mechanical stage,
and thus this technique could not be investigated further.

7.2.4 Astigmatism Correction

Astigmatism correction is performed by first finding the maximum sharpness
for a sweep of the x-stigmator values and then repeating this procedure for the
y-stigmator values. The operator can choose between a fixed stepsize search or
a Fibonacci search. Astigmatism correction should be performed following a full
or fine focus sweep and an additional fine focus sweep may be necessary following
the correction. Astigmatism correction takes over a minute when when using a
fixed stepsize search and only takes 19 seconds when using the Fibonacci search.

7.2.5 Other Real-time operations

The SEMimage component implemented two additional real-time operations:
beam alignment and SNR calculation. Real-time beam alignment uses the algo-
rithm described in Figure 6.3 at a set time interval. The time to perform beam
alignment varies between 3 seconds and over 20 seconds depending on the num-
ber of required iterations. When the beam becomes stable, the component turns
off real-time beam alignment. An auto-calibration function was implemented to
determine the ideal spot location in in the emission image. This calibration func-
tion uses a sweep of the gun tilts to identify the emission image location which
corresponds to maximum brightness in the image. The SNR is calculated using
the method given in Section 2.2 and is performed at a user defined time interval.
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Conclusions

This thesis has investigated both the theoretical and practical aspects of
autofocusing and astigmatism correction for scanning electron microscopy. A
fundamental achievement of this work was the development of a framework for
algorithm development consisting of four primary areas of concern: noise reduc-
tion, regions of interest, sharpness measures, and maximum sharpness search
algorithms. Key accomplishments were made in each of these areas. Reduced
domain median filters were shown to help mitigate limited bandwidth distortion
more efficiently than standard domain median filters, and the gradient was inte-
grated with a spatial high frequency filter to create a new sharpness measure. The
subblock method was presented and shown to be an effective technique to reduce
the region of interest without sacrificing key features in the image. The variable
stepsize search was introduced as a new maximum sharpness search algorithm,
and the Fibonacci search was successfully applied to electron microscopy. Finally,
a new method of interpolation was presented based on a model of variance as a
function of defocus.

In addition to this theoretical work, significant practical contributions were
made. A testbed was established that allowed for rapid testing in MATLAB and
application development in Visual C++. This testbed was then used to implement
a modular autofocusing and astigmatism correction prototype for the LEO 440
SEM. The prototype performs full focusing, fine focusing, astigmatism correction,
beam alignment, and SNR calculation. Perhaps the most significant aspect of
the prototype is the ability to perform real-time autofocusing. The system can
determine when the instrument is becoming defocused and then smoothly bring
the image back into focus.

The prototype includes two parts: a graphical interface and the underlying
SEMimage ActiveX control. This software architecture allows other projects to
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make use of the automated functions implemented in SEMimage. More specifi-
cally, the XpertEze project will be able to use SEMimage to aid in intelligently
managing an SEM. Even if the XpertEze project does not use the specific im-
plementation produced through this work, the development testbed allows future
work to be similarly integrated.

There is, however, room for improvement. A more quantitative analysis of
how the subblock method impacts performance is needed, and further develop-
ment of the in-sweep subblock method would be valuable. The prototype is
slower than expected, and it is suspected that performance could be improved
through software optimization and a more efficient technique for capturing im-
ages. Several of the ideas developed early in this work were not implemented
in the final prototype including reduced domain median filtering, the subblock
method, and interpolation. Finally, additional focus sweeps at intermediate levels
of magnification could improve the full focusing algorithm when working at high
magnifications. Combined with a faster SEM control computer these improve-
ments could significantly enhance the current prototype.
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