
Experiences Using the RISC-V Ecosystem to Design an
Accelerator-Centric SoC in TSMC 16nm

Tutu Ajayi 1 Khalid Al-Hawaj 2 Aporva Amarnath 1 Steve Dai 2 Scott Davidson 4

Paul Gao 4 Gai Liu 2 Anuj Rao 4 Austin Rovinski 1 Ningxiao Sun 4 Christopher Torng 2

Luis Vega 4 Bandhav Veluri 4 Shaolin Xie 4 Chun Zhao 4 Ritchie Zhao 2

Christopher Batten 2 Ronald G. Dreslinski 1 Rajesh K. Gupta 3 Michael B. Taylor 4 Zhiru Zhang 2

1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI
2School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

3Department of Computer Science and Engineering, University of California, San Diego, CA
4Bespoke Silicon Group, University of Washington, WA and University of California, San Diego, CA

ABSTRACT
The recent trend towards accelerator-centric architectures has re-
newed the need for demonstrating new research ideas in prototype
systems with custom chips. Unfortunately, building such research
prototypes is tremendously challenging, but the emerging RISC-V
open-source software and hardware ecosystem can partly address
this challenge by reducing design, implementation, and verifica-
tion effort. This paper briefly describes the Celerity system-on-chip
(SoC), a 5× 5mm 385M-transistor chip in TSMC 16 nm, which uses
a tiered parallel accelerator fabric to improve both the performance
and energy efficiency of embedded applications. The Celerity SoC
includes five RV64G cores, a 496-core RV32IM tiled manycore pro-
cessor, and a complex BNN (binarized neural network) accelerator
implemented as a Rocket custom co-processor (RoCC). We describe
our experiences using the RISC-V ecosystem to build Celerity, and
highlight both key benefits and challenges in leveraging the RISC-
V instruction set, RISC-V software stack, RISC-V processor and
memory system generators, RISC-V on-chip network interfaces,
RISC-V verification suite, and RISC-V system-level hardware in-
frastructure. The RISC-V ecosystem played an important role in
enabling a team of junior graduate students to design and tapeout
the highest-performance RISC-V SoC to date in just nine months.

1 INTRODUCTION
The field of computer architecture has a long history of build-
ing computer architecture research prototypes that implement re-
search ideas using custom-designed chips and systems [5, 11, 15, 22].
Putting principle into practice by building prototypes is one of the
best ways to validate assumptions, measure real system-level per-
formance and efficiency, gain intuition about physical design issues,
build credibility with industry, and provide platforms for future
software research. Contributing to building a prototype can have a
transformative impact on young researchers, and lay the foundation
for new research directions. The need for building prototypes has
never been more urgent owing to the rise of dark silicon which in
turn has motivated an increasing trend towards accelerator-centric
architectures [7, 12–14, 16, 19, 21, 24]. These architectures can in-
clude a complex heterogeneous mix of both programmable and spe-
cialized accelerators, and this means traditional simulation-based
evaluation methodologies based on general-purpose processors
are no longer sufficient. Building accelerator-centric prototypes is

an important complement to early simulation-based design-space
exploration.

However, building research prototypes with custom-designed
chips can be tremendously challenging. Simply gaining access to a
reasonably modern technology node can require months of legal
negotiation. Acquiring andmanaging the diverse array of electronic
design automation tools for simulation, synthesis, place-and-route,
analysis, and verification can require a full-time support engineer.
Gaining access to and then instantiating all of the relevant physical
intellectual property (IP) blocks (e.g., standard-cell libraries, I/O cell
libraries, memory generators) is frustratingly difficult. Designing
a new instruction set from scratch can require significant effort,
but extending an existing instruction set is often prohibited due
to licensing restrictions. Designing, implementing, and verifying
general-purpose processor cores and on-chip networks (OCNs)
at the register-transfer level (RTL) can also require significant ef-
fort, but acquiring third-party processor/OCN IP can be expensive
and may again prohibit modifications. Developing the system-level
hardware infrastructure to evaluate a prototype (e.g., board de-
sign, FPGA gateware) requires tedious engineering effort. Finally,
bringing up a full-featured software stack including an assembler,
compiler, standard C/C++ library, and operating system can require
months or years of additional effort.

RISC-V is a new open instruction set architecture (ISA) that is
serving as the foundation for a rapidly developing open-source soft-
ware and hardware ecosystem [3, 18]. This ecosystem includes: the
RISC-V ISA specification; OCN specifications; a complete software
stack for both embedded and general-purpose computing; vari-
ous RISC-V processor and OCN implementations; and system-level
hardware infrastructure for RISC-V processors. While the RISC-V
ecosystem cannot solve all of the challenges in building research
chips in academia, the hope is that this ecosystem can at least partly
reduce the design, implementation, and verification effort required
for building accelerator-centric prototypes. For example, the open
RISC-V ISA enables researchers to easily adopt the base ISA for the
portions of the prototype that are relatively standard, and then to
modify and/or extend this base ISA with new research ideas (e.g.,
new custom instructions). A complete off-the-shelf RISC-V soft-
ware stack (e.g., binutils, GCC, newlib/glibc, Linux kernel, Linux
distributions) enables rapidly bringing up initial workloads on
new prototypes before modifying and/or extending this software
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Figure 1: Celerity SoC Architecture

stack to support new software research ideas. Complete off-the-
shelf RISC-V processor and memory system implementations (e.g.,
Rocket chip SoC generator) enable rapidly deploying traditional
processors before modifying and/or extending these initial imple-
mentations with new hardware research ideas. Similarly, OCN IP
that is designed within the RISC-V ecosystem (e.g., NASTI, TileLink)
can reduce system-level integration effort. Standard verification test
suites can greatly simplify developing new processor microarchi-
tectures, and turn-key FPGA gateware (e.g., framework for running
Rocket cores on various Xilinx Zynq FPGA boards) can help re-
duce engineering effort. The entire RISC-V ecosystem has a strong
emphasis on open-source software and hardware which facilities
modifying and/or extending just the component of interest in the
context of a given research idea.

In this paper, we describe our experiences using the RISC-V
ecosystem to build Celerity, an accelerator-centric system-on-chip
(SoC) which uses a tiered accelerator fabric to improve energy effi-
ciency in the context of high-performance embedded systems [1].
The general-purpose tier includes a few fully featured RISC-V proces-
sors capable of running general-purpose software including an oper-
ating system, networking stack, and non-critical control/configuration
software. This tier is optimized for high flexibility, but of course at
the cost of energy efficiency. The massively parallel tier includes
hundreds of lightweight RISC-V processors, a distributed, non-
cache-coherent memory system, and a mesh-based interconnect.
This tier is optimized for efficiently executing applications with
fine-grain data- and/or thread-level parallelism. The specialization
tier includes application-specific accelerators (possibly generated
using high-level synthesis). This tier is optimized for extreme en-
ergy efficiency, but of course at the cost of flexibility. We envision
a three-step process for mapping algorithms to such fabrics. Step 1:
Implement the algorithm using the general-purpose tier. Step 2:
Accelerate the algorithm using either the massively parallel tier OR
the specialization tier. Step 3: Improve performance and efficiency
by cooperatively using both the specialization AND the massively
parallel tier. A key feature of tiered accelerator fabrics is the use of
high-throughput parallel links to inter-connect all three tiers.

The Celerity SoC is a 5× 5mm 385M-transistor chip in TSMC
16 nm designed and implemented by a team of over 20 students and
faculty from the University of Michigan, Cornell University, and

the Bespoke Silicon Group at the University of Washington and
the University of California, San Diego, as part of the DARPA Cir-
cuit Realization At Faster Timescales (CRAFT) program. Figure 1
illustrates the SoC architecture. The Celerity SoC includes five
Chisel-generated Rocket RV64G cores in the general-purpose tier, a
496-core RV32IM tiled manycore processor in the massively parallel
tier, and a complex HLS-generated BNN (binarized neural network)
accelerator implemented as a Rocket custom co-processor (RoCC)
in the specialization tier. Celerity also includes tightly integrated
Rocket-to-manycore communication channels, manycore-to-BNN
high-speed links, sleep-mode subsystem with ten RV32IM cores,
fully synthesizable phase-locked-loop clocking subsystem, and dig-
ital low-dropout voltage regulator. The chip was taped out in May
2017, and it will return from the foundry in the fall. The Celerity
SoC is an open-source project, and links to all of the source files
are available online at http://opencelerity.org.

In the rest of the paper, we describe each of the three tiers in
more detail by answering four key questions: What did we build in
that tier? How did we build it? How did we leverage the RISC-V
ecosystem to facilitate design, implementation, and verification in
that tier? and What were the challenges in leveraging the RISC-V
ecosystem in that tier? Overall, the RISC-V ecosystem played an
important role in enabling a team of junior graduate students to
design and tapeout the highest-performance RISC-V SoC to date in
just nine months.

2 GENERAL-PURPOSE TIER
WITH RV64G CORES

The general-purpose tier uses fully featured RISC-V processors to
execute general-purpose software. This tier is optimized for high
flexibility, at the potential expense of energy efficiency.

What Did We Build? – The Celerity SoC general-purpose tier
includes five RV64G cores. The RV64G instruction set is comprised
of approximately 150 instructions for 64-bit integer arithmetic, sin-
gle and double-precision floating-point arithmetic, memory access,
unconditional and conditional control flow, and atomic memory
operations. The cores use a relatively simple five-stage, single-issue,
in-order pipeline. The RV64G core includes a memory management
unit and support for RISC-V machine, supervisor, and user privi-
lege levels. It can be used in either a bare-metal mode, with a proxy
kernel (i.e., system calls are proxied to a separate host machine),
or with a RISC-V port of the Linux operating system. The RV64G
cores serve as the interface between the other tiers and the off-chip
“northbridge” which is implemented as gateware in an FPGA. The
northbridge includes support for initial boot-up, off-chip DRAM,
and other I/O. Each RV64G core includes a 16 KB four-way set-
associative instruction cache and a 16 KB four-way set-associative
data cache. There is no on-chip L2 cache. The five RV64G cores are
not cache-coherent, and thus only support running five indepen-
dent instances of non-SMP Linux. Limited communication between
the RV64G cores is possible using software-managed coherence
and special support in the northbridge.

HowDidWe Build It? –We used the Berkeley Rocket chip SoC
generator to create the RV64G core [2]. The Rocket chip SoC gen-
erator is written in Chisel [4], a hardware construction language
embedded in Scala. Generating an RV64G core simply required
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setting the appropriate configuration options and running the gen-
erator to create the corresponding SystemVerilog RTL. This RTL
could then be integrated into the rest of the SoC using standard
SystemVerilog RTL design methodologies. We chose a very spe-
cific commit of the Rocket chip SoC generator which corresponded
to a recent tapeout by U.C. Berkeley to increase the chances of a
fully functional core design. We leveraged the open-source Base-
Jump hardware component library [20] including the BaseJump
front-side bus (a pipelined top-level SoC interconnect) and the Base-
Jump high-speed FPGA bridge (a high-speed source-synchronous
DDR off-chip I/O interface). The BaseJump RV-IOV [23] I/O vir-
tualization package (http://bjump.org/rv-iov) tunneled the five
AXI4-like Not A STandardized Interface (NASTI) and host inter-
faces over the BaseJump FSB to the BaseJump FPGA Bridge and
to the northbridge. For verification, we modified the open-source
RISC-V framework for running Rocket cores on various Xilinx
Zynq FPGA boards; our adapters converted BaseJump back into
NASTI within the northbridge to then interface with the RISC-V
Zynq FPGA framework. This infrastructure enabled full-system
simulation to verify the Celerity SoC in-situ with the northbridge.
We made extensive use of the RISC-V assembly test suite to help
verify our designs, before moving to more complex C-based tests.
A RV64G core was pushed through the standard-cell-based ASIC
toolflow to create a hard-macro which was then instantiated five
times in the SoC.

RISC-V Ecosystem Successes – Leveraging the RISC-V ecosys-
tem paid significant dividends within the general-purpose tier. We
were able to start from a well-specified instruction set, and just as
importantly, a high-quality reference implementation. By using a
core generator as opposed to a specific design instance, we were
able to configure the core with the features we wanted (e.g., floating-
point support, specific cache configuration). We were also able to
turn to the broader RISC-V community for guidance on specific
design issues. For example, we knew from public discussion of pre-
vious RV64G prototypes from U.C. Berkeley that the critical path
was likely to be through the floating-point unit (FPU), so we were
able to register retime the FPU to replicate U.C. Berkeley’s previous
success without much further effort on our part. We also used spike,
the RISC-V ISA simulator, to count instructions of programs early
on in the project to help estimate the expected run-times of the
longest programs we hoped to run in RTL and gate-level simulation.
NASTI provided a relatively simple OCN interface, and this enabled
straight-forward integration with other IP. The ability to leverage
the RISC-V Zynq FPGA framework to quickly create a full-featured
verification environment supporting both bare-metal and proxy
kernel operation was also a significant benefit. Being able to reuse
the RISC-V assembly test suite simplified verification, and being
able to use a mostly unmodified software stack greatly simplified
porting applications. Several of the faculty involved in the project
have had experience using modified-MIPS instruction sets, ARM
instruction sets, and ARM IP in academic research prototypes. The
RISC-V ecosystem provided a nice balance between the extensibility
offered when using a modified-MIPS approach vs. the standardized
software environment offered when using an ARM approach.

RISC-V Ecosystem Challenges – However, there were some
challenges in using the RISC-V ecosystem in the general-purpose
tier. Perhaps one of the most significant challenges was simply

the rapid pace of development both within each RISC-V project
and across the full RISC-V ecosystem. For example, the migration
from NASTI to TileLink forced us to use an older version of the
Rocket chip SoC generator, since the TileLink interface and imple-
mentation were rapidly changing. The bleeding edge version of the
many RISC-V projects failed to work correctly together, and it was
difficult to find a consistent view across all of the projects which
ensured we were starting with a fully functioning ecosystem. Doc-
umentation across RISC-V projects is either lacking or completely
missing. While Chisel certainly enables a powerful approach to
hardware generation, it also presents a significant barrier to adop-
tion. Ultimately, we were forced to minimize any changes to the
RISC-V cores used in the general-purpose tier simply because we
did not have time to become experts in Chisel.

One key challenge related to the verification methodologies
and invariants used in the Rocket chip. The generated RTL ex-
plicitly used random state initialization to avoid any source of X-
pessimism, and there were a few sources of microarchitectural non-
determinism (e.g., front-end timing depended on the potentially-
invalid contents of the data cache tags on squashed load or store
instructions, the branch history table was not initialized on reset).
These issues essentially prevented true four-state RTL simulation,
which is important for robustly verifying the SoC comes out of reset
correctly. In addition, the Chisel-generated non-blocking data cache
generated simultaneous reads and writes to the same address in
the dual-ported SRAMs which complicated the process of mapping
to physical SRAMs. Finally, a few X-pessimism issues resulted from
reconvergence of combinational logic. We were able to fix all of
these issues by modifying Rocket’s Chisel code.

3 MASSIVELY PARALLEL TIER
WITH RV32IM CORES

The massively parallel tier uses hundreds of lightweight RISC-V
processors to exploit fine-grain data- and thread-level parallelism.
This tier is optimized to provide a balance of flexibility vs. efficiency.

What DidWe Build? – The Celerity SoC massively parallel tier
uses the open source BaseJump Manycore design (http://bjump.
org/manycore), instantiating 496 lightweight RV32IM cores to form
a manycore processor. The 496 RV32IM cores are 8× more dense
than the Rocket cores. The cores use a five-stage, single-issue, fully
forwarded, in-order pipeline. The cores do not use interrupts or
a translation lookaside buffer (TLB). The manycore uses a fully
distributed memory system with no caching; each RV32IM core
includes a 4 KB instruction memory and a 4 KB data memory. The
RV32IM cores are interconnected using a mesh on-chip network
with XY-dimension-ordered routing, credit-based flow control, and
80Gb/s full-duplex channels between adjacent cores. The manycore
is highly parameterizable and is a general framework to efficiently
stitch together heterogeneous cores and/or small accelerators.

The manycore provides support for a heterogeneous remote-
store programming model. Each core can store to any other core’s
data memory but can only load from its own local data memory. It
extends the RV32IM instruction set by adding new instructions to
facilitate synchronization in the context of the remote-store pro-
gramming model. The manycore is directly connected to four of the



CARRV’17, October 14, 2017, Boston, MA, USA T. Ajayi et al.

RV64G cores in the general-purpose tier through the RoCC com-
mand interface. This interface allows RV64G cores to use custom
RISC-V instructions to read/write instructions/data in the many-
core through the mesh network. For example the four RV64G cores
can write a manycore program into each RV32IM core’s instruction
memory, write initial data into each RV32IM core’s data memory,
signal the manycore to begin computation, and then use the same
RoCC command interface to retrieve the results of the computation.

How Did We Build It? – The BaseJump Manycore RV32IM
core implementation leverages the BaseJump STL library (http:
//bjump.org/stl), a comprehensive library of parameterized Sys-
temVerilog components that raises the level of abstraction of hard-
ware design, both in the RV32IM core and the on-chip mesh net-
work. We adapted the RV32IM assembly test suite from the V-scale
project to help verify the RV32IM core in isolation. The manycore’s
on-chip network was tested in isolation using network traffic gen-
erators, and numerous C-programs for integration testing. Each
RV32IM core and associated network interface was pushed through
the standard-cell-based ASIC toolflow to create a hard-macro, and
then this macro was instantiated 496 times to create the manycore
processor.

RISC-V Ecosystem Successes – Leveraging the RISC-V ecosys-
tem continued to provide benefits within the massively parallel tier.
Again, starting from a well-defined instruction set simplified the
core specification and enabled reusing the RISC-V assembler and C
compiler. Reusing the V-scale assembly tests reduced verification
effort. We also found it very useful to leverage the Berkeley RoCC
command interface and associated custom instructions already in-
cluded within the RV64G cores in the general-purpose tier. This
enabled us to connect the general-purpose and massively parallel
tiers without any modifications to the RV64G core microarchitec-
ture. The RISC-V instruction set was designed with extensibility
as a key design goal, and we found this to greatly simplify adding
new custom instructions for remote-store programming.

RISC-V Ecosystem Challenges – The RISC-V ecosystem pro-
vided less benefit in the massively parallel tier compared to the
general-purpose tier.We had hoped to reuse an open-source RV32IM
implementation.We considered using the Z-scale or V-scale RV32IM
implementations, but neither was being actively maintained. We
also considered using the Rocket chip SoC generator to create a
lightweight RV32IM core, but the generator could not meet our
design requirements (e.g., generating instruction/data scratchpads
instead of caches). Chisel was an even higher barrier to adoption,
since we expected to make more extensive modifications to the
RV32IM core. Ultimately, we had no choice but to implement the
RV32IM core in-house.

Due to the sparse and scattered nature of RoCC interface docu-
mentation, we invested significant effort reverse engineering RoCC
examples to understand this interface. To address this issue, we
wrote and made public a RoCC user guide and a more sophisticated
RoCC example, along with examples that show how to integrate
SystemVerilog accelerators with RoCC. The RoCC user guide and
examples are available at http://bjump.org/rocc_doc. One subtle
challenge involved the Rocket chip SoC generator’s instantiation of
a dedicated RoCC co-processor module inside the Rocket core. For
most SoC designs, it is more convenient to connect these blocks
at the top-level. This allows reuse of the Rocket hard macro even

when the Rockets are connected to different kinds of accelerators,
or multiple Rockets are connected to a single accelerator. To address
this issue, we modified the Rocket chip SoC generator to expose
the RoCC interface at the top-level of the RV64G core. This enabled
composition of multiple RV64G cores, the manycore, and the BNN
within SystemVerilog.

4 SPECIALIZATION TIER
WITH ROCC ACCELERATORS

The specialization tier uses application-specific accelerators to
achieve extreme energy efficiency, but of course at the cost of
flexibility.

What Did We Build? – Deep convolutional neural networks
(CNNs) are now the state-of-the-art for image classification, detec-
tion, and localization tasks. However, using CNN software imple-
mentations for real-time inference in embedded platforms can be
challenging due to strict power and memory constraints. This has
motivated significant interest in hardware acceleration for CNN
inference. Most of the prior work still requires large traditional on-
and off-chip memories to store fixed-point weights and activations
and carefully hand-crafted digital VLSI architectures [6, 8, 25]. Re-
cent work on binarized neural networks (BNNs) have demonstrated
that binarized weights and activations (i.e., +1, -1) can, in certain
cases, achieve accuracy comparable to full-precision floating-point
CNNs [9, 10, 17]. We have recently explored FPGA-based BNN ac-
celerators [26], which motivated our interest in implementing a
BNN accelerator in the specialization tier of the Celerity SoC.

We use the CIFAR-10 dataset to drive the design of our BNN
accelerator, although our accelerator is flexible enough to be used
for other similar small-image classification problems. Figure 2 il-
lustrates the specific model we used for CIFAR-10 classification
and includes six convolutional, three max pooling, and three dense
(fully connected) layers. The input image is quantized to 20-bit
fixed-point, and the first convolutional layer takes this represen-
tation as input. All remaining layers use binarized weights and
feature maps. BNN-specific optimizations include eliminating the
bias, reducing the complexity of the batch norm calculation, and
carefully managing convolutional edge padding. This network can
achieve 89.8% accuracy on the CIFAR-10 dataset. Figure 3 shows the
BNN accelerator architecture. The BNN accelerator consists of a
module for fixed-point convolution (i.e., first layer), a module for bi-
narized convolution, a module for processing dense layers, weight
and feature-map buffers, and a direct memory access engine to
move data in and out of the buffers. The BNN accelerator processes
one layer of one image at a time before moving onto the next layer.
Any non-binarized computation is performed completely within
each module to limit the amount of non-binarized intermediate
data stored in the accelerator buffers and/or memory system. The
BNN accelerator was pushed through the standard-cell-based ASIC
toolflow to create a hard-macro, and this macro was instantiated
along with the RV64G and RV32IM macros at the top level.

As with the massively parallel tier, a RV64G core is directly
connected to the BNN accelerator through the RoCC command
interface. In addition, the BNN accelerator makes use of the RoCC
memory interface to read the input image and per-layer binarized
weights from the memory subsystem in the general-purpose tier.
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The 14Mb of binarized weights cannot fit in the general-purpose
memory system resulting in non-trivial performance and energy
overhead. To address these issues, we implemented a novel tech-
nique where the BNN accelerator can use the storage in the mas-
sively parallel tier as a software programmable streaming scratch-
pad. The RV64G cores first load all of the weights into the manycore.
We then execute a simple program on the manycore which causes
each RV32IM core to sequentially stream weights from its local
memory to the BNN using the remote-store programming model.
The BNN can be configured to retrieve its weights either from the
general-purpose tier or the massively parallel tier. We used detailed
post-place-and-route gate-level simulation to compare the perfor-
mance of the various tiers in the Celerity SoC. Our BNN accelerator
in isolation improves performance by 200× over an optimized soft-
ware running on a RV64G core, and cooperatively using both the
BNN accelerator and manycore improves performance by 1,220×
and performance per Watt by 250× over the software baseline.

HowDidWe Build It? – The tight design timeline and the need
to perform extensive design-space exploration to effectively map
an emerging application onto an accelerator inspired us to use a
high-level synthesis (HLS) methodology. The architecture shown in
Figure 3 was written completely in SystemC and then synthesized
into RTL using the Cadence StratusHLS tool. An HLS methodology
had the added benefit of reducing simulation time since significant
verification could take place using SystemC. HLS tools also enabled
rapid iteration on timing closure, e.g., we were able to improve
the clock frequency by 43% in just a few days by aggressively
pushing the tools. This HLS-based design methodology enabled
three graduate students with near-zero neural network experience
to rapidly design, implement, and verify a complex application-
specific accelerator.

RISC-V Ecosystem Successes – Even though the specializa-
tion tier did not include any general-purpose processors, we still
found significant benefit in using the RoCC command and mem-
ory interface to interconnect the BNN accelerator with the RV64G
core. As in the massively parallel tier, we were able to connect the
accelerator with no changes to the RV64G core.

RISC-V Ecosystem Challenges – We faced similar challenges
related to the RoCC interface as mentioned in the massively parallel
tier. One key new challenge related to how a RoCC accelerator inter-
acted with the memory management unit in the RV64G core. This
interaction was poorly documented, and we eventually discovered
that the RoCC interface in the older Rocket chip SoC generator uses
physical addresses. Modifying the RV64G core to support memory

translation and protection through the RoCC interface would re-
quire significant design effort. We used software workarounds to
enable RoCC accelerators to operate correctly in both bare-metal
mode and with the proxy kernel, but using RoCC accelerators in
Linux will require more work. We are encouraged to see that many
of these issues have been addressed in more recent versions of
Rocket chip SoC generator.

5 CONCLUSIONS
The Celerity SoC is a 5× 5mm 385M-transistor chip in TSMC 16 nm
which includes five Chisel-generated Rocket RV64G cores, a 496-
core RV32IM tiled manycore processor, complex HLS-generated
BNN (binarized neural network) accelerator implemented as a
Rocket custom co-processor (RoCC), high-speed links between
the RV64G, manycore, and BNN accelerator, and sleep-mode sub-
system with ten RV32IM cores. The Celerity SoC is an open-source
project, and links to all of the source files are available online at
http://opencelerity.org.

The RISC-V ecosystem played an important role in enabling a
team of junior graduate students to design and tapeout a complex
RISC-V SoC in just nine months. We were able to leverage the RISC-
V instruction set, RISC-V software stack, RISC-V processor and
memory system generators, RISC-V on-chip network interfaces,
RISC-V verification suite, and RISC-V system-level hardware infras-
tructure. While ultimately a success, we still faced some challenges
including limited documentation, lack of reference implementa-
tions in an industry standard hardware description language, and
the lack of a stable release schedule across the entire ecosystem.
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