
System Synthesis and Automated Verification:
Design Demands for IoT Devices

Deming Chen‡, Jason Cong§, Swathi Gurumani∗, Wen-mei Hwu‡, Kyle Rupnow∗, Zhiru Zhang†
∗Advanced Digital Sciences Center, Singapore, †Cornell University

‡University of Illinois at Urbana-Champaign, §University of California Los Angeles

Abstract—The rise of the Internet of Things has led to an
explosion of new sensor computing platforms. In a wide variety of
application domains, IoT device manufacturers must design and
release new IoT devices regularly with shorter product cycles to
maintain competitive advantages, differentiate products, sustain
growth, and protect market share. However the size and com-
plexity of these systems are also rapidly growing, and the extreme
pressures on time-to-market, design cost, and development risk
are driving a voracious demand for new CAD technologies to
enable rapid, low cost design of effective IoT platforms with
smaller design teams and lower risk. In this article, we present
the CAD demands of IoT development whether prototyping,
designing devices with commercial off-the-shelf (COTS) chips,
performing System-in-Package (SiP) integration, or designing a
full custom System on Chip (SoC) implementation. We discuss
CAD demands and demonstrate how our prior work in CAD for
FPGAs and SoCs begin to address these needs.

I. INTRODUCTION

The Internet of Things is driving an explosion in sensor
computing platforms in consumer, commercial, and industrial
domains. IoT devices in consumer applications include fitness
trackers, drones, cameras, health monitors, and home automa-
tion; commercial and industrial applications also include smart
grid, transportation, logistics, manufacturing and agriculture.
IoT devices are transformative – sensors, local computation
and filtering, and integration with cloud computing services for
additional analysis, computation, and response can transform
domains. Market study and analysis for IoT applications
predict both substantial growth in sales of devices and cloud
computing services, but also reduced costs due to improved
efficiency.

In all of these applications, the fast moving commercial
market together with large potential opportunity has led to sig-
nificant design pressure. IoT device manufacturers must design
and release new IoT devices each year to maintain competitive
advantages, differentiate products, sustain business growth and
protect market share. For feature differentiation, IoT devices
are rapidly becoming more complex devices, yet the market
places extreme pressure on time-to-market, design cost, and
development risk. Furthermore, IoT devices are often low-
margin devices that are used to capture market share and drive
business to cloud computing services, which places pressure
on not just non-recurring engineering (NRE) design costs, but
also on per-unit costs of production devices. Such pressures
drive avid demand for new design automation technologies. As
IoT developers progress from developing devices with com-
mercial off-the-shelf (COTS) chips, to further customization

with System-in-Package (SiP) integration or custom System-
on-Chip (SoC) implementations, every IoT company must now
become a fabless semiconductor company.

Market study of top semiconductor and IoT companies
indicate critical needs in system-level integration, IP inte-
gration, and verification. Applications for IoT represent a
broad range of design goals, but there are common themes:
small physical size, low power and energy consumption, com-
munications with cloud services, local computation for data
analysis and aggregation, and integration with analog sensors,
actuators, RF, and MEMS devices. Platform design objectives
can be complex and heavily inter-related; the size of battery-
powered devices is influenced by power/energy efficiency and
device lifetime, computation speed and efficiency influences
the amount and frequency of communications, analog devices
influence communications interfaces and required computa-
tion. These few examples of interrelated design objectives
emphasize the need for effective design space exploration and
evaluation of design objectives.

To date, most IoT devices are custom platforms designed
from commercial off-the-shelf (COTS) components [1]–[5].
Although these platforms simplify some aspects of devel-
opment, design automation is still required to quickly and
effectively model solutions and evaluate whether proposed
component selections meet platform metric objectives. COTS-
based platforms allow fast software development, but are
limited in custom computation, feature differentiation and
efficiency in computation latency, power/energy, and physical
device size. Thus, as IoT developers wish to meet more ag-
gressive platform objectives and protect market share through
further feature differentiation, they will move on to System-in-
Package or System-on-Chip implementations that can improve
platform objectives, provide feature differentiation, and ulti-
mately reduce per-unit cost. However, SiP and SoC platform
designs introduce a variety of challenges in design and design
cost; design automation plays a key and critical role in making
design feasible with lower development risk and costs.

Making the transition from COTS-based systems towards
SiP or SoC-based systems will be a critical need for many
future IoT devices. Custom SoC platforms can be several
orders of magnitude faster and more power/energy efficient
than CPU-based alternatives [6]. These custom platforms
can more effectively integrate security, privacy and reliability
features, as well as application-specific acceleration for key
feature differentiation. Feature differentiation can be critical

IoT	System	
Design		

HW/SW	
Par55on	&	
CoDesign	

Algorithm	
Design	

IoT	System	
Specifica5on	

So>ware	
Implementa5on	 Test	and	Debug	

So>ware	
IP	Library	

Driver	
Genera5on	

System	
Integra5on	

System	Test	
and	

Verifica5on	
CPU	

Customiza5on		 Custom	Circuit	
Design	

HW	Verifica5on	
and	Debug	

IP		
Integra5on	

Board	
Design	

Compiler	
Design		

Prototyping/	
Emula5on	

Physical	
Design	

Modeling	

Design	
Space	

Explora5on	

CoSimula5on	

System-level design

Software-hardware co-development
System implementation

Fig. 1. Typical IoT Device Design Flow

for capturing and retaining market share, and custom platforms
play an important role in preventing competitors from simply
reproducing copies of the same IoT platform. With sufficient
product volume, custom platforms also provide lower per-unit
cost, thus creating a cost advantage for low cost, low margin
devices that drive business to cloud computing services: IoT
devices lead adoption of cloud ecosystems, and thus customers
who will purchase regular compute subscriptions and exten-
sions for improved analytics and cross-service integration.

Despite these advantages of custom platforms, the complex
and challenging development flow remains a barrier to the
adoption of custom platforms. However, in every stage of
the design process, CAD (computer-aided design) can play
an important role in supporting design space exploration and
meeting design objectives while simultaneously reducing time-
to-market, design cost, and development risk to ensure both
technical and commercial success.

In this article, we describe the trends and demands for
computer aided design for IoT systems. First, we will describe
the development process of IoT devices in general, and then
we will examine current critical design automation needs
for COTS-based, SiP-based, and SoC-based devices. We will
discuss both current missing needs for design automation as
well as our ongoing work targeting these needs; together, CAD
promises to reduce design time, cost and risk to serve as
the bridge that makes design and implementation of custom
platforms for IoT devices effective and timely.

II. IOT DEVICE DESIGN FLOW

IoT device design follows a series of steps in both software
development for CPU-centric processing and interface drivers
and hardware design for custom accelerators, CPU customiza-
tion and board-designs. In order to minimize time-to-market,
software and hardware are often developed in parallel, with a
software team concentrating on software features, embedded

compilation, device drivers, and integration with cloud com-
putation services while the hardware team performs system
level modeling, component selection, design implementation,
integration, and verification. Despite the generally parallel
development processes, the software and hardware design
flows influence each other; the software algorithm demands
may alter hardware performance objectives, and hardware im-
plementation choices can influence how software is designed
and implemented. Indeed, if a hardware implementation is
created, there may be no need for design and optimization
of the software version. An overview of a typical IoT de-
vice design flow is shown in Figure 1. At a high-level, the
design flow consists of three phases: system-level design,
software-hardware co-development and system integration and
implementation. Though the three phases generally happen
in a feed-forward manner, a feedback path exists between
the cosimulation and system design phase to evaluate and
regenerate a system design and software hardware partitioning
that can meet design objectives. There are key challenges in
the design cycle and thus key needs for design automation
in modeling (IV-A, VI-A2, VI-B1), device driver generation
(III-A), CPU customization (VI-A), circuit design (VI-B2),
verification and debug (VI-B3), prototyping (III-B) and IP and
system integration(VI-B2b) in this paper. The design flow in
Figure 1 details the steps required across typical IoT platforms,
but certain steps of the flow may not be applicable depending
on the target platform. For example, circuit design steps are
not applicable to COTS-based IoT flow.

In this article, we primarily concentrate on design automa-
tion for the hardware portion of the device design flow. How-
ever, automation also plays a critical role in software design
processes, and integration of hardware design automation with
analysis of the embedded software together with automated
creation of embedded compilers (for customized CPUs), and
device drivers (for integrating standard analog/RF/digital ac-

CPU	

Ethernet	
USB	

μSD	
Slot	 ANALOG	

POWER	 DDR3	
RAM	

ADC	

Fig. 2. Example IoT Development Board - Intel Galileo

celerator components) is critical so that software design can
effectively use the hardware platform, and the hardware design
can effectively evaluate platform objectives based on up-to-
date software needs. We will discuss these automations in
further detail in Section IV.

III. IOT PROTOTYPING PLATFORMS

A first step for IoT development is typically IoT device
prototyping using CPU-based prototyping platforms [1]–[5].
As shown in Figure 2, standard platfoms contain CPUs
and standard communications and sensors interfaces so that
designers can integrate sensors, actuators, communications
and MEMS chips to prototype their system. Although these
prototypes will not be used for production releases, they play
an important role in demonstrating the device proof-of-concept
and evaluating overall feasibility. Prototypes will be used for
a high-level proof-of-concept, but may not be appropriate for
estimates of device size/weight, performance, power, energy,
or reliability that will be important for the production device
(Section IV). Nonetheless, there are a few design automation
needs to accelerate and simplify the prototyping process.

A. Device Driver Generation

IoT prototypes integrate a variety of additional chips for
application-specific computations (e.g. AES encryption), sen-
sors, actuators, RF communications, and MEMS devices.
Although the prototyping platform is designed to make it easy
to physically connect these chips, the user is still responsible
for developing a software infrastructure and set of device
drivers to integrate the chips into the IoT solution. Designing
and integrating device drivers can be a major challenge even
though chips use standard communications channels. Thus, au-
tomatic generation of platform device drivers for the software
can significantly accelerate the prototyping process, allowing
designers to concentrate on implementing software features.
Manually written drivers often intermingle interactions with
the OS and the device and thus complicate coding, mainte-
nance, and require additional testing in the development cycle.
However, specifications to interface with a device are OS-
independent and can be auto-generated based on the manu-
facturer device and programming specifications. Furthermore,

automatically generated drivers can also use generated test
patterns to facilitate easier testing and verification of drivers.

B. FPGA-based Prototypes

IoT prototypes of full custom platforms use FPGA-based
platforms to integrate the peripheral chips with custom logic
for the whole system. This prototyping allows full, real-time
functional verification as well as timing verification to certain
extent; however, the design complexity of creating such a
prototype is similar to the complexities of designing an SoC.
The FPGA-based prototype is still critical for producing an
inexpensive early validation of the platform design, but design
automation is necessary for modeling, component selection,
design space exploration, design entry, and verification. Au-
tomation of all these design processes is important both to
make prototyping fast and efficient, as well as to ease the
translation of the prototype design into the final SoC system.
Because the design automation needs are similar for both
FPGA-based prototypes and custom SoCs, we will discuss
these needs in further detail in Section VI.

IV. IOT DESIGN WITH COMMERCIAL OFF-THE-SHELF
COMPONENTS

IoT production device development with commercial off-
the-shelf (COTS) components follows a similar process to
prototyping, but with extra complexity in component selection,
and more demands on modeling and evaluation of design
objectives. A production device will optimize the physical size
with packaging and a custom printed circuit board (PCB), but
optimization for performance, power/energy, or other device
features is based largely on component selection. The main
custom feature of COTS-based devices is the PCB, which
limits hardware design aspects, but the component selection,
modeling and evaluation of potential system designs are limit-
ing factors in quickly and effectively designing platforms that
meet device objectives.

A. High-level Modeling and Component Selection

Although a prior prototype may have served as a proof-
of-concept, modeling of potential system level designs is
important to evaluate whether a chosen set of components
meets the device objectives. In particular, transaction-level
modeling (TLM) in SystemC has become a popular approach
for system modeling with high simulation speed. However,
SystemC TLM models are often unavailable for components;
when such models exist, it is important that they provide
accurate power and performance estimates to maintain high
fidelity between model estimates and achieved performance.
Design automation can create SystemC TLM models from
C-level specifications [7]; power and performance estimates
may be based on manufacturer data, but may also require
automation to generate estimates.

IoT systems may require modeling of not just digital compo-
nents, but also the analog sensors, actuators, RF and MEMS
components. These components not only require functional
SystemC models but also detailed compatibility analysis.

Whereas high-level modeling typically abstracts communica-
tion interface details, these components may require more
detailed analysis to determine whether the components can
be integrated. Analog sensor chips may have digital interfaces
or require integration with Analog/Digital convertors before
interfacing with a CPU; similarly other components may
require verification of interface compatibility.

High-level modeling for IoT systems will be used to explore
a variety of alternative system designs, with differing compo-
nents and features. To reflect performance and power of the
system, it is important to integrate with automated mapping of
application software to the hardware platform; a system with
a dedicated encryption chip may offload significant workload
from the CPU, yielding either improved performance, more
opportunity to turn off the CPU, or both. Design automation
can track which resource(s) are suitable for each portion of
the application and explore mapping decisions to determine
the optimal mapping for a particular system. Automating this
mapping is critical to allowing extensive design space explo-
ration, as manual mapping would quickly limit feasibility.

When high level modeling and automated software mapping
are paired with design space exploration using a library of
potential components, design automation can facilitate ex-
ploration of potential systems together with generation of a
pareto-optimal set of designs with different combinations of
design objectives. From this set of pareto-optimal designs, the
user can more easily select a system that balances perfor-
mance, power/energy, and cost of components. The selected
design would include both a system-level design and an
optimized mapping between application source and the system
components.

B. PCB Design

Although high level modeling typically abstracts commu-
nication details, C-level and SystemC models can be used to
automatically generate detailed information on chip intercon-
nect. When paired with chip specifications and automated PCB
layout tools, design automation can be used to quickly gener-
ate initial PCB designs that can be refined and optimized. The
complexity of PCBs in area, density, power dissipation, and
total nets routed has been steadily increasing, placing pressure
on design automation to assist in design and verification of
board layouts.

V. SYSTEM-IN-PACKAGE

IoT device development based on commercial off-the-shelf
chips quickly reaches limits in performance, power/energy,
and device size. In order to design more efficient IoT devices
with tightly integrated chips, smaller printed circuit boards
(PCBs), and lower overall cost per-device, producers turn to-
wards System-in-Package (SiP) solutions. System-in-Package
may refer to a variety of packaging technologies that tightly
integrate multiple chip dies into a single package. The tight
integration of multiple dies reduces power and energy of the
devices, reduces the PCB size by integrating multiple chips

into a single package, and can improve performance by reduc-
ing intercommunication latency. Although system-in-package
designs may include designs where the IoT device designer
creates full-custom dies as part of the system design, here
we concentrate solely on the design issues with integrating
existing, prior chip dies into a package, and leave discussion of
complexities in designing custom components to Section VI.

A. Modeling and Exploration

As in COTS-based systems, modeling and design space
exploration are important factors in the design process. SiP
solutions integrate and interconnect multiple dies through
system-level integration; also using standard communication
protocols such as SPI and I2C that are common in COTS-
based systems. Whereas integration of analog, RF and MEMS
components in a COTS based system required only analysis
of interface compatibility, SiP-based designs may require
additional analog simulations, 3D modeling to understand
the mechanical behavior of MEMS devices, electromagnetic
analysis for RF antenna behavior, and thermal modeling to
verify that the integrated device meets design goals.

These additional analyses require not just the high-level
modeling but also detailed low-level simulation and verifica-
tion. High-level modeling plays an important role in exploring
the design space to filter for attractive potential designs, but it
is important that design automation also assists in generation
of system integration details so that more detailed analysis can
be performed on the important candidate designs. As in COTS-
based systems, this means that modeling must be integrated
with software mapping, design space exploration, and, now,
analog simulation, electromagnetic modeling, 3D modeling,
and thermal modeling. Even with a small set of candidate
designs, it is challenging to to create and evaluate all of these
aspects, which emphasizes the need both for effective design
space exploration and high-level modeling to filter the set of
candidate designs as well as automated system integration to
facilitate these analyses.

B. Implementation and Verification

Several important details must be considered during im-
plementation even when connecting existing dies. System-in-
package integration is generally limited to using only direct
interconnection with only simple passive elements; a designer
cannot implement glue logic to translate between otherwise
incompatible interfaces.

Similarly, as in COTS-based systems, we must consider
mixed-signal integration. Chip dies may produce digital or
analog signals on their interface pins. Implementation must
ensure that interconnect is compatible and, in the case of
analog signals, ensure that the electrical properties of the
interconnect do not alter signal integrity. Manual design and
verification of silicon interposers is tedious and error-prone.
Although the designer may only generate a detailed solution
for the final selected design, it is important that compatibility
is verified for every candidate solution in the design space.
This verification is related to the IP integration problem in

high level synthesis [8], where integrated IPs cannot require
additional glue logic. Any required glue logic between compo-
nents signals mutual incompatibility for the purposes of an SiP
design. Finally, this automation can also produce valid system
level interconnects for use in design of the silicon interposers
along with RTL from high-level specification for functional
verification.

VI. SYSTEM ON CHIP

COTS and SiP-based systems allow comparatively fast
development, primarily concentrating on software design and
component selection when designing the IoT device. To
achieve performance and power/energy efficiency infeasible
with standard or existing platforms, developers turn to custom
System-on-Chip solutions. In addition to improved features,
performance and power, SoC-based solutions have the advan-
tage of lower per-unit costs at volume.

System-on-chip devices have a variety of levels of cus-
tomization, from lightly customized processors or IP-based
design that integrates previously verified components to full
custom designs that design entirely new CPU extensions
or custom compute hardware. Although the level of cus-
tomization does have an impact on the complexity of the
design, and in turn the design automation needs, system-on-
chip design in general increases required CAD complexity
compared to demands of COTS- or SiP-based systems. We
generally classify SoC-based designs into two groups: CPU
customizations that extend the instruction set of a CPU, and
full custom designs that create standalone application specific
hardware – sometimes with a CPU to handle control, error
processing or interfacing. We will now talk about the design
automation demands for these two strategies in detail.

A. CPU Customization

CPU customization retains compatibility with a prior in-
struction set but adds additional instructions to improve the
performance and power efficiency of particular computations.
For example, CPUs now commonly contain media or cryp-
tographic extensions to make those styles of data-parallel
processing more efficient. Custom CPUs not only improve
performance and power efficiency, but also create feature
differentiation and IP protection: a competitor cannot simply
copy platform software because the ISA extensions require the
custom CPU implementation.

1) Workload Analysis: In COTS or SiP-based systems,
automated mapping of software to hardware platforms was
needed to effectively perform system-level modeling and de-
termine optimal performance and power/energy mapping the
application to candidate system designs. However, here the
workload analysis is orders of magnitude more complex; in-
stead of mapping software at the granularity of large functions,
we may develop instruction set extensions at the granularity of
only a few instructions. Furthermore, to effectively use an ISA
extension, we may require transformation of the application
code for better loop organization, memory access patterns, or
communications and data locality.

The process of CPU customization identifies not only a
single ISA extension, but must select and evaluate multiple
extensions considering both independent and joint benefit of
a set of extensions as well as the benefits and costs of the
extensions, which we will discuss in further detail in the
following subsections. The enormous design space for CPU
customizations makes it infeasible to evaluate more than a
small subset of possible extensions, which places emphasis
on effective design automation to analyse application source,
identify potential extensions, and estimate benefit. Design
automation in compilation techniques can find common re-
peated computation patterns to identify candidate extensions;
when paired with polyhedral models that can transform loops,
memory access patterns, and inter-iteration dependencies, this
automation can play a key role in estimating the potential
impact of an instruction set extension.

2) Modeling: Workload analysis is important to determine
candidate extensions with maximal impact on the application
source, but modeling of the performance and power/energy
benefits of an extension is critical for decision making. An
extension with high application coverage but little opportunity
for performance improvement must be discarded. Conversely,
even extensions with high potential for speedup must be
evaluated relative to other extensions (or sets of extensions)
that have lower cost in chip area or additional power. However,
it is not feasible to perform detailed implementation of every
candidate extension in order to perform decision making. CAD
to automatically translate high level descriptions of extensions
and generate area, performance, and power estimates are crit-
ical; these estimates must be fast and inexpensive to produce,
yet have sufficient correlation with real implementation results
to accurately guide decision making.

Automation in modeling must integrate synthesis of hard-
ware for the extensions to generate area, performance and
power estimates, evaluate what percentage of that area or
power is design overhead (e.g. an extension that modifies
the ALU should only consider area overhead, not total area),
use automated mapping and compilation to estimate usage
patterns, and estimate efficacy of power- and clock-gating
on unused portions of the CPU (which may reduce total
power instead of increasing). This represents the integration
of multiple individually complex automation tasks, yet a nec-
essary requirement for effectively determining which subset
of ISA extensions represents the optimal tradeoff of area,
performance, and power/energy for the IoT application.

3) HW Implementation: Workload analysis together with
modeling determines a chosen set of CPU customizations;
however, during implementation, it is critical that automation
can assist in implementing the low level details so that
area, performance, and power estimates can be achieved or
improved on. High-level synthesis [12], [13] and automated
IP- and system-integration [8] can fill an important role in per-
forming detailed implementation. Many integration details are
complex yet tedious and error prone. Automated integration
can both improve design time and reduce verification effort as
we will discuss next.

4) Verification and Debug: Verification and debug of cus-
tomized CPUs can retain the verification/test vectors of the
original design as an initial set. However, the CPU cus-
tomizations not only create a new set of instructions that
must also be verified in the hardware implementation, but
also many potential corner cases depending on the complexity
of modifications to any communications interfaces between
existing and new (or modified) functional units. Furthermore,
in IoT systems, integration with analog, RF, and MEMS
components is a major component of verification. Instead of
a simple set of instruction sequences, verification and debug
must also explore possible cases of communication with these
peripherals including A/D timing, interrupt handling corner
cases, and verification of correct behavior under faulty external
input.

Detecting, localizing and fixing any potential errors in this
behavior can be extremely challenging. Detailed analysis of
program execution with intermediate checksums can help
discover implementation bugs and corner cases [9], [10].
However, these techniques can require exhaustive creation and
comparison of checksums in large application code. Automa-
tion is thus critical to make the technique of detecting and
localizing implementation bugs feasible.

B. Full Custom System-on-Chip IoTs

A custom SoC implementation delivering a powerful single
silicon solution for an IoT device offers the best performance
with significantly better energy efficiency than other platforms
due to smaller form factors and lower power consumption.
In addition, IoT product differentiation is possible by devel-
oping custom hardware for the proprietary features of the
manufacturer, improved security and privacy by including
accelerators for full-fledged encryption standards. However,
one of the key challenges in development of IoT SoC devices
is the long and iterative design cycle and is a bottleneck
to meet stringent time-to-market requirements. The extensive
design cycle also directly translates to higher NRE costs for
design and development. Yet, custom SoCs present the best
opportunity for designs with lowest per-unit cost at higher
volume despite the challenges in the design flow. Thus, design
automation of the SoC IoT flow is a critical need to reduce
NRE costs and time-to-market in order to reduce risk and
improve break-even point for IoT device volume.

We briefly introduced the challenges in developing a custom
SoC IoT in our prior work [11]. Here, we expand and discuss
in detail the design process and automation opportunities in
the SoC IoT flow. The SoC design flow includes aggregat-
ing all requirements to create a specification, performing a
high-level modeling to explore design space at module- and
system-level, followed by a long and cumbersome process of
implementation and an even longer verification and debug
process.

1) SoC Modeling and Design Space Exploration: IoTs
integrate multiple components including various analog sen-
sors, actuators, digital and MEMS technologies, privacy and
security modules, and communication components. It is im-

portant to perform system level evaluation of the proposed
IoT device using high-level models and explore the design
space to choose the design option that meets platform goals.
Design automation for modeling and automated design space
exploration as described in V-A in SiP is applicable to the
SoC IoTs as well.

Design automation to model the entire SoC as a virtual plat-
form using high-level languages is already a reality. In partic-
ular, transaction-level modeling (TLM) together with SystemC
language has become a popular approach for SoC modeling,
such high-level modeling improves simulation speed compared
to RTL simulation and provides functional verification as
well as early system modeling and analysis. A typical SoC
modeling flow takes the system specification as input, which
is often produced in C or C++ by software engineers. Then
usually a manual hardware/software partitioning process is
carried out, and the hardware portions are reimplemented
using SystemC to work together with microprocessor IPs that
target the software portion of the specification. Fast high-level
accelerator modeling with accurate power and performance in-
formation is one critical building block in SoC modeling. The
challenge is to obtain accurate power/performance information
at early design stages without detailed implementation details.
Accurate power information is usually not available until after
logic synthesis or even physical design, which is too late
for system-level modeling and analysis. The hardware design
space is too vast to be explored thoroughly. Additionally, high-
level models are typically written to achieve fast simulation
speed, and not all of the parts are efficient or even feasible
for high-level synthesis. To this end, an automated SystemC
3-stage modeling and synthesis framework [7] generates a
high-level SystemC model annotated with power and latency
estimations for accurate high-level performance and power
modeling and another synthesizable SystemC model to enable
HLS solutions. The framework also generates an analytical
model providing power and latency information for all points
in the design space and finally performs a fast design space
exploration to generate pareto curves to guide effective low-
power design. Custom SoCs with an embedded CPU create
additional complexity with HW/SW codesign and partitioning
and significantly increases the possible design space.

HW/SW Partitioning: Automation of HW/SW codesign is
a pressing need for an efficient IoT design process. Although
existing frameworks help to automate some of the profiling,
design space exploration, and hardware characterization pro-
cesses, IoT devices present additional challenges. First, IoT
devices have extreme low power requirements; most devices
will require and use clock-gating, power-gating, and DVFS
as low-level mechanisms. Next, IoT devices have reliability,
privacy and security requirements. These requirements may
not be explicitly part of the high-level language specification;
such specifications may be qualitative in nature or highly
dependent on computation platform, thus requiring substantial
effort to translate between software and hardware. These chal-
lenges significantly complicate the modeling and estimation
of performance, power and area on both CPU and custom

platforms, which can affect HW/SW codesign decisions. Thus,
it will be important to develop fast and accurate estimation
models that can incorporate both quantitative goals for area,
performance, and power with reliability, privacy and security
constraints.

2) Circuit Implementation: Design automation for SoC
implementation phase is possible by using HLS techniques that
enable automated translation of high-level language descrip-
tions such as C/C++, SystemC and CUDA to RTL [12]–[14]
and/or by automated integration of several IP blocks including
register transfer level (RTL) blocks.

a) High-Level Synthesis: The automatic translation to
RTL through HLS substantially reduces design effort and
expand design space exploration [7], [15], allowing fast and
easy design of custom compute units. IoT devices commonly
require small but efficient computation units to implement
processing and analysis of data inputs from sensors. HLS is
important not only to design such custom compute quickly,
but also to allow designers to iteratively optimize algorithms
and implementations quickly.

HLS has previously explored low-power design for control-
flow intensive and data-dominated circuits, and activity re-
duction [16]. However, HLS for ultra-low power IoT designs
requires automated application of clock-gating, power gating
and DVFS technologies. These optimizations must also be
balanced with performance and area in order to meet overall
design constraints.

Privacy and security are critical for IoT devices to ensure
that sensitive data is kept private and that IoT devices are
secure from malicious remote control of such devices. HLS
offers the ability to automatically integrate encryption IPs that
secure input and output data streams, analyze input and output
interfaces to ensure that every interface is secured, and allow
the user to use software-tools to analyse the security of the
system.

b) IP and System-level Integration: Custom hardware for
IoT devices must be integrated into a system with sensors,
actuators, CPU cores, and communications IPs. Through the
use of standardized interfaces and protocols, custom hardware
core integration can be fully automated so that a system-
level design is produced through automated connection of
IPs and custom components, substantially reducing manual
effort to produce system level designs, control state machines,
communication protocols, and testing infrastructure.

Furthermore, within the HLS produced core, a user may
wish to use pre-defined, well optimized RTL IPs for important
sub-functions. The use of these IPs accelerates the design
process and ensures that the designer can meet system-level
design goals in power, performance, area, privacy, and secu-
rity; however, IP integration can be complex, time-consuming
and error-prone as a manual process. Thus, HLS requires
automation to effectively integrate IPs both within HLS-
generated cores as well as through standardized interfaces at
the system level. Prior HLS tools typically limit IP integration
to a small set of provider defined IP cores; the user cannot
specify custom IPs (either HLS-generated or RTL) to be

integrated during HLS. Although HLS-produced cores often
have standardized top-level interfaces, system-level integration
is also left as a manual process. As a result, HLS-produced
cores must be instantiated and connected with other system
components manually, and designers must design appropriate
control and glue logic to create the system level implementa-
tion.

Design automation should automate the process of instan-
tiating, connecting and creating control and glue logic so that
system level designs are quickly produced. Eliminating manual
system integration can substantially improve design productiv-
ity and enable rapid system-level design space exploration.

As a solution to address the need of integration method
in IoT design tools, IP integration within the HLS-generated
core is proposed in [8], which, by directly specifying the IPs
for implementing functions/instructions in high-level language
specifications, effectively automates the processes involved in
IP integration. IP integration within HLS-produced cores can
substantially improve the design process. Instead of partition-
ing code so that IPs can be integrated at the system level, the
HLS core directly integrates the IPs internally.

Furthermore, because system-level interfaces are commonly
standardized, the HLS tool can assist in instantiating, con-
necting system level IPs and creating appropriate control
state machines and glue logic between the system-level cores.
Automation of IP integration within HLS cores and at the
system level substantially improves the design process, and is
a critical need for effective design of IoT devices.

3) Verification and debug: Although the initial design
process is critical in the design flow, debug and verification
time can be even more critical to time-to-market. The fraction
of verification time as a percentage of the design flow has
surpassed design time [17]. Verification effort is often a sig-
nificant, labor intensive process. When a design is functionally
incorrect, the engineer must manually identify the erroneous
signal and trace backwards through simulations to find the
source of the functional bug. Although HLS helps accelerate
design time, the produced RTL code is not intended to be
human readable or manually edited further exacerbating a
manual verification process.

For these reasons it is critical to automate portions of the
verification process in order to assist engineers in more quickly
identifying functional errors. Automated instrumentation of
HLS produced RTL is an active area of research, and helps
users to gather trace data from executions on prototyping
platforms. Although this assistance helps, these approaches
still leave the problem of selecting which signals to trace to
the user. Thus, although automated to help gather data, the
more challenging tasks of selecting signals and identifying
which signals are the source of functional error remains.

We develop a method [18] that automatically instruments
applications, generates traces for every relevant operation type
and inserts appropriate verification code into the output RTL
such that simulations will automatically identify functional
errors, pinpointed to the erroneous instruction, timestamp, and
exact difference in expected value. This automation signif-

icantly aids engineers in quickly identifying the simulation
source of functional error, which can be used to identify bugs
in input source code more rapidly.

Furthermore, aside from functional debug, assistance in
performance debugging is also critical. As an example, if a
design is not meeting the throughput target (say II is not 1, or
a FIFO is frequently full), it is usually challenging to pinpoint
the underlying reasons in the source code. It is important for
the HLS tool to localize the function, set of statements or
coding styles that hinders meeting the performance constraints
and in addition, assist the user with guidelines for restructuring
the source code.

VII. CONCLUSIONS

In this article, we have highlighted the trends, demands and
critical steps of the IoT design flow that requires CAD support
for design of IoT devices. We described the development
process of IoT devices in general, and then we examined
current critical design automation needs for COTS-based,
SiP-based, and SoC-based devices. We also discussed both
current missing needs for design automation as well as our
ongoing work targeting these needs. Overall, CAD promises
to reduce design time, cost and risk to serve as the bridge that
makes design and implementation of custom platforms for IoT
devices effective and timely.

REFERENCES

[1] “Intel Edison,” http://www.intel.com/content/www/us/en/do-it-
yourself/edison.html.

[2] “Intel Galileo,” http://www.intel.com/content/www/us/en/embedded
/products/galileo/galileo-overview.html.

[3] “Microsoft .NET Gadgeteer,” www.netmf.com/gadgeteer/.
[4] “Texas Instruments Internet of Things Featured Products,”

http://www.ti.com/ww/en/internet of things/iot-products.html.
[5] “Qualcomm Internet of Things Development Platform,”

https://developer.qualcomm.com/hardware/iot-cellular-dev.
[6] R. Krishnamurthy, “High-performance Energy-efficient Reconfigurable

Accelerators/Co-processors for Tera-scale Multi-core Microprocessors,”
in ARC, 2010, pp. 1–1.

[7] W. Zuo, W. Kemmerer, J. Bin Lim, L. Pouchet, A. Ayupov, T. Kim,
K. Han, and D. Chen, “A Polyhedral-based SystemC Modeling and Gen-
eration Framework for Effective Low-power Design Space Exploration,”
in ICCAD, 2015.

[8] L. Yang, S. Gurumani, D. Chen, and K. Rupnow, “Behavioral-Level IP
Integration in High-Level Synthesis,” in FPT, 2015.

[9] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, “Qed: Quick error detection
tests for effective post-silicon validation,” in Test Conference (ITC), 2010
IEEE International. IEEE, 2010, pp. 1–10.

[10] K. A. Campbell, D. Lin, S. Mitra, and D. Chen, “Hybrid quick error
detection (h-qed): Accelerator validation and debug using high-level
synthesis principles,” in Design Automation Conference (DAC), 2015
52nd ACM/EDAC/IEEE. IEEE, 2015, pp. 1–6.

[11] L. Yang, Y. Chen, W. Zuo, T. Nguyen, S. Gurumani, K. Rupnow, and
D. Chen, “System-Level Design Solutions: Enabling the IoT Explosion,”
in ASICON. IEEE, 2015, pp. 1–6.

[12] H. Zheng, S. Gurumani, L. Yang, D. Chen, and K. Rupnow, “High-level
synthesis with behavioral level multi-cycle path analysis,” in FPL, 2013.

[13] ——, “High-level synthesis with behavioral-level multicycle path anal-
ysis,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 33, no. 12, pp. 1832–1845, Dec 2014.

[14] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, W.-
M. W. Hwu et al., “FCUDA: Enabling efficient compilation of CUDA
kernels onto FPGAs,” in SASP, 2009, pp. 35–42.

[15] K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen, “High level
synthesis of stereo matching: Productivity, performance, and software
constraints,” in FPT, 2011, pp. 1–8.

[16] Z. Zhang, D. Chen, S. Dai, and K. Campbell, “High-Level Synthesis
for Low-Power Design,” IPSJ Transactions on System LSI Design
Methodology, vol. 8, pp. 12–25, 2015.

[17] H. D. Foster, “Trends in functional verification: a 2014 industry study,”
in DAC, 2015.

[18] L. Yang, M. Ikram, S. Gurumani, D. Chen, S. Fahmy, and K. Rupnow,
“JIT Trace-based Verification for High-Level Synthesis,” in FPT, 2015.

