
Instruction Set Extension with Shadow Registers for
Configurable Processors

Jason Cong, Yiping Fan, Guoling Han, Ashok Jagannathan, Glenn Reinman, Zhiru Zhang
Computer Science Department, University of California, Los Angeles

Los Angeles, CA 90095, USA
{cong, fanyp, leohgl, ashokj, reinman, zhiruz}@cs.ucla.edu

ABSTRACT
Configurable processors, which allow customization and
extension of the base instruction set architecture for a specific
application or a domain of applications, are becoming
increasingly popular for modern embedded systems (especially
for the field-programmable system-on-a-chip). While steady
progress has been made in the tools and methodologies of
automatic instruction set extension for configurable processors,
the limited data bandwidth available in the core processor (e.g.,
the number of simultaneous accesses to the register file) becomes
a potential performance bottleneck.
In this paper we first present a quantitative analysis of the data
bandwidth limitation in configurable processors, and then propose
a novel low-cost architectural extension and associated
compilation techniques to address the problem. Specifically,
shadow registers are introduced to selectively copy the execution
results in the write-back stage, which can efficiently reduce the
communication overhead due to the data transfers between the
core processor and the custom logic. To take full advantage of the
extension, an effective shadow-register binding algorithm is
presented to minimize the communication overhead. The
application of our approach results in a promising performance
improvement.

1. INTRODUCTION
Designing a modern embedded system in nanometer technologies
is more difficult than ever. Due to the complexity and electrical
design challenges posed by each new technology generation, the
design productivity gap continues growing despite increasingly
expensive CAD tools. This urges a move toward the use of
programmable and configurable solutions to achieve a fast turn-
around time and to accommodate various applications.
Reconfigurable platforms, combined reconfigurable fabric with a
general-purpose processor, are a promising approach to
combining the flexibility offered by a general-purpose processor
and the speedup (and power savings) offered by an application-

specific hardware accelerator. Generally, there are two ways to
couple the reconfigurable fabric with the microprocessor [5].
Loosely coupled, a reconfigurable fabric can be used as a co-
processor [21][11]. Co-processors perform more complicated
tasks independently without the constant supervision of the main
processor. The main processor sends the necessary data to the co-
processor at the initialization stage. With the internal state
registers, the co-processor does not need to transfer data during
the computation period. On the contrary, application-specific
instruction-set processors (ASIPs) tightly integrate the
reconfigurable fabric as additional application-specific function
units, thus extending the basic instruction set with the custom
instructions. These augmented function units are used to exploit
the instruction level parallelism within the specific applications,
and the execution is still on the main processor’s datapath. These
hardware resources can be either runtime reconfigurable
functional units [22] or pre-synthesized circuits [24]. Normally,
they need direct access to or data transfer from the central register
file in the main processor. The recent emergence of many
commercially available embedded processors with both
configurability and extensibility (e.g., Altera Nios/NiosII [23],
Tensilica Xtensa V/LX [24], Xilinx MicroBlaze [25], etc.)
testifies to the benefit of this approach. As an example, Figure 1
(taken from Altera’s website [23]) shows the instruction logic of
Altera NiosII [23]. This processor contains a RISC core as the
base architecture, and the custom logic can extend the
functionality of the ALU by implementing the custom instructions
for complex processing tasks as either single-cycle (combinatorial)
or multi-cycle (sequential) operations. In this paper we will focus
on data bandwidth problem for ASIPs.

Figure 1. Custom instruction logic of NiosII.

The research community has also spent a considerable amount of
effort in the ASIP area for almost a decade. A broad overview of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FPGA’05, February 20–22, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-029-9/05/0002...$5.00.

the ASIP design, its advantages, applications, and fundamental
challenges can be found in [14]. A high-performance ASIP
architecture is described in [22]. It integrates a fast reconfigurable
functional unit into the pipeline of a superscalar processor to
implement the application-specific operations. The ASIP
architecture and compiler co-exploration problem is addressed in
[8].
A crucial step to achieving high performance in an ASIP design is
to select an optimal custom instruction set. However, for large
programs, this is a difficult task to be managed by manual designs,
and is further complicated by various micro-architectural
constraints, such as the clock period, available chip area, etc.
These constraints have motivated a large body of recent research
to address the automatic instruction set extension problem.
A template generation, matching, and covering algorithm is
proposed in [13] to automatically identify the custom instructions.
The candidate templates are first generated by a clustering
algorithm based on occurrence frequency. Then the directed
acyclic graph covering is formulated as the maximum
independent set problem to maximize the number of covered
nodes using a minimum number of templates. Unfortunately, this
work does not consider the architecture constraints during the
template generation.
An approach presented in [19] generates and selects the candidate
custom instructions from operation patterns in the data flow graph.
The method was later extended in [20] to handle the complex
control flows in the embedded software programs. A
comprehensive priority function is computed to rank and prune
the candidate instructions.
In [2] the candidate extended instruction is defined to be a convex
directed acyclic subgraph subject to certain input and output
constraints. A branch and bound algorithm is used to decide
whether or not to include a node of the control data flow graph
(CDFG) when creating the candidate. The time complexity of this
approach grows exponentially as the problem size increases.
The extended instruction set synthesis technique proposed by [6]
solves three sub-problems under the micro-architectural
constraints: pattern generation which enumerates all the candidate
instructions, pattern selection which selects a subset of the
candidates to form the extended instruction set, and application
mapping which maps the CDFG onto the extended instruction set.
Particularly, the application mapping problem is transformed into
the minimum-area cell-library-based technology mapping
problem in the logic synthesis domain, which can be solved
exactly through binate covering. Applications of this approach to
several small data-intensive DSP applications on the soft core
processor Nios show 2.75X speedup on average with little
resource overhead (2.54%).
It is important to mention that although the existing techniques
are efficient in identifying the most promising clusters of
operations to be implemented by the custom instructions, most of
the performance speedup (about 60%) comes from the cluster
with more than two input operands (according to the study in
[12]). This exceeds the number of read ports available on the
register file of a typical embedded RISC processor core. Strictly
following the two-input single-output constraint generally leads to
small clusters with limited speedup.

Generation of larger clusters with extra inputs is allowed in
[19][20] by using the custom-defined state registers to store the
additional operands. Unfortunately, at least one extra cycle is
needed for each additional input to be loaded into a custom-
defined state register. The communication overhead due to these
data transfers between the core processor and the custom logic
can significantly offset the gain from forming a large cluster.
Our contributions in this paper are threefold. First, we present a
quantitative analysis of data bandwidth limitation. Second, we
propose using the shadow register as a novel low-cost
architectural extension to mitigate the bandwidth limitation in the
configurable processor. Third, we formulate a new shadow
register binding problem and present an efficient algorithm to
solve the problem.
The remainder of the paper is structured as follows. We first
present the quantitative study on the data bandwidth problem in
Section 2. Our proposed architectural extension and associated
compilation techniques are described in Sections 3 and 4,
followed by conclusions in Section 5.

2. ANALYSIS OF BANDWIDTH
LIMITATION
2.1 Motivation
The architectural model targeted in this paper is a classical single-
issue pipelined RISC core processor with a two-read-port and
one-write-port register file (This is similar to the Altera
Nios/NiosII micro-processor). Under this processor model, a
custom instruction follows the same instruction format and
execution rules, which include: (1) The number of the operands
and results of a custom instruction is pre-determined by the
extensible architecture; (2) The custom instruction cannot execute
until the input operands are all ready; (3) The custom instruction
can read the core register file only during the decode/execute
stage, and can commit the result only during the write-back stage.
This extensible architecture simplifies the implementation since
the base instruction set architecture can remain unchanged.

Processor Core

Core
register

file

Ex
ec

ut
io

n
un

its

D
at

a
bu

s
co

nt
ro

lle
r

C
us

to
m

lo

gi
c Local

memory

Figure 2. A typical extensible processor.

Figure 2 shows the block diagram of a typical configurable
processor, where a two-operand instruction format is used. During
the execution, the custom logic reads two operands from the core
register file and writes the result back directly. This extensible
architecture simplifies the implementation since the base
instruction set architecture (ISA) can remain unchanged.
However, such a scheme would restrict the custom instruction to
having only two input operands, thus limiting the complexity of
the computations. Generally, when the input number constraint of
the custom instruction is relaxed, more performance speedup can

be obtained by clustering more operations in one custom
instruction to exploit more parallelism. According to the study in
[12], most of the performance speedup (about 60%) comes from
the cluster with more than two input operands. Unfortunately, if a
custom instruction needs extra operands, the processor core has to
explicitly transfer the data from the register file to the local
storage of the custom logic through the data bus. Only after that is
the custom instruction allowed to execute. The communication
through a data bus may take multiple CPU cycles, and
significantly offset the performance gain by using the custom
instruction. Therefore, the limited port number in the register file
is a performance bottleneck of the extensible processors.

2.2 Evaluation Framework
In order to better understand the performance bottleneck in ASIP
design, we developed an ASIP performance evaluation
framework as shown in Figure 3. SimpleScalar [3], which is a
cycle-accurate simulation tool set, is used to estimate the
performance of the processor and the impact of communication
cost. To have a quick evaluation of data bandwidth limitation, our
ASIP compilation is applied on the compiled binary code of the
benchmarks.

CDFG generator

SimpleScalar

1. Pattern generation
2. Pattern selection

3. Application mapping &
Code replacement

Pattern
library

Binary code µArch
constraint

CDFG

Optimized code

Performance
Figure 3. Our compilation and simulation flow.

Based on the execution trace generated by SimpleScalar, CDFG
generator produces the control data flow graph. Under the given
micro-architectural constraints, the ASIP compilation problem is
solved in three steps based on [6]. The first step, called pattern
generation, enumerates all candidate patterns from a given control
data flow graph through the cut enumeration technique. Pattern
selection is then performed in the second step. A cost function
that considers the occurrence, speedup, and area is calculated to
guide the selection. The selection problem is formulated as a 0-1
knapsack problem which is pseudo-polynomial time solvable via
dynamic programming. In the third step, called application
mapping, we map the data flow graph into the selected patterns to
minimize the total latency. The application mapping problem is
shown to be equivalent to the minimum area cell-library-based
technology mapping problem in the logic synthesis domain,
which can be solved exactly through binate covering. The
algorithmic details of the aforementioned three steps can be found
in [6]. With the optimized code as input, SimpleScalar simulates
the program execution on the configurable processor and provides
the performance estimation.

2.3 Analysis Results
In this study, we modeled a single issue, in-order RISC
configurable processor which is similar to Altera Nios/NiosII [23].

Table 1 shows the detailed machine configuration. The instruction
set allows two-input operands and one-output operand. The C
examples used in the experiments are from Mediabench [15] and
Mibench [10].

data cache L1 8KB, 4-way, 1-cycle latency
instruction cache L1 8KB, direct mapped, 1-cycle latency

unified L2 cache 256KB, 4-way, 8-cycle latency
register file 2 read ports, 1 write port

ALU 1-cycle latency
MULT 3-cycle latency

reconfigurable units latency of the critical path of the
collapsed instructions

Table 1. Detailed processor configuration.
As previously mentioned our ASIP compilation tool generates
extended instructions and maps the program with the extended
instruction set. All the extended instructions are generated within
the basic block boundary. Memory operations are not allowed in
any extended instruction. We assume that the latency of the
extended instructions equals the latency of the critical path in the
collapsed computation cone.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

adpcmc adpcmd cjpeg djpeg epic mesaosdemo blowfishd blowfishe

Sp
ee

du
p

2-input
3-input
4-input

Figure 4. Ideal speedup under different input constraints.

Figure 4 shows the ideal speedup for the each benchmark under
different input size constraints. The speedup is measured by
comparing the number of simulated execution cycles of the
program on the extended instruction set with the number of cycles
of the original code on the basic instruction set. We assume that
there is no limit on the number of read ports in the register file so
that no move operations are needed.
The results shown in Figure 4 indicates that we can achieve 10%
speedup on average with the 2-input constraint. Under 3-input and
4-input constraints, 15% and 18% speedup can be achieved,
respectively. It also shows that for these examples, the designs
under 3-input and 4-input constraints can achieve 50% and 80%
more speedup over 2-input ones respectively.
However, the processor can only provide two simultaneous
accesses from the register file. Move operations have to be
inserted before the execution of 3-input or 4-input extended
instructions. In our experiment, we assume that the move
operation needs only one clock cycle. Figure 5 shows the speedup
drop due to the move instructions, which is defined as

_ ideal reg

ideal

Speedup Speedup
Speedup drop

Speedup
−

=

where Speedupideal denotes the ideal speedup without
consideration of move operations overhead, and Speedupreg

represents the real speedup if the communication cost is included.
It is clear that the communication overhead will seriously offset
the speedup achieved from the extended instructions. On average,
this speedup will drop 41% and 32% under the 3-input and 4-
input constraints respectively. Therefore, data bandwidth
seriously degrades the performance improvement for configurable
processors.

0

0.1

0.2

0.3

0.4

0.5

0.6

adpcmc adpcmd cjpeg djpeg epic mesaosdemo blowfishd blowfishe

Sp
ee

du
p

dr
op

3-input
4-input

Figure 5. Speedup drop with different input constraints.

3. ARCHITECTURE EXTENSION
3.1 Existing Solutions
Several architectural approaches can be adopted to tackle the
speedup degradation caused by the port number limitation. Wider
data bandwidth can be achieved by reducing the communication
latency or allowing more operands for an instruction. We shall
discuss three architectural approaches below.

3.1.1 Dedicated Data Link
Processor Core

Core
register

file

Ex
ec

ut
io

n
un

its

D
at

a
B

us

co
nt

ro
lle

r

Dedicated
link

C
us

to
m

lo

gi
c Local

memory

Figure 6. Use dedicated link to reduce communication cost.

Compared to a data bus with potential resource contentions, a
dedicated data link can reduce the latency of the communication
between processor core and custom logic. Figure 6 shows that a
dedicated link can be introduced to the configurable processor to
facilitate the communication between the core register file and the
custom logic.
The dedicated link approach is employed in Microblaze [25], an
embedded processor from Xilinx. A special interface called
LocalLink is provided to allow fast and direct access between the
Microblaze processor and the custom logic. Although Microblaze
does not allow the custom logic to access the processor’s register
file directly, a data transfer can be performed through LocalLink
within only two cycles, which is very fast compared to a system
bus. The custom logic which implements critical function kernels
can exchange arbitrary volume of data with the processor very
efficiently through LocalLink.

However, extra instructions should be introduced to control the
dedicated link. For example, in Microblaze instructions PUT and
GET are used for this purpose. Since extra CPU cycles are
required to accomplish the communication, the latency overhead
will be very large if the speedup from hardware acceleration is
relatively small.

3.1.2 Multiport Register File
A straightforward method to increase data bandwidth for an
instruction is to increase its allowed operand number, but this
requires the use of a multiport register file to introduce extra read
ports used exclusively by the custom instructions. This allows the
custom instruction to increase simultaneous accesses to the core
register file. No communication latency will be introduced if the
operand number is no more than the number of the register read
ports.
However, since the base instruction set is untouched, the extra
read ports will be wasted when executing the basic instructions.
In addition, adding ports to the register file will have a dramatic
impact on the energy and die area of the processor. As pointed out
in [18], the area and power consumption of a register file grows
cubically with its port number.
Moreover, since the register file is controlled solely by the core
processor. In order to access an additional read port of the register
file, a custom instruction needs one extra address encoded in its
instruction word. This may not be feasible because of the limited
instruction word length.

3.1.3 Register File Replication
Register file replication is another technique to increase the data
bandwidth. By creating a complete physical copy (or partial copy)
of the core register file, the custom instructions can fetch the
encoded operands from the original register file and the extra
operands from the replicated register file. Chimaera [22] is
capable of performing computations that use up to nine input
registers by using this approach.
Since the basic instructions cannot utilize the replicated register
file, this technique also introduces considerable resource waste in
terms of area and power. In addition, this approach enforces a
one-to-one correspondence between the registers in core register
file and those in replicated register file, and the computation
results are always copied to the same corresponding replicated
registers. As a result, it leaves very limited opportunities for
compiler optimization to further improve the performance.

3.2 Our Approach  Shadow Registers
Processor core

Core
register

file

Ex
ec

ut
io

n
un

its

D
at

a
B

us

co
nt

ro
lle

r

Shadow
registers

C
us

to
m

lo

gi
c Local

memory

Figure 7. Introducing shadow registers.

To overcome the aforementioned limitations and difficulties, we
introduce shadow registers to enhance the configurable processor

architecture. Figure 7 shows the block diagram of this architecture,
in which the core register file are augmented by an extra set of
shadow registers that are conditionally written by the processor in
the write-back stage and used only by the custom logic.

3.2.1 Controlling the Shadow Registers
An instruction, whether basic or extended, can either skip or
forward the result into one of the shadow registers in the write-
back stage. The forward/skip option and the address of the target
shadow register need to be encoded as additional control bits in
the instruction format. Table 2 shows a possible encoding scheme
for the extension with three shadow registers, in which two bits
are sufficient.

Table 2. An instruction encoding with 3 shadow registers.
Operation Forward the result to

the target shadow register
Skip

Instruction subword 00 01 10 11
Target shadow register ID 0 1 2 -

In the write-back stage, the control of the processor core provides
the write-enable and address signals to the shadow registers.
While in decode/execution stages, the shadow registers are
controlled by the custom logic with read-only privilege. It is
obvious that the communication between the processor core and
the custom logic is free of communication overhead if the data
can be forwarded to the shadow registers.

3.2.2 Advantages and Limitations
Since the shadow registers will be mainly used for storing
variables with short lifetimes within the basic blocks, the required
number of shadow registers is usually much smaller than that of
the core register file. Therefore, the implementation tends to be
very cost-efficient when compared to the approaches of using
extra register ports and register file replication. Except for the
shadow registers and the forward path, the other datapath
structures can remain the same and only a few control signals
need to be added.
For the ISA, since the number of the shadow registers is relatively
small (no more than three in general), very few bits (no more than
two) need to be encoded. We believe that these control bits can be
added without increasing the length of the instruction word as the
unused opcodes are usually available (especially in 32-bit
instruction format). For example, there exist five reserved bits in
NiosII R-type instructions [23], which can be potentially used for
the advanced features.
Moreover, we require that a shadow register remain at its proper
value during the time a custom instruction reads that register and
the time it completes. This should be handled by the compiler so
that an active shadow register would not be overwritten by
another instruction.
In our ASIP design flow, the compiler will maximize the shadow
registers usage by carefully scheduling and register binding. We
will investigate an interesting shadow register binding problem in
Section 4. The custom logic implementation should then follow
the register binding results and obtain desired operands from the
correct register addresses.

4. BINDING FOR SHADOW REGISTERS
4.1 Preliminaries
Compiler optimization algorithms are usually performed on the
control data flow graph (CDFG) derived from the program. On
the top level of a CDFG, the control flow graph consists of a set
of basic block nodes and control edges. Each basic block is a data
flow graph (DFG), in which nodes represent basic computations
(instruction instances) and edges represent data dependencies. A
DFG is essentially a directed acyclic graph (DAG), and we use
G(I, E) to denote it hereafter. Each node (instruction instance) i in
G(I, E) is associated with a number indicating its execution
latency, denoted as Latency(i). For a data edge e(p, q), which has
predecessor node p and successor node q, p and q are called e’s
producer and consumer, respectively. In this paper, we will only
focus on the shadow register binding problem for data flow
graphs, i.e., within the basic block boundary.
For the sake of simplicity, we assume each instruction instance
produces only one result in this work, and we assume that static
single assignment (SSA) [7] has been performed so that each
assignment for a variable has a unique name. Therefore, in a DFG,
one node (instruction instance) corresponds to one variable and
vice versa. Hereafter, we will not distinguish a node and the
variable it produces. A data edge in a DFG actually represents a
use of a variable, and a variable may have multiple uses (or data
edges) by different consumer nodes. For example, in the DFG of
Figure 8, node i1 produces a variable (also denoted as i1)
consumed by node i2 and i4, resulting in two data edges e1 and e2,
accordingly.
In a scheduled DFG, an instruction i is associated with a
scheduled time slot T(i) indicating its execution order, and the
lifetime of a data edge e(p, q) is denoted as an interval [D(e), U(e)]
= [T(p)+Latency(p), T(q)]. The lifetime of a variable i is defined
as the maximum of the lifetimes of the data edges produced by i.
For example, in the DFG of Figure 8, suppose Latency(i1) = 1, the
lifetime of the variable i1 is interval [2, 4], while the lifetimes of
the two uses (e1 and e2) are [2, 2] and [2, 4] respectively.

4.2 Motivation
Based on the CDFG, our ASIP compiler generates extended
instructions and maps the application to the extended instruction
set so that every node in the mapped CDFG corresponds to an
instruction in the extended instruction set (i.e., basic instructions
plus extended instructions).

(b)

i1 = …;

i2 = ext1 (…, i1, …);

i3 = …;

i4 = ext2 (…, i1, …);

i5 = ext3 (…, i3, …);

i6 = ext4 (…, i3, …);

(a)

e3e4

e2

e1

i1

i2

i3

i4

i5

i6

Figure 8. An instruction sequence and its data flow graph.

We assume that the instruction scheduling is done prior to the
shadow register binding. If a variable is allocated into the shadow
register, all its consumers within an extended instruction can
retrieve the value from the shadow register. We classify the data

edges into groups so that the edges in each group come from the
same producer.
As mentioned earlier, if the instruction set allows N input
operands and one output operand, for the extended instructions
with more than N inputs, extra data transfer (or move, for short)
operations are needed to copy operands from the register file to
the local storage in the custom logic. In our proposed architecture,
if an operand is already in the shadow register, one move
operation can be saved.
Register binding has been extensively studied in both compiler [1]
and high-level synthesis [17] domains. Given a set of selected
input edges of the extended instructions which have more than N
inputs, we construct a compatibility graph for these variables,
where each vertex corresponds to a variable, and there is a
directed edge (vi, vj) between two vertices if and only if their
corresponding lifetimes do not overlap and D(vi)<D(vj). The
variables can be assigned to the shadow register if and only if
they are compatible with each other. This formulation can then be
reduced to the clique partitioning problem.
However, we observe that it is possible to achieve better solutions
by allowing the variables to be replaced in the middle of their
lifetimes. For the example in Figure 8, suppose the register file
has only two read ports, and all the extended instructions have
three input operands. Four move operations will be required
without the shadow register. If we keep the variables in the
shadow register for their whole lifetimes, only two moves can be
saved through the shadow register. Interestingly, one more move
can be saved if instruction i3 commits to the shadow register in
cycle 3 and overwrites the result of i1. Therefore, we have the
following observations.

OBSERVATION 1: It is not necessarily optimal to keep a variable
in the shadow register for its entire lifetime. This suggests that we
should focus on the binding problem for the uses of a variable
instead of the variable itself.

OBSERVATION 2: On the other hand, if a variable use is bound to
one particular shadow register, it automatically implies that all the
previous uses of this variable are also bound into the same
shadow register.

I1. a = …;
I2. b = …;
I3. c = …;
I4. d = …;
I5. e = …;
I6. … = ext1 (a, b, c);
I7. … = ext2 (d, e, a);

Figure 9. Example code sequence for input operand selection.
Another important problem is to determine which input operands
should be bound to the shadow registers. Let S be the set of
extended instructions with more than N inputs, and Mi denotes the
number of inputs for extended instruction i. In order not to waste
the bandwidth provided by the core register file, we have another
observation as follows.

OBSERVATION 3: For an instruction with M inputs (M>N), at most
M-N operands (or variable uses) can be bound to the shadow
registers.

Therefore, for each extended instruction in this set, there are
NM

M
i
i

C − shadow register candidates. To consider all the extended

instructions, the number of the combination grows exponentially.
Binding different candidates to the shadow register will lead to
different savings. For the example in Figure 9, if only one shadow
register is available, two saves can be made if input a is selected
for both of the extended instructions. If we select other input
operands, only one move can be saved. The optimal solution can
be obtained if we search all the combinations. This is
unaffordable due to the extremely large search space. In the
following subsections, we shall present an efficient algorithm to
solve the shadow register binding problem.

4.3 Binding for One Shadow Register
The binding problem for one shadow register can be formulated
as follows:

PROBLEM: Binding for one shadow register.
Given a scheduled DFG graph G(I, E) and a shadow register, bind
the variables to the register so that the maximum number of move
operations can be saved.
To accurately calculate the move reduction, a weighted
compatibility graph can be built in the following way. Different
from the conventional compatibility graph, each vertex
corresponds to a data edges in the original DFG. There is an edge
from vei to vej if and only if the lifetimes of the corresponding data
edges do not overlap and D(ei)<D(ej). Each node vei is assigned a
weight which denotes the number of move saves if the variable
value is kept in the shadow register until the use time U(ei) . As
explained above, if a value is in the shadow register, all the
consumers can retrieve the value from it. If we sort the data edges
in a group in an ascending order of their use times, the weight
equals the index of that edge. For the example in Figure 8, the
weight of e1 and e2 is one and two respectively. We define the
Cover-Set(ei) of a data edge ei as the set of edges from the same
group of ei, and their use times are earlier than U(ei).

FACT 1: The input edges of an extended instruction are not
compatible with each other.
This is straight-forward because their lifetimes overlap at the end
time. Similarly, it is also easy to get the following fact.

FACT 2: The output edges from a node in the DFG are not
compatible with each other.
A partially ordered set (POSET) P is a collection of elements with
a binary relation ← defined on P×P which satisfies reflexive,
anti-symmetric, transitive properties [16]. We say that x and y are
related if we have either x←y or y←x. A chain in P is a subset of
elements such that any two of them are related. Given a
compatibility graph Gc = (Vc, Ac), let POSET Pc = {v1, v2, …, vn}
such that Pc contains all the vertices of Gc, and the compatibility
relation defined in Ac can be the relation ← on the elements of Pc.
It is easy to show that the compatibility relation is reflexive, anti-
symmetric, and transitive. We copy weights of nodes in Gc to the
corresponding elements in Pc.

LEMMA: The one shadow register binding problem is equivalent
to find a maximum weighted chain in the POSET Pc.
The basic idea of the proof is as follows. The nodes on the chain
are compatible with each other, so their corresponding variables
can be allocated to the same shadow register. Fact 1 guarantees

that at most one input operand for each extended instruction is in
the shadow register, so we will not waste shadow registers for
input operands which could be retrieved from the core register file
without any additional cost. The weight on a node indicates the
total number of saves for storing the value in the shadow register
until the end time. Fact 2 implies that a variable could only be
bound to the shadow register at most once. So the maximum
weighted chain corresponds to a register binding with maximum
move saves.
Since the POSET can be constructed in O(|V’|2), the maximum
weight chain can be solved in O(|V’| + |E’|), we can directly
derive the following theorem.

THEOREM: One shadow register binding problem can be solved
optimally in time O(|V’|2).
Another nice property of our algorithm is that the input bound to
the shadow register is selected simultaneously in the binding
process.

4.4 Extension to K Shadow Registers
The algorithm can be easily extended to a heuristic that handles K
shadow registers by iteratively solving the one shadow register
binding problem. After one maximum weighted chain is found,
the elements in the chain are removed and the corresponding data
edges are marked. For a marked edge ei, the edges in the Cover-
Set(ei) should also be marked because their value is already in the
shadow registers. We then examine the extended instructions. If
the number of unmarked input edges is no more than N, no
additional move operations are needed for this instruction, and all
of their input edges should be removed from the compatibility
graph. After this iteration, we repeat the process until the graph
becomes empty or no shadow registers can be allocated.1

4.5 Experimental Results
We implemented our algorithms in a C++/Unix environment. A
new step called shadow register binding is performed after
application mapping in our compilation flow. The mapped
applications with shadow register binding are fed into
SimpleScalar to measure the performance improvement.
By introducing the shadow register, the number of move
operations will be effectively reduced. Figure 10 shows the
speedup with different numbers of shadow registers and different
input constraints. Approximately 89% of the performance gap can
be closed with three shadow registers for 3-input constraint.
Intuitively, the more shadow registers are provided, the more

1 Note that this extension does not guarantee the optimal K-

shadow-register binding by iteratively solving the sub-problems
for single shadow registers. Readers may bring up another
promising approach based on the k-cofamily [9] formulation,
which has been successfully applied to the register allocation
problem [4] under the context of behavioral synthesis. However,
our study shows that the k-cofamily-based algorithm is not
directly applicable since it cannot satisfy all the three
observations mentioned in Section 4.2, which altogether
constitute a necessary optimality condition for the shadow
register binding problem. Due to the lack of in-depth
complexity analysis, we currently resort to the iterative
heuristic algorithm which is very efficient in runtime with
reasonable solution quality.

speedup can be achieved. Since our current algorithm only
performs the shadow register binding within the basic block
boundary, the values that are produced outside the basic block
cannot be put into the shadow registers. This is the main reason
that some benchmarks cannot get further speedup even with
additional shadow registers. On average, our proposed shadow
register and register allocation algorithm close 72% of the
performance gap for the 3-input and 4-input constraints.

5. CONCLUSION AND FUTURE WORK
Data bandwidth problem is significantly limiting the performance
of application-specific instruction set processors. In this paper, we
provide a quantitative analysis of the data bandwidth problem and
propose to use the shadow register as a novel low-cost
architectural extension to mitigate this limitation. We also
formulate a new shadow register binding problem and present an
efficient algorithm to solve the problem. The application of our
approach results in a promising performance improvement.
In this experiment, we apply the compilation on the binary code.
Because memory operations are not allowed in the extended
instructions, some extended instruction generation opportunities
are lost due to the spilling and loading temporary values. The
original register allocation and instruction scheduling also limit
the application of our compilation and shadow register binding. In
the future work, we will develop the ASIP compilation tool on the
source code level. Global shadow register allocation algorithm
will also be investigated to further mitigate the bandwidth
limitation.

ACKNOWLEDGMENT
This research is partially funded by MARCO/DARPA Gigascale
Silicon Research Center (GSRC), National Science Foundation
under award CCR-0096383, and grants from Altera Corporation
and Xilinx, Inc. under the California MICRO program.

REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques and Tools, Addison-Wesley, 1986.
[2] K. Atasu, L. Pozzi, and P. Ienne, “Automatic Application-

Specific Instruction-Set Extensions under Microarchitectural
Constraints,” in Proc. 40th Design Automation Conference, pp.
256-261, Jun. 2003.

[3] D. Burger, T. Austin, and S. Bennett, “Evaluating Future
Microprocessors: The SimpleScalar Toolset,” Technical Report,
CS-TR96-1308, Univ. of Wisconsin - Madison, 1996.

[4] D. Chen and J. Cong, “Register Binding and Port Assignment
for Multiplexer Optimization,” in Proc. the Asia Pacific Design
Automation Conference, pp. 68-73, Jan. 2004.

[5] K. Compton, S. Hauck, “Reconfigurable Computing: A Survey
of Systems and Software,” ACM Computing Surveys (CSUR),
vol. 34(2), pp. 171-210, Jun. 2002.

[6] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-Specific
Instruction Generation for Configurable Processor
Architectures,” in Proc. ACM International Symposium on
Field-Programmable Gate Arrays, pp. 183-189, Feb. 2004.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadek, “An Efficient Method of Computing Static Single
Assignment,” in Proc. ACM Symposium on Principles of
Programming Languages, pp. 25-35, Jan. 1989.

[8] D. Fischer, J. Teich, M. Thies, and R. Weper, “Efficient
architecture/compiler co-exploration for ASIPs,” in Proc.

International Conference on Compilers, Architecture, and
Synthesis for Embedded System, pp. 27-34, Oct. 2002.

[9] C. Greene and D. Kleitman, “The Structure of Sperner K-
Family,” J. Combinatorial Theory, Ser. A, vol. 20, pp. 80-88,
1976.

[10] M. R. Guthaus et al., “MiBench: A Free, Commercially
Representative Embedded Benchmark Suite,” in IEEE 4th
Workshop on Workload Characterization, Dec. 2001.

[11] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with
a Reconfigurable Coprocessor,” in Proc. 5th Annual IEEE
Symposium on FPGAs for Custom Computing Machines, pp. 24-
33, Apr. 1997.

[12] P. Ienne, L. Pozzi, and M. Vuletic, “On the Limits of Processor
Specialisation by Mapping Dataflow Sections on Ad-hoc
Functional Units,” Technical Report 01/376, Swiss Federal
Institute of Technology Lausanne, Computer Science
Department, Dec. 2001.

[13] R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bozorgzaden,
“Instruction Generation for Hybrid Reconfigurable Systems,”
ACM Transactions on Design Automation of Electronic Systems,
vol. 7, pp. 605-627, Oct. 2002.

[14] K. Keutzer, S. Malik, and A. R. Newton, “From ASIC to ASIP:
The Next Design Discontinuity,” in Proc. International
Conference on Computer Design, pp. 84-90, Sept. 2002.

[15] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“Mediabench: A Tool for Evaluating Multimedia and
Communications Systems,” in Proc. 30th International
Symposium on Microarchitecture, pp. 330-335, Dec. 1997.

[16] C. L. Liu, Elements of Discrete Mathematics, McGraw-Hill,
1977.

[17] G. D. Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

[18] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi,
and J. D. Owens, “Register Organization for Media Processing,”
in Proc. Sixth International Symposium on High-Performance
Computer Architecture, pp. 375-386, Jan. 2000.

[19] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Synthesis of
Custom Processors based on Extensible Platforms,” in Proc.
International Conference on Computer-Aided Design, pp. 256-
261, Nov. 2002.

[20] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “A Scalable
Application-Specific Processor Synthesis Methodology,” in
Proc. International Conference on Computer-Aided Design, pp.
283-290, Nov. 2003.

[21] R. D. Wittig and P. Chow, “OneChip: An FPGA Processor with
Reconfigurable Logic,” in Proc. 4th Annual IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 126-135, March
1996.

[22] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee,
“CHIMAERA: A High-Performance Architecture with a
Tightly-Coupled Reconfigurable Functional Unit,” in Proc. 27th
Annual International Symposium on Computer Architecture, pp.
225-235, Jun. 2000.

[23] Altera Corp., http://www.altera.com.
[24] Tensilica Inc., http://www.tensilica.com.
[25] Xilinx Inc., http://www.xilinx.com.

3-ipnut

0.00

0.05

0.10

0.15

0.20

0.25

adpcmc adpcmd cjpeg djpeg epic mesaosdemo blowfishd blowfishe average

Sreg# 0
Sreg# 1
Sreg# 2
Sreg# 3
Ideal

4-input

0.00

0.05

0.10

0.15

0.20

0.25

0.30

adpcmc adpcmd cjpeg djpeg epic mesaosdemo blowfishd blowfishe average

Sreg# 0
Sreg# 1
Sreg# 2
Sreg# 3
Ideal

Figure 10. Speedup under different number of shadow registers.

