
A Scalable Approach to Exact Resource-Constrained Scheduling
Based on a Joint SDC and SAT Formulation

Steve Dai, Gai Liu, Zhiru Zhang
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{hd273,gl387,zhiruz}@cornell.edu

ABSTRACT
Despite increasing adoption of high-level synthesis (HLS) for its
design productivity advantage, success in achieving high quality-of-
results out-of-the-box is often hindered by the inexactness of the
common HLS optimizations. In particular, while scheduling forms
the algorithmic core to HLS technology, current scheduling algo-
rithms rely heavily on fundamentally inexact heuristics that make
ad hoc local decisions and cannot accurately and globally optimize
over a rich set of constraints. To tackle this challenge, we propose a
scheduling formulation based on system of integer difference con-
straints (SDC) and Boolean satisfiability (SAT) to exactly handle a
variety of scheduling constraints. We develop a specialized scheduler
based on conflict-driven learning and problem-specific knowledge
to optimally and efficiently solve the resource-constrained sched-
uling problem. By leveraging the efficiency of SDC algorithms and
scalability of modern SAT solvers, our scheduling technique is able
to achieve on average over 100x improvement in runtime over the
integer linear programming (ILP) approach while attaining optimal
latency. By integrating our scheduling formulation into a state-of-the-
art open-source HLS tool, we further demonstrate the applicability of
our scheduling technique with a suite of representative benchmarks
targeting FPGAs.

ACM Reference format:
Steve Dai, Gai Liu, Zhiru Zhang. 2018. A Scalable Approach to Exact Resource-
Constrained Scheduling Based on a Joint SDC and SAT Formulation. In Pro-
ceedings of 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, February 25–27, 2018 (FPGA ’18), 10 pages.
https://doi.org/10.1145/3174243.3174268

1 INTRODUCTION
The breakdown of Dennard scaling has led to the rapid growth of
specialized hardware accelerators to meet the ever more stringent
performance and energy requirements. However, great performance-
per-watt comes at the cost of enormous development effort. With the
traditional register-transfer-level (RTL) design flow, designers must
constantly wrestle with low-level hardware description languages
(HDLs) and manually explore a large multidimensional solution
space. With the RTL design methodology, it is difficult to re-target
multiple design points because the timing and micro-architecture
are essentially fixed by design.

As the process of RTL optimization becomes unequivocally dif-
ficult, if not already unsustainable, high-level synthesis (HLS) has
emerged as a promising alternative to the RTL design methodology

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’18, February 25–27, 2018, Monterey, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5614-5/18/02. . . $15.00
https://doi.org/10.1145/3174243.3174268

for tackling the design productivity gap [19]. HLS raises the abstrac-
tion of input from HDL to software programming language by pro-
viding the capability to automatically synthesize untimed high-level
software programs into cycle-accurate RTL implementations. Lower
design complexity and faster simulation speed enable shorter time-
to-market, which is especially relevant in today’s rapidly-evolving
technology landscape. Most recently, HLS has successfully acceler-
ated the design of complex and realistic applications [22, 30, 37] as
well as system-on-chip [1]. The productivity advantage has led to
growing adoption of commercial and open-source HLS tools, includ-
ing Vivado HLS [7]and LegUp [4].

Because HLS transforms an untimed, possibly sequential, descrip-
tion with no concept of clock into a timed parallel implementation
with registers, scheduling has been recognized as one of the most
important problems in HLS. Scheduling extracts parallelism from the
input high-level program and determines the clock cycle at which
different computation and communication operations should be ex-
ecuted. With exclusive control on timing at the front-end of the
hardware flow, scheduling is in a unique position to influence the
micro-architecture and quality of the generated hardware. Neverthe-
less, finding an optimal schedule is intractable in general, and thus
necessitates a tradeoff between optimality and efficiency.

For example, HLS traditionally solves the classic resource-
constrained scheduling problem, which minimizes latency given
a limited number of functional units of each type. It is an NP-hard
problemwhich can be optimized exactly with integer linear program-
ming (ILP). However, it is typically approximated using heuristics
for better scalability. One heuristic is list scheduling, a construc-
tive algorithm that sorts ready operations based on an established
priority and schedules them one clock cycle at a time considering
resource availability [27]. It is a fast local optimization algorithm for
minimizing latency under resource constraints, albeit sub-optimally.
State-of-the-art HLS tools typically employ the more versatile sched-
uling heuristic based on system of integer difference constraints
(SDC) [8]. SDC-based scheduling is rooted in a linear programming
formulation and can globally optimize over design constraints that
can be represented in the integer difference form (e.g., cycle time
constraints, latency constraints). Notably however, resource con-
straints must be heuristically transformed into integer difference
form to be considered. As a result, SDC-based scheduling is unable
to optimally handle resource constraints.

While scheduling heuristics are fast and scalable, they are funda-
mentally inexact with no guarantee on optimality. First, scheduling
heuristics are designed to consider only a restrictive set of constraints
and are unable to handle more complex scheduling problems. Second,
they lack the ability to perform global optimization and may miss
valuable optimization opportunities that can otherwise be discov-
ered by exact techniques. In some cases, these challenges introduce
a quality-of-results (QoR) gap whose severity remains unknown to
both the designer as well as the tool itself. This gap may be exacer-
bated as the quantity and variety of constraints increase for HLS to
accommodate emerging application domains.

To address these challenges, we propose a scheduling formulation
based on SDC coupled with Boolean satisfiability (SAT) to exactly

https://doi.org/10.1145/3174243.3174268
https://doi.org/10.1145/3174243.3174268

model a rich set of scheduling constraints. Inspired by satisfiabil-
ity modulo theory (SMT) [13], our proposed approach exploits the
efficiency of SDC while leveraging the scalability of modern SAT
solvers to quickly prune away infeasible schedule space and derive
optimal schedule. Our scheduling technique aims to push the limit
on what is practically scalable with exact scheduling as well as the
variety of constraints that can be efficiently encoded and solved. Our
specific contributions are as follows:
(1) We propose a novel resource-constrained scheduling formula-

tion, which combines SDC and SAT problems, to exactly and
efficiently encode both resource and timing constraints in HLS.

(2) We devise an exact yet fast resource-constrained scheduling al-
gorithm for HLS based on conflict-driven learning by leveraging
the efficiency of SDC and scalability of modern SAT solvers.

(3) We employ problem-specific knowledge to specialize our schedul-
ing algorithm to enable optimization and incremental scheduling
techniques that further improve scalability.

(4) We apply our specialized scheduler within the open-source HLS
tool LegUp to efficiently synthesize high-quality RTL for a range
of representative benchmarks targeting FPGAs.

The rest of this paper is organized as follows: Section 2 provides
background on scheduling and relevant theories, as well as motiva-
tion for our approach; Section 3 details our scheduling formulation;
Section 4 describes our specialized conflict-driven scheduler; Sec-
tion 5 presents experimental results; Section 6 provides related work
and additional discussions, followed by conclusions in Section 7.

2 PRELIMINARIES
A typical HLS flow employs a software compiler (e.g., LLVM, GCC)
to compile the input high-level program into a control data flow
graph (CDFG) on which scheduling is then performed. In this paper,
we focus on the resource-constrained scheduling problem, which
is also a classic optimization problem in operation research. In the
context of HLS, the problem is described as follows:

Given: (1) A CDFG G(VG ,EG) where VG represents the set of
operations in the CDFG and EG represents the set of edges; (2)
A set of scheduling constraints, which may include dependence
constraints, resource constraints, cycle time constraints, and relative
timing constraints.

Objective: Construct a minimum-latency schedule so that every
operation is assigned to at least one clock cycle while satisfying all
scheduling constraints.

We illustrate the three types of scheduling formulation using the
data flow graph (DFG) in Figure 1(a). As our running example, we
would like to schedule the DFG targeting a clock period Tclk of 5ns.
We assume that each add or store operation incurs a delay of 1ns,
and each load operation incurs a delay of 3ns. We further assume
that only two memory read ports are available, so at most two load
operations can be scheduled within the same cycle. add and store
operations are unconstrained.

2.1 SDC-Based Formulation
SDC is a system of inequality constraints in the integer difference
form xi − x j ≤ bi j , where bi j is an integer, and xi and x j are vari-
ables. The system is feasible if there exists a solution that satisfies all
inequalities in the system. Because of the restrictive form of the con-
straints, SDC can be solved efficiently. For SDC-based scheduling [8],
a schedule variable si is declared for each operation i in the CDFG
to denote the clock cycle at which operation i is scheduled. All SDC
scheduling constraints are then expressed in the integer difference
form so that the system consists of a totally unimodular constraint
matrix over which an optimal integer solution can be guaranteed in
polynomial time. For resource-constrained scheduling, we minimize

ld

+

ld
ld

+

v1

v3

v4

v2

v0
1ns

3ns

1ns

stv5
1ns

Resource constraint: 2 memory read ports available

s0 – s4 ≤ 0

s1 – s3 ≤ 0

s2 – s3 ≤ 0

s3 – s4 ≤ 0

s4 – s5 ≤ 0

s2 – s5 ≤ -1

s1 – s5 ≤ -1

Dependence

constraints

Cycle time

constraints

(a) (b)

Figure 1: Motivational and running example for this paper —
(a) DFG for our example. Delay of each operation type is indicated
next to the corresponding node. Resource constraint denotes that
only two memory read ports are available. No resource constraints
are imposed on add or store operations. (b) Dependence constraints
and cycle time constraints corresponding to the DFG for a target
clock period of 5ns.

the objective l such that l > si ∀i , where l represents the latency of
the design.

To handle data dependence, SDC creates the following difference
constraint for each data edge from operation i to operation j in G.

si − sj ≤ 0 (1)

In our example, because there is an edge from node v0 to node v4,
SDC will impose the difference constraint s0 − s4 ≤ 0 to ensure
that v4 is scheduled no earlier than v0. Similar constraints are con-
structed for other data dependence edges. To honor the target clock
period Tclk , SDC identifies the maximum critical combination delay
D(ccp(vi ,vj)) between pairs of operations i and j and constructs
the following different constraint to ensure that the combinational
path with total delay exceeding the target cycle time Tclk must be
partitioned into

⌈
D(ccp(vi ,vj))/Tclk

⌉
number of clock cycles.

si − sj ≤ −(
⌈
D(ccp(vi ,vj))/Tclk

⌉
− 1) (2)

In our example, because the maximum critical delay from v2 to v5
(D(ccp(v2,v5)) = 6ns) exceeds the target clock period of 5ns, SDC
will impose the constraint s2 − s5 ≤ −1 to ensure that v5 is sched-
uled at least one cycle after v2. Similar constraints are imposed for
combinational paths fromv1 tov5 andv0 tov5. The aforementioned
dependence and cycle time constraints are indicated in Figure 1(b).

While SDC is able to model timing constraints exactly, it must
heuristically transform resource constraints into the integer differ-
ence form by imposing a particular heuristic linear ordering on the
resource-constrained operations. This process separates resource-
constrained operations appropriately into different cycles to ensure
that sufficient resources are available to execute operations sched-
uled within the same cycle. The linear ordering consists of a set
of precedence relationships between pairs of resource-constrained
operations i and j represented in the form of

si − sj ≤ −Li (3)

where Li denotes the latency (in cycles) of operation i . Although
the linear ordering results in a legal schedule that satisfies all re-
source constraints, the schedule is likely sub-optimal because the
linear ordering is devised heuristically. There are many possible
such legal linear orderings, some resulting in better schedules than
others. However, SDC can simply pick one particular linear ordering
heuristically and without knowledge of whether it is optimal.

Resource constraint: 2 memory read ports available

ld

+

ld
ld

+

v1

v3

v4

v2

v0

stv5

ld

+

ld
ld

+

v1

v3

v4

v2

v0

stv5

s0 – s4 ≤ 0

s1 – s3 ≤ 0

s2 – s3 ≤ 0

s3 – s4 ≤ 0

s4 – s5 ≤ 0

s2 – s5 ≤ -1

s1 – s5 ≤ -1

s0 – s1 ≤ -1

s0 – s4 ≤ 0

s1 – s3 ≤ 0

s2 – s3 ≤ 0

s3 – s4 ≤ 0

s4 – s5 ≤ 0

s2 – s5 ≤ -1

s1 – s5 ≤ -1

s1 – s0 ≤ -1

s2 – s0 ≤ -1

(a) (b) (c) (d)

Figure 2: Partial ordering edges are heuristically imposed on
the DFG, and subsequently in the SDC, to satisfy the resource
constraints — Partial ordering edges are shown in bold, and cor-
responding difference constraints are boxed. (a)-(b) represent a dif-
ferent combination of partial ordering edges than (c)-(d). Minimum
latency differs depending on the particular combination.

For our example, SDC must impose partial orderings among the
resource-constrained load operations because only two memory
read ports are available for the three load operations (v0,v1, andv2).
On one hand, SDC can impose an edge fromv0 tov1 as shown in bold
in Figure 2(a) to separate v0 and v1 into different cycles so that each
cycle has at most two load operations. With this heuristic partial
ordering, the DFG requires at least three cycles to execute due to the
critical path delay fromv0 tov5. Given the target clock period of 5ns,
v0 and v1, each of which incurs a delay of 3ns, must be scheduled
in separate cycles given the partial ordering edge between them. v5
cannot be scheduled in the same cycle asv1 because there is no slack
remaining in the clock cycle after schedulingv3 andv4. On the other
hand, if SDC instead imposes an edge fromv1 tov0 and another edge
from v2 to v0 as shown in bold in Figure 2(c), the DFG can achieve
a better latency of only two cycles while ensuring that each cycle
has at most two load operations. In Figure 2, corresponding SDC
constraints are shown in (b) and (d), respectively, with appended
partial ordering (“resource”) constraints boxed.

From this example, we see that it is necessary to enumerate all
possible combinations of partial orderings and solve an SDC for
each combination of imposed “resource” edges to find the optimal
(minimum-latency) schedule. However, attempting all combinations
is not scalable in the general case for an arbitrary number of resource-
constrained operations. For this reason, SDC heuristically imposes
one particular partial ordering without guarantee of optimality and
proceed with solving the scheduling problem without regards to the
effect of any sub-optimality on the solution.

2.2 ILP-Based Formulation
Applying ILP in the context of resource-constrained scheduling prob-
lem has been a well-studied topic [24]. ILP is a linear program with
linear objective and constraints in which all variables are restricted
to be integers. For the ILP-based formulation, we focus on the special
case of 0-1 ILP in which all variables are binary. The formulation
declares a binary variable xit to denote whether operation i starts
at clock cycle t , where i and t are integers bounded by the total
number of operations and maximum allowable latency, respectively.
With these binary variables, the start time si of operation i can be
expressed as

si =
L−1∑
t=0

t · xit (4)

where L denotes the maximum latency. Because si is analogous to the
corresponding schedule variable in SDC, dependence constraints in
ILP can be equivalently represented as the difference between pairs of
schedule variables as in Eq. 1. For our example, we can safely assume
a maximum start time equal to the number of operations N = 6.
It follows that we declare variables {x00,x01,x02,x03,x04,x05} for
operationv0 and denote that s0 =

∑6−1
t=0 t · x0t . Variables are similarly

declared and derived for operations v1 to v5. The objective is same
as that defined in Section 2.1 for the SDC formulation.

Unlike in SDC, resource constraints can be encoded exactly as
linear constraints in ILP. To ensure that the number of active op-
erations of type r in clock cycle t does not exceed the number of
available type-r resources ar , the ILP formulation imposes the re-
source constraint ∑

i :RTi=r

t∑
t ′=t−Li

xit ≤ ar (5)

where RTi and Li denote the resource type and latency of operation
i , respectively. For our example, the ILP formulation needs to impose
the constraints

∑2
i=0 xit ≤ 2 for each clock cycle t because only two

memory ports are available. These constraints apply to the resource-
constrained load operations v0, v1, and v2 (i.e., i = 0, 1, 2). The
second summation is omitted because the latency of load operation
is zero-cycle in our example. The ILP formulation also requires the
following unique start time constraint for each operation i to ensure
that operation i starts at only one particular clock cycle.∑

t
xit = 1 (6)

While modern ILP solvers can handle problems of non-trivial size,
ILP is in general NP-hard and difficult to scale. In comparison to
SDC for scheduling, ILP requires significantly more variables for
encoding the same problem and cannot take advantage of special
matrix structure to efficiently solve the problem.

2.3 SAT-Based Formulation
SAT stands for the Boolean satisfiability problem, which determines
if there exists an assignment of the Boolean variables that satisfies a
Boolean formula. A SAT problem consists of a set of Boolean clauses,
all of which must be satisfied by some assignment of the Boolean
variables for the problem to be satisfiable. The problem is unsatisfi-
able otherwise. In general, a SAT-based scheduling formulation [16]
uses Boolean variable xit to denote whether operation i starts at
clock cycle t , and employs Boolean variable uit to denote whether
operation i is active at clock cycle t . Dependence and resource con-
straints can be expressed as clauses of these variables.

Modern SAT solvers perform systematic search based on vari-
ations of the Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm [12] of decide, propagate, and backtrack. These solvers re-
cursively decide the value (true or false) of an unassigned variable,
propagate the effects of this decision using deduction rules, and
backtrack if conflicts dictate that a different value should be at-
tempted for the variable. In particular, conflict-driven SAT solvers
complements DPLL with extra features to achieve significant im-
provement in efficiency. Extra features may include clause learning,
non-chronological backtracking, adaptive branching, unit propaga-
tion, and random restart [36]. Although SAT remains a well-known
NP-complete problem, SAT procedures based on the DPLL algorithm
have demonstrated scalability with hundreds of thousands of vari-
ables and clauses [23]. In the domain of design automation, SAT has
been successfully applied to solve problems in hardware/software
model checking, test pattern generation, equivalence checking, etc.

However, it is interesting to note that although the scheduling prob-
lem can be encoded completely in SAT, the encoding is often too
large and too inefficient even considering the capability of modern
SAT solvers [26]. Moreover, SAT is only concerned with whether the
problem is satisfiable and does not inherently support optimization
of an objective, such as minimizing latency.

3 JOINT SDC AND SAT SCHEDULING
In resource-constrained scheduling, there has always been an inher-
ent tension between scalability and quality. On one hand, heuristic
scheduling is fast and scalable, but generates sub-optimal QoR. On
the other hand, exact scheduling creates optimal QoR, but is slow
and difficult to scale. As described in Section 2, the SDC heuristic
achieves fast runtime but generates sub-optimal schedule because
resource constraints cannot be represented exactly with integer
difference constraints. The ILP-based formulation can model both
timing and resource constraints exactly but is not scalable in general.
As a result, resolving the tension between scalability and quality is
key to achieving both global optimization and fast runtime.

To this end, we propose a scheduling algorithm that integrates
SDC and SAT to exactly handle different types of constraints and
optimally solve the resource-constrained scheduling problem defined
in Section 2. To achieve global optimization, our algorithm leverages
SDC to represent constraints that can be readily expressed in the
integer difference form and employs SAT to encode constraints that
do not naturally fall under the SDC framework. A joint SDC and
SAT formulation allows us to leverage the advantages of SDC and
SAT while exactly encoding both timing and resource constraints.

Figure 3 shows the high-level structure of our scheduler, mainly
composed of a conflict-based SAT solver integrated with a graph-
based SDC solver. On the left, the SAT solver takes advantage of
conflict-based search (detailed in Section 3.1) to quickly propose
partial orderings that satisfy the resource constraints. These partial
orderings are converted to SDC constraints and appended to the
SDC problem. On the right, the SDC solver leverages a graph-based
algorithm (detailed in Section 3.2) to efficiently check the feasibility
of the proposed partial orderings. Any infeasibility will be encoded
as a conflict clause in SAT and appended back into the SAT problem.
The solver iterates between SAT and SDC until it finds a feasible
solution or proves that such solution does not exist.

Because a particular binding (set of partial orderings) proposed by
SAT may not be consistent with the given SDC timing constraints, it
is necessary to communicate any SAT binding decision to the SDC so
that constraints in SDC and SAT are jointly considered. At the same
time, any infeasibility must be communicated back from SDC to SAT
so that SAT can learn from the mistakes of its previous proposals and
make better proposals in the future. This process of conflict-driven
learning is key to enabling accelerated convergence of our proposed
scheduler. It is important to note that despite the benefits of conflict-
driven learning, the problem remains NP-hard. Nevertheless, our
approach demonstrates better efficiency and scalability than ILP.
While our approach is inspired by and bears resemblance to SMT,
we will discuss the key differences in Section 6.

3.1 SAT for Resource Constraints
As shown in Figure 3, our algorithm leverages SAT to model the
resource constraints based on which partial orderings are proposed.
In our formulation, let binding variable Bik denote whether oper-
ation i is bound to resource instance k . We employ one binding
variable to denote the binding of each resource-constrained opera-
tion to each resource instance. For our example, operations v0, v1,
and v2 are resource-constrained load operations, each of which can
be bound to one of two memory read ports (i.e., k = 0, 1). Therefore,

Conflict-based

SAT Solver

§ 3.1

Graph-based

SDC Solver

§ 3.2

Partial

orderings

Difference

constraints

InfeasibilityConflict

clauses

§ 3.3

Figure 3: Overall structure
of our scheduler — Com-
posed of a SAT solver inte-
grated with an SDC solver to
enable conflict-driven learn-
ing. This solver checks the
feasibility of a particular la-
tency. Latency optimization
(Section 3.4) is built on top of
this solver.

we declare {B00,B01,B10,B11,B20,B21} for the different operation-
resource pairs. By adding the appropriate clause

∑
k Bik = 1 ∀i to

enforce that each operation is bound to exactly one resource, the
binding variables are responsible for assigning each operation to a
resource instance without exceeding the resource availability.

Based on the definition of binding variable, a sharing variable Ri j
can be derived to denote whether operation i is sharing the same
resource with operation j. For each pair of operations (i, j) mapped
to the same type of resource,

Ri j =
∨
k ∈T

(Bik ∧ Bjk) (7)

whereT denotes the set of resources of the particular type. Ri j is true
if both operations i and j are bound to the same resource instance
by the binding variable. With Ri j , we can then define the partial
ordering variable Oi→j to denote whether operation i is scheduled
in an earlier cycle than operation j . Oi→j maps to integer difference
constraint in SDC between i and j as follows:

Oi→j = True 7→ si − sj ≤ −1 (8)

Oi→j = False 7→ ∅ (9)
As shown in Eq. (8), assigning Oi→j to true dictates that operation
i must be scheduled in an earlier cycle than operation j and there-
fore maps to the difference constraint si − sj ≤ −1. As shown in
Eq. (9), assigning Oi→j to false maps to an empty set of constraints,
indicating that it is not necessary to impose any partial ordering
between operations i and j because no particular partial ordering
is required by the proposed resource binding. Given the mapping
between SAT and SDC, we include the following partial ordering
clauses in SAT for each pair of operations (i, j) mapped to the same
type of resource.

Ri j → (Oi→j ∨O j→i) (10)
¬(Oi→j ∧O j→i) (11)

Eq. (10) indicates that if operation i and j shares the same resource
instance, it implies that operation i must be scheduled either in an
earlier cycle or in a later cycle than operation j . Eq. (11) ensures that
operation i cannot be simultaneously scheduled both in an earlier
cycle and later cycle than operation j.

Figure 4(a) shows the partial ordering clauses for our problem
where a pair of clauses is specified for every combination of resource-
constrained load operations (v0, v1, and v2). Among other types
of clauses described, only the partial ordering clauses are shown
because they contain the partial ordering variables to be mapped to
SDC. In this figure, for example, the first clause indicates that if v0
andv1 share the same resource instance,v0 must be scheduled either
in an earlier cycle or in a later cycle than v1, and not both. A similar
line of logic follows with the other clauses in the figure. SAT clauses
like these (e.g., Eq. (7), (10), (11)) can be translated into conjunctive
normal form commonly accepted by SAT solvers. Subsequently, the
resulting assignments of Oi→j and O j→i satisfying these clauses

will be mapped to integer difference constraints or lack thereof in
SDC based on Eq. (8) and (9). For instance, O0→1 assigned to true
will be mapped to s0 − s1 ≤ −1.

3.2 SDC for Timing Constraints
As shown in Figure 3, our algorithm uses SDC to solve the difference
constraints, which consist of incoming partial ordering constraints
from SAT and the original set of timing constraints (e.g., depen-
dence and cycle time constraints) of the problem previously shown
in Figure 1(b) and reproduced for convenience in Figure 4(b). From
Figure 4(b), we see the difference constraints can be conveniently
represented using a constraint graph where each variable maps to
a node and each constraint maps to an edge. The constraint graph
contains edges to represent dependence constraints and cycle time
constraints. Inequalities whose right-hand side is 0 represent depen-
dence constraints, while those whose right-hand side is -1 represent
cycle time constraints, both described in Section 2.1. For each of
these constraints in integer difference form su − sv ≤ du,v , the con-
straint graph includes an edge of weight du,v from node v to u. For
clarity, weights are omitted for zero-weight edges.

By representing SDC as a constraint graph, we can detect infeasi-
bility of the difference constraints by the presence of negative cycle
in the graph. This property will be useful for checking whether the
proposed partial orderings from SAT are consistent with the given
SDC timing constraints. In addition, the negative cycle serves as
a certificate of any inconsistency between the proposed resource
binding and given timing constraints. In Section 3.3, we will describe
how we leverage the negative cycle to provide feedback from SDC
to SAT for enabling conflict-driven learning. Furthermore, we can
obtain a feasible schedule, either as late as possible (ALAP) or as
soon as possible (ASAP) schedule, by solving a single source shortest
path problem on the graph. ASAP schedules all operations to the
earliest possible clock cycle, and ALAP schedules all operations to
the latest possible clock cycle given a latency constraint.

In our solver, it is necessary to detect whether the addition of
each partial ordering edge induces a negative cycle in the constraint
graph. However, it is wasteful to solve the entire SDC with all nodes
and edges for each edge added when only a small part of graph is af-
fected by the addition. Doing so cuts directly into the bottom line of
our scheduler because SDC is a crucial component of conflict-driven
learning. Quick propagation and convergence of the scheduler rely
on having a highly efficient SDC solver and a method to quickly
identify any negative cycle in the constraint graph. To accelerate
the process of conflict identification in SDC, we propose to leverage
an efficient incremental algorithm for maintaining a feasible solu-
tion and detecting negative cycle for a dynamically changing SDC
constraint graph [28].

To enable incremental SDC solving, our scheduler initializes with
a feasible solution (shortest path solution) of the original graph (with-
out partial ordering edges). For each edge added to the constraint
graph or each tightened edge weight, the algorithm traverses only
the affected subgraph and update the distances of only affected nodes.
This incremental update guarantees that the updated node values
continue to maintain a feasible solution. Because the algorithm is
essentially applying Dijkstra’s algorithm to modify only affected
edges and nodes, the addition (or tightening) of a constraint incurs
a marginal time complexity O(∆e + ∆v log∆v), where ∆e and ∆v
denote the number of affected edges and nodes, respectively. The
algorithm is able to delete or relax an edge in constant time. Because
deletion or relaxation results in a less constrained system, the current
feasible solution remains feasible.

Using the incremental SDC algorithm, our scheduler inserts one
edge at a time until the constraint graph becomes infeasible. The

R01 → (O01 ∨ O10)

¬(O01 ∧ O10)

R02 → (O02 ∨ O20)

¬(O02 ∧ O20)

R12 → (O12 ∨ O21)

¬(O12 ∧ O21)

s0

s1

s2

s3
s4

-1

s5

-1

s0 – s4 ≤ 0

s1 – s3 ≤ 0

s2 – s3 ≤ 0

s3 – s4 ≤ 0

s4 – s5 ≤ 0

s2 – s5 ≤ -1

s1 – s5 ≤ -1

(a) (b) (c)

Figure 4: Constraints for our running example — (a) Resource
constraints in SAT. (b) Timing constraints in SDC. (c) Corresponding
SDC constraint graph.

algorithm detects such infeasibility when the distance of the source
node of the inserted edge is updated during the traversal of the
affected subgraph. This indicates a negative cycle in the affected
subgraph because the distances of the nodes will continue decrease
as long as we continue to traverse the subgraph. At this point, our
algorithm traces backward on the predecessors along the shortest
path computed by Dijkstra’s algorithm to extract the edges involved
in the negative cycle. Our algorithm then reports partial ordering
edges in the negative cycle back to SAT because SAT is concerned
with resource-related partial orderings. Other edges represent hard
constraints and are not influenced by SAT.

3.3 Conflict-Driven Learning
As shown in Figure 3, SAT and SDC interact closely within a feedback
loop to enable conflict-driven learning. For each iteration of the loop,
SAT proposes partial orderings that satisfy the SAT clauses described
by Eq. (10) and (11). These partial orderings are converted to SDC
constraints based on Eq. (8) and (9) and appended to the SDC problem.
SDC then checks the feasibility of the proposed partial orderings
and report any infeasibility as a conflict clause back to the SAT.

We illustrate the power of conflict-driven learning in Figure 5
using our running example. Here we would like to determine if the
DFG in Figure 1(a) can be scheduled within two cycles. The corre-
sponding SAT formulation for resource constraints is reproduced
on the top of Figure 5(a), while the initial SDC constraint graph for
timing constraints is shown on the bottom. As the solver progresses,
resource-related edges mapped from the partial ordering variables
will be added to the constraint graph in a manner similar to that of
timing constraints described in Section 3.2. It is important to note
that the constraint graph contains a latency edge of weight 1 from
s0 to s5 to indicate a maximum allowable clock cycle index of 1 for
our target two-cycle schedule starting with cycle 0.

To solve the feasibility problem of determining whether the graph
can be scheduled within two cycles, SAT starts with an initial pro-
posal of the assignment of the partial ordering variables as shown
on the top of Figure 5(b). For clarity, we show only partial ordering
variables that are assigned to True because they are the ones that
will influence the constraint graph. On the bottom of the figure, SDC
adds the corresponding edges (shown with solid lines) proposed by
SAT into the constraint graph. With these additional edges, SDC
detects a negative cycle (shown in bold) among the initial edges and
the partial ordering edge from O0→1. SDC then reports the conflict
back to SAT using the conflict clause ¬O0→1 to ensure that any
partial ordering involving v0 before v1 should no longer be pro-
posed by SAT. As shown in Figure 5(c), after the conflict clause is
added to the SAT problem, SAT makes a different proposal based
on the updated set of clauses. In this case, SDC detects a different
negative cycle involving the edge proposed by O0→2 and adds the

R01 ↔ (O01 ∨ O10)

¬(O01 ∧ O10)

R02 ↔ (O02 ∨ O20)

¬(O02 ∧ O20)

R12 ↔ (O12 ∨ O21)

¬(O12 ∧ O21)

1
s0

s1

s2

s3
s4

-1

s5

-1

1
s0

s1

s2

s3
s4

-1

s5

-1

1
s0

s1

s2

s3
s4

-1

s5

-1

1
s0

s1

s2

s3
s4

-1

s5

-1

O01 = True

O02 = True

O12 = True

¬O01

-1

-1
-1

O10 = True

O02 = True

O12 = True

¬O01, ¬O02

-1
-1

-1

O10 = True

O20 = True

¬O01, ¬O02

-1
-1

ProposalProposal Proposal

Conflict clauses Conflict clauses Conflict clauses

(a) (b) (c) (d)

Figure 5: Illustration of conflict-
driven learning with SDC and
SAT using our running example
from Figure 1 — (a) Resource con-
straints in SAT on the top and ini-
tial SDC constraint graph on the
bottom. (b)-(d) The progression of
joint SAT and SDC scheduling. Cor-
responding partial ordering propos-
als by SAT are shown on the top. For
conflict clauses, ¬ denotes negation
of the SAT variable. For constraint
graphs, dashed lines represent hard
constraints. Solid lines represent par-
tial ordering constraints proposed by
SAT. Bold lines trace negative cycles.

conflict clause ¬O0→2 to the SAT. During conflict-driven scheduling,
a negative cycle indicates that the resource binding proposed by SAT
is inconsistent with the (hard) timing constraints of the problem.
No schedule is able to achieve the desired latency while satisfying
both the timing constraints and the proposed resource binding. As a
result, a different resource binding needs to be attempted.

Based on the feedback up until this point from SDC, conflict
clauses dictate that any schedule with v0 before v1 or v0 before v2
will be infeasible and need not be attempted. Notice that these con-
flict clauses are short, allowing SAT to prune out a large search space
because it no longer needs to propose any combination involving
these infeasible orderings. Shorter conflict clauses lead to a larger
search space that can be pruned and therefore faster propagation and
convergence for our scheduler. As such, it is crucial to derive conflict
clauses that are as short as possible. Negative cycle satisfies this
property because it is guaranteed to be an irreducibly inconsistent
set of constraints [34]. It is a minimal set of inconsistent constraints
in which the removal of any edge in the negative cycle will also
remove the negative cycle in its entirety.

With two short conflict clauses, SAT has a much better under-
standing of the search space. As shown in Figure 5(d), SAT now
makes a proposal whose corresponding edges no longer generate
any negative cycle in the constraint graph. Because the constraint
graph is now feasible, SDC returns a feasible solution that satisfies
all timing and resource constraints. For efficiency, our scheduler uses
the shortest path distances of the constraint graph as the feasible
solution because the shortest path has already been computed in the
process of detecting negative cycle.

3.4 Minimizing Latency
Because SAT has its root in decision problems, we have so far limited
our discussion to checking the feasibility of a particular latency
value. To minimize latency as in the case of resource-constrained
scheduling, we propose to perform binary search over the range of
possible latency values based on an initial upper and lower bound.
During the binary search, we solve a series of feasibility problems
as described in Section 3.3, each of which returns either a feasible
solution or a proof that the problem is infeasible. A feasible answer
allows our scheduler to decrease the upper bound, while an infeasible
answer requires increasing the lower bound. The binary search
terminates when the upper and lower bounds coincide.

Because the convergence of the scheduler depends on the number
of latency values the binary search needs to process, we propose

to leverage specialized knowledge we can obtain for the schedul-
ing problem to establish upper and lower latency bounds to reduce
the range of latency values that need to be searched. Specifically,
we propose to leverage the original SDC heuristic scheduling algo-
rithm [8] for upper bounding to establish a good initial solution
that has already globally optimized over a subset of constraints. Fur-
thermore, we propose to apply the resource-aware lower bounding
algorithm [29] (described later in Section 4.1) to establish a lower
bound so that the scheduler does not waste time exploring too many
unmeaningful latency values. While the upper and lower bounds
are not necessarily tight, they provide a good starting point from
which exact scheduling can initialize.

4 SCHEDULER SPECIALIZATION
As mentioned in Section 3.4, it is possible to extract knowledge we
have specific to the resource-constrained scheduling problem to
further reduce the search space and improve runtime. In this section,
we describe how we leverage various heuristics to specialize our
scheduler for the scheduling problem. These techniques maintain
the exactness of the algorithm and the optimality of the solution.

4.1 Resource-Aware Lower Bounding
Resource-aware lower bounding applies a greedy algorithm to solve a
relaxed version of the resource-constrained scheduling problem [29].
While the algorithm eliminates dependence constraints for the relax-
ation, it uses the ASAP schedule to determine the earliest clock cycle
each operation can be scheduled and minimizes the tardiness of each
operation in respect to the ALAP schedule. The greedy algorithm
selects the operation with minimum ALAP value and assigns it to
the earliest clock cycle based on the ASAP schedule and resource
constraints. This process continues until all operations have been
scheduled. The resulting lower bound is determined by adding the
maximum tardiness (in cycles) among all operations to the critical
path latency for the entire design, which considers only dependence.

While we have discussed in Section 3.4 the application of resource-
aware lower bounding to establish tighter lower bound in optimiza-
tion, the same exact algorithm can be helpful for accelerating the
propagation for conflict-driven learning described in Section 3.3.
Recall that partial ordering edges are inserted one-by-one into the
SDC constraint graph until the graph becomes infeasible. The fewer
the number of inserted partial ordering edges, the shorter the con-
flict clause and larger the search space that can be pruned by SAT
based on the conflict clauses. In addition to detecting negative cycle,
our scheduler can also incrementally determine the lower bound

Cycle 0

Cycle 3

Cycle 0

Cycle 1

Cycle 3

Cycle 4

ld

+

ld

ld

+

v1

v3

v4

v2

v0

1ns

3ns

1ns

stv5
1ns

3ns

3ns

Cycle 2

ld

+

ld

ld

+

v1

v3

v4

v2

v0

1ns

3ns

1ns

stv5
1ns

3ns

3ns

Cycle 1

Cycle 2

Cycle 0

Cycle 1

Cycle 3

Cycle 4

ld

+

ld

ld

+

v1

v3

v4

v2

v0

1ns

3ns

1ns

stv5
1ns

3ns

3ns

Cycle 2

Resource constraint: 1 memory read port available

¬(O01 ∧ O12) ¬O01

Conflict clause Conflict clause

(a) SDC (b) Lower bounding

Figure 6: Illustration of the advan-
tage of lower bounding over SDC in
conflict-driven learning — Assume
one memory read port and Tclk =
5ns . Actual DFGs, instead of constraint
graphs, are shown in these figures. (a)
SDC requires two “resource” edges (in
bold) to determine that the DFG re-
quires at least 4 cycles. (b) The lower
bounding algorithm requires only one
edge to determine the same 4-cycle la-
tency because it pushes v2 to the next
cycle due to resource constraint.

upon the insertion of each new edge. After identifying the first edge
that results in an infeasible system, our scheduler uses the deletion
filtering algorithm [6] to remove previously added edges that do not
contribute to the infeasibility. An edge does not contribute to the
infeasibility if the graph remains infeasible even after the edge has
been removed. The remaining set of edges then compose an irre-
ducibly inconsistent set of constraints. Because the lower bounding
algorithm is aware of the limited resource availability, it is actually
able to prove infeasibility, in certain cases, with fewer partial order-
ing edges than SDC which has no sense of resource constraints other
than those imposed by partial ordering. As such, lower bounding
improves solution space pruning during conflict-driven learning.

We illustrate one such case in Figure 6 with the same DFG as
in Figure 1(a). Here we would instead like to determine if the DFG
can be executed within three cycles, assuming one memory read
port and a target clock period of 5ns. To separate the resource-
constrained load operations (v0,v1, andv2) into different cycles due
to the availability of only one read port, let’s further assume that
partial ordering edges are added in the order corresponding to partial
ordering variables {O0→1,O1→2}. In Figure 6, note that edges are
shown within the DFG instead of the constraint graph. With the first
partial ordering edge from v0 to v1 in Figure 6(a), SDC is unable to
rule out the feasibility of executing the DFG in three cycles. Because
SDC is unaware of the number of available read ports, it schedules
v2 in the same cycle as v1. Only with the second edge from v1 to
v2, as shown in Figure 6(a), does SDC pushes v2 to the next cycle
and realize that the DFG requires at least four cycles. Because the
DFG cannot complete in three cycles with the two edges, SDC will
return the conflict clause ¬(O0→1 ∧O1→2) to reflect the irreducibly

Start with empty SAT

Propagate SDC/LB with SAT

Check legality of schedule

Extract contention with list scheduling

Add contending operations to SAT

Feasible
Infeasible

IllegalLegal

Contention foundNone

Done.

UNSAT.

Done.

SAT.

Done.

SAT.

Figure 7: Incremental learning flow — Starts with no resource
constraints and incrementally imposes resource constraints on op-
erations that have encountered resource contention in previous
iterations of the loop in this flow.

inconsistent set of two edges. SDC requires both partial ordering
edges (the complete resource binding) to decide infeasibility.

With resource-aware lower bounding, however, it is possible to
determine that the DFG requires at least four cycles after adding
only the first partial ordering edge from v0 to v1. As demonstrated
in Figure 6(b), the algorithm does not attempt to schedule v2 in
the same cycle as v1 even without the second edge, because the
algorithm is aware that only one read port can be used in each cycle.
As a result, v2 is pushed to the next cycle, increasing the latency to
at least four cycles. With lower bounding, the scheduler generates a
more concise conflict clause ¬O0→1 for this example, which enables
more effective pruning of the search space in SAT. Lower bounding
is able to determine infeasibility with only a partial resource binding,
thus resulting in speedup.

4.2 Incremental Learning
Because the proposed SAT formulation in Section 2.3 includes vari-
ables for all resource-constrained operations, conflict-driven learning
described in Section 3.3 considers all resource-constrained opera-
tions equally. In reality, however, some operations tend to be located
in congested region of the schedule and must compete for a very
limited number of resources within a limited number of time steps.
Other operations do not fall in the congested region and can be freely
scheduled. The congested region constitutes the problematic part of
the schedule because there are more operations that need to be sched-
uled than the number of available resources for these operations. As
a result, it would be more effective to emphasize our SAT’s resource
constraints over operations that are likely to encounter resource
contention and allow non-contending operations to be scheduled
by SDC’s (hard) timing constraints only. This approach attempts to
reduce the size of the NP-hard part of the problem and leverages
SDC as much as possible in finding a feasible schedule.

To implement this idea, we propose an incremental learning mode
for our scheduler. Incremental learning leverages problem-specific
knowledge to specifically target operations that are likely to cause re-
source contention. The flow of incremental learning mode is shown
in Figure 7. Based on this flow, the scheduler starts with an empty
SAT formulation, with no resource constraints initially. The sched-
uler then performs conflict-driven learning by propagating SDC
and/or lower bounding (denoted as LB in the figure) with SAT. If the
SDC graph reports a negative cycle, the problem is not satisfiable
even with only timing constraints. In this case, the solver returns un-
satisfiable and terminates. If the SDC graph does not detect any neg-
ative cycle, which is the more likely scenario, the scheduler checks
the legality of the schedule against resource constraints. If the sched-
ule is legal, the scheduler returns with the feasible schedule. If the

Table 1: Runtimes are reported in seconds for our proposed joint SDC and SAT scheduling (SDS for short) compared to default
ILP scheduling using CPLEX and CBC — %variables: percentage of variables in non-incremental mode activated in incremental mode;
speedup of Non-incremental and Incremental shown respectively in parentheses against CPLEX and CBC. TO: timeout after 300 seconds.
n/a: not applicable. Optimal Latency: optimal latency in clock cycles for each benchmark and represents the latency achieved by both SDS
scheduler and default ILP scheduling. LegUp Latency: latency achieved by LegUp using SDC-based scheduling heuristic.

Benchmark #
Operations

Runtime for SDS Scheduling (sec) Runtime for Default ILP Scheduling (sec) Optimal
Latency

LegUp
LatencyNon-incremental Incremental (% Variables) CPLEX CBC

ARAI 44 0.01 0.01 (39.5%) 0.12 (12x, 12x) 1.18 (118x, 118x) 8 9
PR 52 0.02 0.01 (31.3%) 0.86 (43x, 86x) 3.70 (185x, 370x) 12 14

WANG 54 0.01 0.01 (8.29%) 0.86 (86x, 86x) 12.2 (1220x, 1220x) 12 14
LEE 58 0.01 0.01 (3.02%) 0.26 (26x, 26x) 2.88 (288x, 288x) 12 14
MCM 74 0.54 0.34 (10.4%) 6.19 (11x, 18x) 24.6 (46x, 72x) 15 16
DIR 76 0.14 0.01 (6.18%) 1.51 (11x, 151x) 11.5 (82x, 1550x) 14 15

HONDA 105 0.02 0.02 (0.95%) 9.06 (453x, 453x) 104 (5200x, 5200x) 27 33
CHEM 349 TO 1.42 (0.12%) TO (n/a, n/a) TO (n/a, n/a) 85 89
U5ML 857 0.01 0.01 (0.00%) 20.8 (2080x, 2080x) TO (n/a, n/a) 261 264

schedule is illegal, likely in the initial iterations of this flow because
no resource constraints have been considered, the scheduler will
extract the contending operations with a list scheduling like heuris-
tic. During the extraction process, the heuristic attempts to reorder
operations to remove resource contention. If the heuristic succeeds
in removing all resource contention, the scheduler also returns a
feasible schedule. If contention remains, however, the scheduler adds
the clauses of those contending operations to the SAT and repeats
the flow starting with another iteration of conflict-driven learning.

The ultimate goal of incremental learning is to dramatically re-
duce the search space and improve runtime by using well-known
heuristics (e.g., list scheduling, SDC-based scheduling) to direct the
search toward the more difficult region of the schedule. Nevertheless,
it is important to emphasize that these heuristics are used simply to
guide the solver in a more promising path toward the solution and
should in no way jeopardize the exactness of the scheduler. When
incremental learning returns satisfiable, it always provides a legal
schedule in regards to both timing and resource constraints and
satisfies the given latency bound. Incremental learning is performed
for different latency bounds in the binary search manner described
in Section 3.4 to determine the schedule with the optimal latency.

5 EXPERIMENTS
We implement our proposed scheduler (detailed in Section 4) in C++
interfaced with LLVM compiler and Lingeling SAT solver [2]. We
execute our scheduler on an Intel Xeon CPU running at 2.50GHz,
and evaluate it on a set of compute-intensive benchmarks listed
in Table 1. These benchmarks include a chemical plant controller
and a number of DSP algorithms such as discrete cosine transforms.
We constrain the scheduling process such that these benchmarks
contain a large portion of resource-constrained operations useful
for stress-testing our scheduler.

Our first set of experiments aim to compare the runtimes of our
scheduler against those of state-of-the-art commercial and open-
source ILP solvers. A comparison of runtime results between our
joint SDC and SAT scheduling (SDS for short) and default ILP sched-
uling is shown in Table 1. For our SDS scheduler, we provide results
for the scheduler running in non-incremental mode and in incremen-
tal mode. Non-incremental column provides results from applying
conflict-driven learning from Section 3.3 with the full set of SAT
variables. Incremental column provides results from applying incre-
mental learning from Section 4.2 by selectively targeting a subset of
SAT variables. For default ILP scheduling, the formulation presented
in Section 2.2 is solved in CPLEX [9], a state-of-the-art commercial
ILP solver, as well as in CBC [14], a best-in-class open-source ILP
solver. Speedup values achieved by non-incremental and incremental
modes against each ILP solver are shown respectively in parentheses
in the corresponding columns.

Table 2: Runtimes in seconds for different combinations of
resource constraints onmultiplier andmemory port — Results
are shown for SDS scheduling in incremental mode.

Benchmark #
Operations

Runtime for Incremental Scheduling (sec)
1 mult
1 port

2 mult
2 port

3 mult
3 port

4 mult
4 port

6 mult
6 port

ARAI 44 0.01 0.01 0.01 0.01 0.01
PR 52 0.01 0.01 0.01 0.01 0.02

WANG 54 0.01 0.01 0.01 0.01 0.02
LEE 58 0.01 0.01 0.01 0.01 0.02
MCM 74 0.05 0.34 0.01 0.13 0.07
DIR 76 0.02 0.01 0.01 0.01 0.01

HONDA 105 0.01 0.03 0.04 0.09 0.24
CHEM 349 1.49 1.42 1.10 2.92 4.33
U5ML 857 0.01 0.01 0.01 0.01 0.01

Based on the results in Table 1, SDS scheduler running in non-
incremental mode is faster than the open-source ILP solver by around
two orders of magnitude and sometimes three orders of magnitude
in all cases except CHEM for which both solvers time out. In non-
incremental mode, SDS scheduler can also beat the commercial ILP
solver by at least one order of magnitude, and up to two or three
orders of magnitude for the same set of benchmarks. These results
demonstrate the effectiveness of setting upper and lower latency
bounds and exploiting negative cycle and lower bounding in propa-
gation to quickly prune out the entire search space. It is interesting
to note that benchmark U5ML achieves a low runtime because it is
much more constrained by timing than by resource. Timing con-
straints dictate that its latency cannot be further reduced regardless
of resource assignment.

With incremental mode enabled, Table 1 shows that SDS scheduler
is able to complete the previously difficult benchmark CHEM and
locate the optimal solution while both the commercial and open-
source solvers struggle and time out. At the same time, incremental
mode also improves the runtime of other benchmarks by various
degrees. The improvement from incremental mode stems from the
fact that only a small fraction of operations are actually involved
in resource contention. Based on Table 1, mostly less than 10% of
the SAT variables are needed to resolve resource constraints and
converge to an optimal solution. The percentage becomes small for
large benchmarks. With problem-specific knowledge, we specifically
target contending operations to achieve significant speedup.

Table 2 shows the runtime in seconds for different combinations
of constraints on the number of multipliers and memory ports. In
general, an increase in the number of resources leads to additional
SAT binding variables while the number of SAT partial ordering
variables remains unchanged. The overall increase in the number of
SAT variables may lead to longer runtime for the SAT solver. How-
ever, increasing the number of resources also loosens the resource
constraints and decreases the number of partial ordering edges that

Table 3: Experiments on synthesizing CHStone benchmarks targeting the Intel Cyclone V FPGA at a clock period of 10ns —
#Ops: number of operations in the program. #States: number of states in the generated schedule for each function; benchmarks achieving
state reduction with SDS are highlighted in bold. CP: achieved clock period in ns. ALM, LUT, FF, DSP, and RAM: number of corresponding
resources used on the target device. Runtime: time in seconds taken to solve the SDS scheduling problem.

Benchmark #Ops SDC-Based Scheduling SDS Scheduling
#States CP ALM LUT FF DSP RAM Runtime #States CP ALM LUT FF DSP RAM

ADPCM 850 25, 58 11.2 5316 8948 9851 122 7 0.03 25, 54 12.5 5549 9166 9894 146 7
AES 812 37, 25, 17, 46 10.6 5313 7817 9568 0 10 0.05 37, 25, 17, 42 11.5 5506 8147 9755 0 10

BLOWFISH 687 74, 36 7.5 2209 3330 4035 0 29 0.02 70, 36 7.8 2402 3709 4582 0 29
DFADD 361 4, 4 7.3 1439 1770 2124 0 1 0.01 4, 4 7.4 1442 1778 2105 0 1
DFDIV 361 65 9.7 3179 4383 6776 48 2 0.01 65 9.6 3170 4385 6769 48 2
DFMUL 279 5 9.6 1125 1601 1494 32 1 0.01 5 9.7 1126 1630 1492 32 1
DFSIN 1067 4, 9, 65 10.2 8584 10677 14568 82 5 0.05 4, 9, 65 9.6 8541 10594 14557 82 5
GSM 966 7 10.2 3256 4747 5204 54 7 0.03 7 10.6 3233 4697 5154 62 7
JPEG 2255 36, 9, 6, 7, 9, 7, 53 13.4 17066 28087 21211 87 83 0.11 36, 9, 6, 7, 9, 7, 53 13.7 17020 28112 21016 87 83
MIPS 346 5 11.7 1036 1468 928 6 4 0.01 5 11.8 1029 1468 947 6 4

MOTION 284 4, 7 8.4 5577 8257 8495 0 6 0.01 4, 7 9.0 5729 8339 8985 0 6
SHA 314 11, 11 6.1 1350 1596 2650 0 20 0.01 11, 11 6.3 1375 1603 2687 0 20

needs to be inserted into the SDC (when the solver is running in
incremental mode). The resulting set of SDC constraints are more
likely to be consistent, making it easier for SDC to return a feasible
solution after fewer iterations in propagation. Table 2 shows that
SDS scheduler running in incremental mode remains scalable as the
number of resources in the constraints increases.

To demonstrate the applicability of SDS, we further integrate SDS
scheduler into LegUp [4], a state-of-the-art open-source HLS tool.
We leverage LegUp’s front-end to compile the input program into
a CDFG and extract the relevant scheduling (e.g., timing, resource)
constraints. SDS scheduler schedules the CDFG based on the con-
straints extracted from LegUp and returns the generated schedule
to LegUp for post-scheduling processing and RTL generation. For
experiments, we synthesize a set of applications from the CHStone
benchmark suite [15] targeting the Intel Cyclone V FPGA at a clock
period of 10ns.

Using LegUp, we compare the QoR of the synthesized hardware
produced by SDC-based scheduling against the QoR of hardware pro-
duced by our SDS scheduler. For each benchmark, Table 3 reports the
total number of operations of the program, runtime of SDS schedul-
ing, as well as the key quality metrics post place-and-route generated
by SDC-based scheduling and our SDS scheduler. Table 3 shows that
our SDS scheduling approach achieves QoR comparable to that of
SDC-based scheduling. On average, we observe small increase in
clock period with small reduction in resource usage. Because most of
the CHStone benchmarks are not dominated by resource constraints,
they do not benefit from reduction in the number of states with the
exception of ADPCM, AES, and BLOWFISH. Nevertheless, these ex-
periments demonstrate that the SDS scheduling approach is practical
for real-life applications of non-trivial size. We note that the achieved
clock period exceeds the target clock period for several benchmarks
regardless of the scheduling approach applied. We believe this is
a result of inaccurate delay estimation in HLS tools instead of an
artifact of our proposed scheduling approach. Table 4 demonstrates
that ADPCM, AES, BLOWFISH, and DFMUL can achieve further
state reduction after we tighten the resource constraints in LegUp
to one memory port and one multiplier.

6 RELATEDWORK AND DISCUSSIONS
Resource-constrained scheduling has been the subject of extensive
study, resulting in a line of heuristics, including Hu’s Algorithm, List
Scheduling, and Force-Directed Scheduling, to solve the problem
efficiently. Iterative metaheuristics, such as simulated annealing and
ant colony optimization, have also been demonstrated as viable op-
tions [24]. Because resource-constrained scheduling maps naturally
to a constraint satisfaction problem consisting of logical connectives
of linear constraints, it can also be solved with modern SMT solvers,

Table 4: Benchmarks achieving further state reduction after
tightening resource constraints — Results are shown for one
memory port and one multiplier. Same notations are followed as in
Table 3.

Benchmark SDC-Based Scheduling SDS Scheduling
#States CP Runtime #States CP

ADPCM 31, 64 12.0 0.04 26, 60 11.3
AES 37, 49, 33, 55 10.4 0.05 37, 49, 33, 47 10.5

BLOWFISH 118, 57 8.2 0.02 108, 57 8.5
DFMUL 7 9.4 0.02 6 9.6

which integrate specialized (linear) solvers with propositional satisfi-
ability search techniques to achieve conflict-driven learning [13]. In
particular, a subset of SMT solvers focus on determining the satisfia-
bility of a Boolean combination of difference constraints [35]. These
solvers take advantage of an graph-based algorithm to efficiently
explore the search space.

Our scheduler is inspired by the concept of SMT and employs a
graph-based algorithm to perform conflict-based learning to quickly
prune out the infeasible search space. However, unlike generic SMT
solvers in which SAT assumes a principal role in driving the under-
lying theory solver, our solver treats SAT and the underlying theory
as equal partners. Notably, our underlying theory is able to influence
the subset of SAT clauses that need to be included at each iteration
of the feedback loop and determine the appropriate problem that
needs to be solved by SAT. In addition, our solver makes heavy use
of well-established heuristics specific to the resource-constrained
scheduling problem to significantly improve the efficiency of propa-
gation. These problem-specific knowledge provides supports for the
key features of our solver, including optimization, resource-aware
lower bounding, and incremental learning described in Section 4.

Branch-and-bound style pruning is another popular approach
for solving the resource-constrained scheduling problem [5, 25].
This type of approach divides the problem into sub-problems and
computes the lower and upper bounds of each sub-problem. A sub-
problem is solved optimally when the lower and upper bounds
coincide. While these branch-and-bound style schedulers employ
problem-specific knowledge from lower and upper bounding to re-
duce overall scheduling time, our scheduler applies conflict-driven
learning tightly coupled with various scheduling heuristics (in-
cluding upper and lower bounding) to achieve additional run-
time improvement. Our approach combines the power of conflict-
driven learning and problem-specific knowledge to realize significant
speedup. While previous schedulers are designed to work with only
resource-constrained scheduling problems, our proposed joint SDC
and SAT formulation allows more expressive encoding of a rich set
of constraints. With a combination of SAT and SDC, our approach

provides the flexibility to make tradeoffs among different constraints
and select the encoding most suitable for each type of constraints.

While this work focuses on HLS, the proposed scheduling ap-
proach can equally apply to resource-constrained scheduling prob-
lems in many other fields of study. Moreover, our scheduling frame-
work is designed to generalize to a wide range of constrained sched-
uling problems with a variety of constraints. For example, the frame-
work can be extended to consider constraints arising from various
forms of pipeline scheduling [3, 10, 32, 39], which are also typically
handled by heuristics for efficiency. In addition, recent interest in
dynamically scheduled HLS [11, 18, 20, 21, 33] necessitates a tradeoff
between runtime hardware overhead and performance that may
not be easily optimized. A scheduling formulation with SAT will
enable modeling of the hardware resource overhead so it can be co-
optimized during scheduling. Our scheduling approach can also be
extended to handle cross-layer HLS optimizations, such as mapping-
aware scheduling [31, 40] and place-and-route aware HLS [41], as
well as low-power optimizations in HLS [17, 38]. Because many con-
straints cannot be anticipated by heuristics, the gap to optimality
is expected to only widen. Efforts in exact scheduling is therefore
crucial for handling a rich set of current and future constraints.

7 CONCLUSIONS
Current HLS scheduling algorithms rely on inexact heuristics that
make ad hoc local decisions and cannot accurately and globally
optimize over a rich set of constraints. To provide guarantee on
QoR out-of-the-box, we propose an exact scheduling approach based
on a joint SDC and SAT formulation to precisely handle a vari-
ety of scheduling constraints. We develop a specialized scheduler
based on conflict-driven learning and problem-specific knowledge
to efficiently solve the resource-constrained scheduling problem. By
pushing the boundary of what is practically scalable, our scheduler
demonstrates orders-of-magnitude improvement in runtime over
current exact scheduling approach. Given the flexibility of SAT, we
envision that our approach can be effectively applied to a wide range
of constrained scheduling problems. As ongoing research, we are
further enhancing the proposed scheduler to handle pipeline sched-
uling and enable more intelligent static optimization techniques for
dynamically scheduled HLS.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their insightful
comments. This research was supported in part by DARPA Award
HR0011-16-C-0037, a DARPA Young Faculty Award, NSF Awards
#1337240, #1453378, #1618275, Semiconductor Research Corporation,
and a research gift from Xilinx, Inc.

REFERENCES
[1] T. Ajayi et al. Celerity: An Open-Source RISC-V Tiered Accelerator Fabric. Hot

Chips: A Symp. on High Performance Chips, 2017.
[2] Armin Biere. Lingeling, Plingeling and Treengeling Entering the SAT Competition

2013. SAT Competition, 2013.
[3] Andrew Canis, Stephen D. Brown, and Jason H. Anderson. Modulo SDC Schedul-

ing with Recurrence Minimization in High-Level Synthesis. Int’l Conf. on Field
Programmable Logic and Applications (FPL), 2014.

[4] A. Canis et al. LegUp: High-Level Synthesis for FPGA-Based Processor/Accelerator
Systems. Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2011.

[5] Mingsong Chen, Saijie Huang, Geguang Pu, and Prabhat Mishra. Branch-and-
Bound Style Resource Constrained Scheduling using Efficient Structure-Aware
Pruning. IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2013.

[6] John W. Chinneck and Erik W. Dravnieks. Locating Minimal Infeasible Constraint
Sets in Linear Programs. ORSA Journal on Computing, 1991.

[7] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2011.

[8] Jason Cong and Zhiru Zhang. An Efficient and Versatile Scheduling Algorithm
Based on SDC Formulation. Design Automation Conf. (DAC), 2006.

[9] IBM ILOG CPLEX. V12.6: User‘s Manual for CPLEX. International Business
Machines Corporation, 2015.

[10] Steve Dai, Mingxing Tan, Kecheng Hao, and Zhiru Zhang. Flushing-Enabled Loop
Pipelining for High-Level Synthesis. Design Automation Conf. (DAC), 2014.

[11] Steve Dai, Ritchie Zhao, Gai Liu, Shreesha Srinath, Udit Gupta, Christopher Batten,
and Zhiru Zhang. Dynamic Hazard Resolution for Pipelining Irregular Loops in
High-Level Synthesis. Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2017.

[12] Martin Davis, George Logemann, and Donald Loveland. A Machine Program for
Theorem-Proving. Communications of the ACM, 1962.

[13] Leonardo De Moura and Nikolaj Bjørner. Satisfiability Modulo Theories: Introduc-
tion and Applications. Communications of the ACM, 2011.

[14] John Forrest. CBC User Guide. IBM Research, 2005.
[15] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii.

CHStone: A Benchmark Program Suite for Practical C-Based High-Level Synthesis.
Int’l Symp. on Circuits and Systems (ISCAS), 2008.

[16] Andrei Horbach. A Boolean Satisfiability Approach to the Resource-Constrained
Project Scheduling Problem. Annals of Operations Research, 2010.

[17] Wei Jiang, Zhiru Zhang, Miodrag Potkonjak, and Jason Cong. Scheduling with
Integer Time Budgeting for Low-Power Optimization. Asia and South Pacific
Design Automation Conf. (ASP-DAC), 2008.

[18] Lana Josipovic, Philip Brisk, and Paolo Ienne. From C to Elastic Circuits. Asilomar
Conf. on Signals, Systems, and Computers, 2017.

[19] Yun Liang, Kyle Rupnow, Yinan Li, Dongbo Min, Minh N. Do, and Deming Chen.
High-Level Synthesis: Productivity, Performance, and Software Constraints. Jour-
nal of Electrical and Computer Engineering, 2012.

[20] Gai Liu, Mingxing Tan, Steve Dai, Ritchie Zhao, and Zhiru Zhang. Architecture
and Synthesis for Area-Efficient Pipelining of Irregular Loop Nests. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2017.

[21] Junyi Liu, Samuel Bayliss, and George A. Constantinides. Offline Synthesis of
Online Dependence Testing: Parametric Loop Pipelining for HLS. IEEE Symp. on
Field Programmable Custom Computing Machines (FCCM), 2015.

[22] Xinheng Liu, Yao Chen, Tan Nguyen, Swathi Gurumani, Kyle Rupnow, and Deming
Chen. High Level Synthesis of Complex Applications: An H.264 Video Decoder.
Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2016.

[23] Sharad Malik and Lintao Zhang. Boolean Satisfiability from Theoretical Hardness
to Practical Success. Communications of the ACM, 2009.

[24] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill
Higher Education, 1994.

[25] M. Narasimhan and J. Ramanujam. A Fast Approach to Computing Exact Solu-
tions to the Resource-Constrained Scheduling Problem. ACM Trans. on Design
Automation of Electronic Systems (TODAES), 2001.

[26] Robert Nieuwenhuis. SAT and SMT are Still Resolution: Questions and Challenges.
Automated Reasoning, 2012.

[27] Alice C. Parker, Jorge T. Pizarro, andMitchMlinar. MAHA: A Program for Datapath
Synthesis. Design Automation Conf. (DAC), 1986.

[28] Ganesan Ramalingam, Junehwa Song, Leo Joskowicz, and Raymond E. Miller.
Solving Systems of Difference Constraints Incrementally. Algorithmica, 1999.

[29] Minjoong Rim and Rajiv Jain. Lower-bound Performance Estimation for the High-
Level Synthesis Scheduling Problem. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 1994.

[30] Nitish Kumar Srivastava, Steve Dai, Rajit Manohar, and Zhiru Zhang. Accelerating
Face Detection on Programmable SoC Using C-Based Synthesis. Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), 2017.

[31] Mingxing Tan, Steve Dai, Udit Gupta, and Zhiru Zhang. Mapping-Aware Con-
strained Scheduling for LUT-Based FPGAs. Int’l Symp. on Field-Programmable
Gate Arrays (FPGA), 2015.

[32] Mingxing Tan, Bin Liu, Steve Dai, and Zhiru Zhang. Multithreaded Pipeline
Synthesis for Data-Parallel Kernels. Int’l Conf. on Computer-Aided Design (ICCAD),
2014.

[33] Mingxing Tan, Gai Liu, Ritchie Zhao, Steve Dai, and Zhiru Zhang. ElasticFlow: A
Complexity-Effective Approach for Pipelining Irregular Loop Nests. Int’l Conf. on
Computer-Aided Design (ICCAD), 2015.

[34] J.N.M. Van Loon. Irreducibly Inconsistent Systems of Linear Inequalities. European
Journal of Operational Research, 1981.

[35] Chao Wang, Franjo Ivančić, Malay Ganai, and Aarti Gupta. Deciding Separation
Logic Formulae by SAT and Incremental Negative Cycle Elimination. Logic for
Programming, Artificial Intelligence, and Reasoning, 2005.

[36] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik.
Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. Int’l Conf. on
Computer-Aided Design (ICCAD), 2001.

[37] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang, P. Ouyang, Z. Cheng, K. Rup-
now, and D. Chen. High-Performance Video Content Recognition with Long-Term
Recurrent Convolutional Network for FPGA. Int’l Conf. on Field Programmable
Logic and Applications (FPL), 2017.

[38] Zhiru Zhang, Deming Chen, Steve Dai, and Keith Campbell. High-Level Synthesis
for Low-Power Design. IPSJ Transactions on System LSI Design Methodology (T-
SLDM), 2015.

[39] Zhiru Zhang and Bin Liu. SDC-Based Modulo Scheduling for Pipeline Synthesis.
Int’l Conf. on Computer-Aided Design (ICCAD), 2013.

[40] Ritchie Zhao, Mingxing Tan, Steve Dai, and Zhiru Zhang. Area-Efficient Pipelining
for FPGA-Targeted High-Level Synthesis. Design Automation Conf. (DAC), 2015.

[41] Hongbin Zheng, Swathi T. Gurumani, Kyle Rupnow, and Deming Chen. Fast and
Effective Placement and Routing Directed High-Level Synthesis for FPGAs. Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), 2014.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 SDC-Based Formulation
	2.2 ILP-Based Formulation
	2.3 SAT-Based Formulation

	3 Joint SDC and SAT Scheduling
	3.1 SAT for Resource Constraints
	3.2 SDC for Timing Constraints
	3.3 Conflict-Driven Learning
	3.4 Minimizing Latency

	4 Scheduler Specialization
	4.1 Resource-Aware Lower Bounding
	4.2 Incremental Learning

	5 Experiments
	6 Related Work and Discussions
	7 Conclusions
	References

