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ABSTRACT
Scheduling plays a central role in the behavioral synthesis process,
which automatically compiles high-level specifications into opti-
mized hardware implementations. However, most of the existing
behavior-level scheduling heuristics either have a limited efficiency
in a specific class of applications or lack general support of various
design constraints.

In this paper we describe a new scheduler that converts a rich set
of scheduling constraints into a system of difference constraints
(SDC) and performs a variety of powerful optimizations under
a unified mathematical programming framework. In particular,
we show that our SDC-based scheduling algorithm can efficiently
support resource constraints, frequency constraints, latency con-
straints, and relative timing constraints, and effectively optimize
longest path latency, expected overall latency, and the slack dis-
tribution. Experiments demonstrate that our proposed technique
provides efficient solutions for a broader range of applications with
higher quality of results (in terms of system performance) when
compared to the state-of-the-art scheduling heuristics.

Categories and Subject Descriptors: B.8.2 [Hardware]

General Terms: Algorithms, Design, Performance

Keywords: Scheduling, Behavioral synthesis, SDC

1. INTRODUCTION
The design complexity of integrated circuit systems in

nanometer-scale technologies is outgrowing the capabilities of cur-
rent RTL-based design methods. This brought about a renewed
interest in behavioral synthesis, which promises to automatically
transform untimed or partially timed functional specifications into
cycle-accurate RTL implementations.

Scheduling, which exploits the parallelism in the behavior-level
design and determines the time at which different computations
and communications are performed, is commonly recognized as
one of the most important problems in behavioral synthesis. How-
ever, finding an optimal schedule is intractable in general. Over the
years, a large number of scheduling techniques have been proposed
in the behavioral synthesis domain, making different tradeoffs be-
tween optimality and efficiency. Existing scheduling algorithms
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can be broadly classified into two major categories: data-flow-
based (DF-based) scheduling and control-flow-based (CF-based)
scheduling.

DF-based scheduling focuses on data-flow-intensive applica-
tions such as digital signal processing and image processing.
Based on the optimization goal, they can be further divided into
two classes: timing-constrained and resource-constrained. Force-
directed scheduling [18] is a widely used constructive heuristic to
solve the time-constrained scheduling problem. It minimizes the
“force” on the operations to balance computations over the avail-
able time steps so that the resource usage can be reduced. For the
resource-constrained scheduling problem, the most popular heuris-
tic is list scheduling [17, 10], in which ready operations are sorted
in a list according to certain priority function and are scheduled in
order into the control state with available resources.

CF-based scheduling targets control-flow-intensive applications
such as controllers and network protocol processors. Path-based
scheduling [3] is one of the earliest approaches that explicitly deal
with control-flow dominated descriptions by scheduling each indi-
vidual path as fast as possible. Loop-directed scheduling [2] sched-
ules the operations using a depth-first search (DFS). It optimizes
the average-case performance and implicitly accounts for the loop
repetitions during the DFS. Wavesched [13] explores and schedules
the ready operations in a wave-propagation-like manner. It achieves
further performance improvement by overlapping the schedules of
independent loops and using loop unrolling simultaneously. More
recent scheduling algorithms incorporate speculative code motions
to extract the parallelisms that are not explicitly exposed in the in-
put descriptions. In [14] the speculative execution is integrated
into the Wavesched framework to minimize the expected schedule
latency in number of clock cycles. SPARK [7] introduces a set of
speculative code transformations into a high-level synthesis frame-
work. A global list-scheduling-based heuristic is used to dynami-
cally select and apply these code motions during the scheduling.

Control-flow dominated descriptions are also characterized by a
large share of I/O timing constraints for adhering to the external cir-
cuits. Relative scheduling [11] is one of the earliest attempts to han-
dle minimum/maximum timing constraints. Behavioral templates
are introduced in [15] to support relative timings by locking a num-
ber of operations into certain scheduling templates. VOTAN [16]
employs a retiming-based approach to reschedule the timed VHDL
by behavioral code transformations but without altering the original
I/O timings. I/O timing constraints are also allowed in several ex-
act scheduling approaches, such as the ILP-based scheduling [9, 5],
the symbolic scheduling [8, 21], and the constraint-programming-
based scheduling [12].

Overall, however, the existing scheduling techniques either have
a limited efficiency in a specific class of design applications or lack



general support of various design constraints. For instance, DF-
based schedulers do not handle control-flow-intensive designs well.
Meanwhile, most of CF-based scheduling techniques [3, 2, 13, 8]
have an exponential time complexity in the worst case and are not
efficient for large designs. Moreover, many of them [3, 2, 13] do
not support the relative I/O timings. These deficiencies are partic-
ularly unfavorable given the trend wherein behavioral designs are
becoming much more complex as they are driven by an escalat-
ing growth in algorithm-intensive applications such as 3G wireless,
satellite communications and video/image processing. The design
descriptions for such applications often feature a combination of
intensive computations, controls, and communications, along with
various timing/area/power constraints.

In this paper we propose a new scheduling formulation to address
the above challenges. Specifically, we convert a rich set of schedul-
ing constraints into a system of difference constraints (SDC). Using
this formulation, the consistency of the constraint system can be
checked efficiently by solving a single-source shortest path prob-
lem. We can also express the performance objective as a linear
function so that the global optimization can be performed by solv-
ing a linear programming (LP) problem. In addition, the matrix
formed by the constraint equations has a special property that guar-
antees integral solution, which can be directly translated into a valid
schedule. Under this unified mathematical framework, we can ap-
ply a variety of powerful optimizations to a broad spectrum of de-
sign applications.

The remainder of this paper is organized as follows: Section 2
gives the preliminaries and the problem formulation; Section 3
presents our SDC-based scheduling algorithm; Section 4 reports
the experimental results followed by the conclusions in Section 5.

2. PROBLEM STATEMENT
This section gives the preliminaries and the problem formulation

of our scheduling algorithm.

2.1 Preliminaries
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Figure 1: A CDFG example.

The scheduling algorithm is typically performed on the control
data flow graph (CDFG). In this work we assume a two-level CDFG
model which is defined below.

Definition 1. A CDFG is a directed graph G(VG, EG) where
VG = Vbb ∪Vop and EG = Ec ∪ Ed . Vbb is a set of basic blocks
(i.e., data flow graphs (DFGs)). Vop is the entire set of operation
nodes in G, and each operation node in Vop belongs to exactly one
basic block. Data edges in Ed denote the data dependencies be-
tween operation nodes. Control edges in Ec represent the control
dependencies between the basic blocks. Each control edge ec ∈ Ec
is associated with a branching condition bcond(ec).

Figure 1 shows the CDFG for a greatest common divisor (GCD)
algorithm, in which the dashed lines represent control dependencies
and the solid lines represent data dependencies.

In general, the results of a scheduler can be captured by an FSM-
style state transition graph (STG) which is described as follows:

Definition 2. An STG is a directed graph Gs(s0, Vs, Es). Vs rep-
resents a set of control states with the initial state s0. Each control
state s ∈Vs contains a set of operations OP(s) and each operation
op is associated with a guard condition gc(op) to guard its exe-
cution. Es is the set of transitions between the control states and
each transition tr is associated with a transition condition tc(tr).

2.2 Problem Formulation
The scheduling problem we seek to solve in this paper is for-

mally stated as follows:
Given: (1) A CDFG G(VG, EG); (2) A set of scheduling con-

straints C which may include dependency constraints, resource
constraints, latency constraints, cycle time constraints, and relative
timing constraints.

Goal: The scheduler constructs an STG Gs so that every oper-
ation is assigned to at least one state in Gs and all constraints in
C are satisfied. In the meantime, the final latency in a particular
performance measure is minimized.

3. SDC-BASED SCHEDULING
In this section we present our SDC-based scheduling algorithm

to solve the problem formulated in Section 2.2.

3.1 Scheduling Variables
To formally capture the schedule of an operation node in the

CDFG, we introduce the concept of scheduling variables, which
is defined as follows.

Definition 3. Given a CDFG G(Vbb ∪Vop, Ec ∪Ed), each node
v∈Vop is associated with a set of scheduling variables {svi(v) | i∈
[0, Lv]} where Lv = Latency(v)

• ∀v ∈Vop, ∀ i ∈ [0, Lv] : svi(v) ∈ N∪{0}
• If Lv ≥ 1, ∀v ∈Vop, ∀ i ∈ [1, Lv] : svi(v) = svi−1(v)+1

• Let svbeg(v) ≡ sv0(v) and svend(v) ≡ svLv(v)

We create one or more scheduling variables for an operation
node depending on its pipeline latency.1 The value of a schedul-
ing variable essentially captures the relative temporal position (in
terms of control state) of an operation node (or one pipeline stage of
an operation node) in the final schedule. For instance, sbeg(v) = K
indicates that, in the STG, the longest simple path (without consid-
ering the loop-back transitions) from the initial state to the starting
state of v has a length of K. Particularly, when the input is a pure
DFG, the scheduling variables directly correspond to the absolute
node schedules in terms of control steps.

3.2 Modeling Scheduling Constraints
Using the scheduling variables, we can mathematically model

the scheduling constraints as a set of difference constraints.

Definition 4. An integer difference constraint is a formula in
the form of x−y ≤ b for integer variables x and y, and a constant b.

1For the sake of simplicity, we only consider sequential multicycle
operations in this paper. However, our algorithm can easily handle
combinational multicycle operations.



In the following, we describe how different kinds of schedul-
ing constraints can be expressed in terms of the integer difference
constraints (difference constraints, for short). Specifically, three
types of scheduling constraints are investigated: dependency con-
straints, timing constraints, and resource constraints. We model the
dependency constraints and timing constraints exactly and model
the resource constraints heuristically.

For the sake of convenience, we temporarily remove the loop
back edges before constructing the difference constraints. Thus the
remaining CDFG becomes an acyclic graph. Nevertheless, these
edges will be considered when we generate the objective function
and when we construct the final STG. In addition, we polarize each
basic block bb by adding two artificial nodes — that is, the super-
source ssrc(bb) and the super-sink ssnk(bb).

3.2.1 Dependency Constraints
Dependency constraints are primarily due to data dependencies

and control dependencies, which are explicitly exposed by the data
edges and control edges in the input CDFG.

(i) Data dependency constraint: Data dependencies form the
intrinsic scheduling constraints that have to be satisfied to preserve
the functionality of the input description. To be more concrete, if
there is a data edge from node vi to node v j , then v j cannot be
scheduled unless vi has completed its execution.

∀e(vi, v j) ∈ Ed : svend(vi)− svbeg(v j) ≤ 0 (1)

(ii) Control dependency constraint: The control dependencies
are also honored in this study. Specifically, if there is a control edge
from basic block bbi to basic block bb j, the operation nodes of bb j
are not allowed to be scheduled before those of bbi. To formally
capture this constraint, we specify the following equation on the
super-sink of bbi and the super-source of bb j .

∀ec(bbi, bb j) ∈ Ec : svend(ssnk(bbi))− svbeg(ssrc(bb j)) ≤ 0 (2)

3.2.2 Timing Constraints
Many timing constraints for behavioral synthesis can be effi-

ciently transformed to the difference constraints in scheduling vari-
ables. Among the most commonly used ones are relative timing
constraints, latency constraints, and cycle time constraint.

(i) Relative timing constraints: Two types of relative I/O timing
constraints are supported in this work.

a. A minimum timing constraint li j between vi and v j ensures
that v j follows vi by at least li j number of clock cycles:

svbeg(vi)− svbeg(v j) ≤−li j (3)

b. A maximum timing constraint ui j between vi and v j limits the
maximum latency distance between two operations:

svbeg(v j)− svbeg(vi) ≤ ui j (4)

Note that combining equations (3) and (4) allows us to specify
the exact latency distance between two operations.

(ii) Latency constraint: A latency constraint is typically used to
specify the maximum acceptable latency over a subgraph of CDFG
that has an entry block bbi and an exit block bb j; for example, one
single basic block, a loop body, a nested if-then-else construct, etc.
Latency-constrained blocks should not contain loops.

Suppose that a latency constraint Tlat is specified spanning bbi
through bb j . We then generate the following difference constraint.

svend(ssnk(bb j))− svbeg(ssrc(bbi)) ≤ Tlat (5)

(iii) Cycle time constraint: To ensure that the operating fre-
quency of the synthesized RTL implementation meets the target, a

cycle time constraint is often used to constrain the maximum com-
binational delay within a clock cycle.

We define a combinational path cp(vi1 , vik ) between a pair of op-
eration nodes vi1 and vik to be a sequence of operation nodes and the
data edges that connect these two nodes together, i.e., cp(vi1 , vik ) =
{vi1 ,e<i1,i2>,vi2 , ...,e<ik−1,ik>,vik} where ∀ i ∈ [2, k], e<ik−1, ik> =
e(vik−1 , vik ) ∈ Ed . Particularly, a critical combinational path
ccp(vi1 , vik ) between nodes vi1 and vik is the combinational path
with the largest delay, i.e., D(ccp(vi1 , vik )) = max{D(cp(vi1 , vik ))}
where D(cp(vi1 ,vik )) =

k
∑

s=1
d(vis)+

k
∑

s=2
d(e<is−1, is>) with d(v) de-

noting the computation delay and d(e) denoting the communication
delay. Note that d(e(vi,v j)) represents the estimated interconnect
delay between the modules that implement operations vi and v j .

Suppose that the target cycle time is Tclk. For the node pair vi and
v j with D(ccp(vi,v j)) > Tclk, we construct a difference constraint
as follows:

svbeg(vi)− svbeg(v j) ≤−(�D(ccp(vi,v j))/Tclk�−1) (6)

Equation (6) states that the combinational path with total delay
exceeding the target cycle time Tclk must be partitioned into at least
�D(ccp(vi,v j))/Tclk� number of clock cycles.

3.2.3 Resource Constraints
Since resource-constrained scheduling problem is NP-hard in

general, in this work we heuristically transform the resource con-
straints into a set of difference constraints by introducing a set of
linear orders.

We define a feasible linear order V π
op|bbi for each basic block

bbi to be one particular topological order of the underlying DFG
of bbi. Given a linear order V π

op|bbi , we examine the resources that
have limited availabilities. Suppose that the number of functional
units available of type resk is cresk . For any node pair vπ

i and vπ
j with

Res(vπ
i ) = Res(vπ

j ) = cresk , if there exist cresk −1 nodes of resource
type resk between vπ

i and vπ
j in V π

op|bbi , we impose the following
difference constraint on vπ

i and vπ
j .

svbeg(vπ
i )− svbeg(vπ

j ) ≤−Latency(vπ
i ) (7)

Equation (7) enforces a precedence relationship between nodes
vπ

i and vπ
j so that vπ

j has to be scheduled in a separate state after vπ
i . 2

By adding this type of constraint for every other cresk nodes of type
resk, we can locally obtain up to cresk precedence chains among
the operation nodes of type resk. To handle the entire CDFG, we
process the basic blocks in a top-down manner using the breadth-
first search (BFS) and insert the precedence edges along the ex-
ecution traces across the basic block boundaries. In the end, we
will form up to cresk precedence chains for any particular execution
trace. Since the operations that belong to different execution traces
are mutually exclusive, each control state will contain at most cresk

concurrent operations of type resk. Therefore, the resource con-
straints will be resolved for a general CDFG.

The linear order generation is an important step in our sched-
uler to achieve high-performance schedules. In the experimenta-
tion for this study, to derive the linear order for each basic block,
we sort the operations in ascending order using the As-Late-As-
Possible (ALAP) label as the primary key and then use As-Soon-
As-Possible (ASAP) label as the tie breaker. This automatically
subsumes a static list schedule [10] which has been shown to pro-
duce good quality results for DFGs. However, our scheduler does

2Note that Equation (7) assumes a non-pipelined resource. To
enable resource pipelining, we simply change the equation to
svbeg(vπ

i )− svbeg(vπ
j ) ≤−II, where II is the initiation interval.



not limit itself to list-scheduling-based orderings. Any algorithm
that generates feasible linear orders can be applied as an orthogo-
nal technique to complement our scheduler.

3.3 Solving System of Difference Constraints
The constraint equations described in the preceding sections

form a system of difference constraints.

Definition 5. A system of difference constraints SDC(X , C)
consists of a set X of variables and a set C of linear inequalities of
the form x j − xi ≤ bk, where 1 ≤ i, j ≤ n and 1 ≤ k ≤ m.

This restricted form of linear constraints has a convenient graph
representation, called constraint graph. This graph can be con-
structed by representing every variable as a vertex, and constraint
x− y ≤ b as a b-weighted edge from y to x.

THEOREM 1. An SDC is consistent (or feasible) if and only if
its constraint graph has no negative cycles.

To detect the presence of negative cycles, we can solve a single-
source shortest-path problem on the constraint graph. Using the
Bellman-Ford algorithm, the time complexity is O(mn) where n is
the number of variables and m is the number of constraints. In ad-
dition, an efficient incremental algorithm has been proposed in [19]
to determine if the new system is feasible and update its solution in
O(m+nlogn) time when a constraint is added or modified.

Moreover, the underlying matrix of an SDC is a totally unimod-
ular matrix since every nonsingular square sub-matrix has a deter-
minant of 1 or -1. In the area of linear programming, if the con-
straint matrix is totally unimodular, the linear programming relax-
ation generates optimal integer solutions in polynomial time.

3.4 Linear Scheduling Objectives
As discussed in Section 3.3, we convert all the scheduling con-

straints into a totally unimodular matrix; together with a linear ob-
jective function we form a special class of LP problem which guar-
antees integer solutions. In this section we demonstrate that this
technique is especially powerful, as it allows various optimizations
by reformulating the objective function.

3.4.1 ASAP and ALAP scheduling
Given a DFG G(Vop, Ed), we can derive the ASAP schedule of

G using the following objective function.

min ∑v∈Vop
svbeg(v) (8)

Equation (8) states that we can achieve the earliest possible
schedules for all the operation nodes if the sum of their starting
schedules is minimized. This statement holds because the ASAP
schedule represents a unique minimizer of the objective function in
an unconstrained scheduling problem.

The ALAP schedule can be generated analogously by optimizing
the reverse of the objective function (8).

max ∑v∈Vop
svbeg(v) (9)

3.4.2 Optimizing Longest Path Latency
One commonly used performance metric is the longest path la-

tency, which refers to the maximum number of clock cycles re-
quired to execute a simple path (i.e., a path in which no operation
is repeated) from the entry to the exit of the input CDFG.

As mentioned in Section 3.1, the value of the scheduling variable
of a node v directly corresponds to the length of the longest simple
path from the initial state to the execution state of v in the STG.

Therefore, we can minimize the longest path latency by boosting
the schedule of the super-sink of the exit basic block (exit-bb(G))
in the input CDFG G.

min svend(ssnk(exit-bb(G))) (10)

3.4.3 Optimizing Expected Overall Latency
Note that the objective function in Equation (10) may lead to an

inferior schedule when repetitions are considered. For the sched-
ule in Figure 2(a), suppose that the loop iterates 100 times; we
then need to execute both S1 and S2 for 100 times. Thus the final
latency is 200 clock cycles. Figure 2(b) shows an alternative sched-
ule whose longest path latency is suboptimal (= 3). However, the
operations of basic blocks bb2, bb3, and bb4 are scheduled into a
single state. Therefore, the total latency is only 102 cycles.

≠≠≠≠

ΦΦΦΦ ΦΦΦΦ 

≤≤≤≤

−−−−
≠≠≠≠

−−−−
≠≠≠≠

ΦΦΦΦ 

bb1 

bb2 

bb3 bb4 

bb5 

S1 

S2 

≠≠≠≠

ΦΦΦΦ ΦΦΦΦ 

≤≤≤≤

−−−−
≠≠≠≠

−−−−
≠≠≠≠

ΦΦΦΦ 

bb1 

bb2 

bb3 bb4 

bb5 

S1 

S2 

S3 

(a) (b) 
 

Figure 2: Two alternative schedules for the example CDFG.

The above example clearly demonstrates the need for optimizing
the expected overall latency. Since the actual execution traces are
typically data-dependent, it is generally difficult to make an accu-
rate static estimation of the final latency of a CDFG. In this case,
we try to approximate the expected latency by a linear function of
scheduling variables based on the profiling information of the in-
put design. For the same CDFG, suppose that we have a uniform
branching probability of 0.5 and the estimated loop iteration count
is 100; we can then minimize the following linear function to op-
timize the expected overall latency. For brevity, we use x0(i) to
denote svbeg(ssrc(bbi)), and x1(i) to denote svend(ssnk(bbi)).

min [x1(1)− x0(1)]+0.5×100× [0.5× (x1(3)− x0(2))
+0.5× (x1(4)− x0(2))]+ [x1(5)− x0(5)] (11)

In equation (11), the first term and the third term capture the
latency on bb1 and bb5, respectively; the second term captures the
average latency on the loop.

To derive the appropriate objective functions for general CD-
FGs with complex conditional branches and nested loops, we can
employ an iterative approach to traverse the loop hierarchy in a
bottom-up manner. At each iteration, we first process the inner-
most loops and compute the corresponding linear expressions. We
then collapse those loops into super-nodes and combine the linear
equations on the fly.

3.4.4 Optimizing Slack Distribution
Another possible use of our flexible objective function is to opti-

mize the slack distribution within a schedule. We define slack to be
the amount of extra delay an operation (node slack) or a data trans-
fer (edge slack) can tolerate without violating any scheduling con-
straints. There can be various uses for this extra amount of allowed
time. For example, node slack can be exploited by intentionally



slowing down the module executing this operation for area/power
reduction [6]. Edge slacks are useful in accommodating the poten-
tial long interconnect delays to achieve fast timing closure [20].

To maximize the total edge slacks, we can add equation (12) into
the objective, in which indeg(v) and outdeg(v) are the in-degree
and out-degree of a node v, respectively.

max∑e(vi, v j)∈Ed
[svbeg(v j)− svbeg(vi)] =

max∑vi∈Vop
[(outdeg(vi)− indeg(vi))× svbeg(vi)]

(12)

To maximize the total node slacks, we can use the node-splitting
method suggested by [6] to transform the problem into a maximum
weighted edge slack problem.

3.5 Complexity and Optimality Analysis
Given a CDFG G(VG, EG) = G(Vbb ∪Vop, Ec ∪Ed), the number

of scheduling variables n is O(|VG|), and the number of constraints
m is O(|VG|2). The time complexity of the difference constraint
generation is O(|Vop|(|Vop|+ |Ed |)). This is primarily due to the
cycle time constraint generation process, in which we need to use
BFS to compute the critical combinational path delays for up to
|Vop| times. The LP model formed by the SDC can be solved op-
timally in polynomial time with integer solutions. In addition, this
specific LP problem is dual to the min-cost network flow problem
which is solvable in O(n2(m+nlogn)logn) time.

THEOREM 2. The SDC formulation for the objectives (8)–(12)
can be solved optimally in polynomial time.

3.6 STG Generation
Given an LP solution, each scheduling variable is assigned an

integer value. We then take a three-step approach to translate these
values into an actual schedule in STG representation.

Step 1. Construction of control states: First, for each ba-
sic block bb, we create a sequence of states sl(bb), sl+1(bb) ...,
su(bb) where l = svbeg(ssrc(bb)) and u = svend(ssnk(bb)). For
any forward control edge ec(bbi, bb j) with svend(ssnk(bbi)) =
svbeg(ssrc(bb j)), the corresponding states su(bbi) and sl(bb j) are
unified. Next, we deploy each operation v into one or more control
states. Specifically, if v belongs to basic block bb, we assign it to
states sb(bb), ..., se(bb) where b = svbeg(v) and e = svend(v).

Step 2. Construction of guard conditions: It is possible that
certain operations are conditionally executed within their parent
state. We derive the operation guard conditions in two sub-steps:

First, given a control state s with an operation set OP(s), we
identify the parent basic block set PBB(s) of OP(s), and locate the
nearest common dominator dom for PBB(s) in the original CDFG.

Next, for each basic block bb ∈ PBB(s), we compute a boolean
expression ac(bb) which indicates the necessary condition to acti-
vate a control path from dom to bb. Such a condition expression has
the general form of

∨

p∈P(dom→bb)

∧

ec∈p
bcond(ec), and these condi-

tions can be derived accumulatively by a BFS from dom to the basic
blocks in PBB(s). Eventually for each operation op we set its guard
condition gc(op) = ac(bb) where bb is op’s parent basic block.

Step 3. Construction of state transitions: It is straightforward
to build the state transitions by examining the control edges in the
CDFG. We can connect the source state to the appropriate target
states under different branching conditions.

3.7 Comparison with Other Approaches
Compared to prior approaches, the SDC-based scheduling algo-

rithm showcases the following capabilities:
1. Applicable to a broad spectrum of applications: Our sched-

uler can generalize the ASAP/ALAP and list scheduling techniques

to schedule the data-flow-intensive portions of a behavioral design.
In the meantime, global optimizations can be performed over the
complex control flows with low computational complexity. Fur-
ther, both untimed and partially timed descriptions are supported.

2. Amenable to a rich set of scheduling constraints: With the
SDC-based formulation, our scheduler honors a variety of schedul-
ing constraints that can be either derived from the input description
(e.g., dependency constraints) and target platform (e.g., resource
limits), or specified by the users (e.g., frequency constraint).

Note that similar constraint modeling techniques are used in
VOTAN [16]. However, they approach the problem from a retiming
perspective and only solve the rescheduling problem.

3. Capable of a variety of synthesis optimizations: Our sched-
uler systematically supports operation chaining when modeling
the frequency constraint and allows multicycle resource pipelining
when resolving the resource constraints. We can also use relative
timing constraints to enable behavioral templates [15]. Moreover,
incremental scheduling can be efficiently performed by making lo-
cal changes to the SDC.

4. Responsive to interconnect delays: Our scheduler can di-
rectly handle the layout information and account for the intercon-
nect delays during scheduling.

It is worth noting that the presented scheduling techniques do
not perform any speculative code motions. However, we believe
that our algorithm can be naturally extended to support this opti-
mization by selectively relaxing the control dependencies.

4. EXPERIMENTAL RESULTS
We implemented the SDC-based scheduling algorithm in our

xPilot behavioral synthesis system [4], which can take behavioral
C as input and output RT-level VHDL along with the design con-
straints (e.g., multicycle path constraints) for downstream CAD
tools. In this experiment we target the Altera Stratix FPGAs [1],
using Quartus II v5.0 for RTL synthesis and physical design.

4.1 Results on Our Benchmarks
We have tested our SDC-based scheduler on five benchmarks

with different characteristics. They are profiled in Table 1 by the
operation count, basic block count, and loop count. PR and DIT
are two discrete cosine transform (DCT) algorithms with pure data
flows. DWT implements the discrete wavelet transform algorithm.
This benchmark contains a large amount of computations and
memory accesses. CACHE is a cache controller which is control in-
tensive and has many cycle-accurate I/O operations. EDGELOOP
is extracted from the deblocking filter of an H.264/AVC decoder. It
features a mix of computation, controls, and memory accesses.

Table 1: Five benchmarks with different characteristics.
Benchmark Op# BB# Loop# Resources
PR 59 1 0 5+, 3*
DIT 88 1 0 5+, 3*
DWT 165 11 7 5+, 3*, 2[]
CACHE 166 34 1 5+, 2[]
EDGELOOP 703 124 5 5+, 3*, 2[]

The resource constraints specified for each benchmark are also
listed in Table 1, where “+” denotes an ALU that does addition
and subtraction, “∗” is a multiplier, and “[ ]” denotes a memory
read/write port.

We optimize longest path latency (10) as the primary objective
and linearly combine maximum edge slack as the secondary objec-
tive (12). We set the target cycle time to be 10ns for EDGELOOP
which is the the most complex design. For the rest of the designs,
we use 5ns as the target clock period. Typical runtimes of our



scheduler on these designs are within two seconds on a 2.4GHz
Pentium 4 Linux PC. The synthesis results are shown in Table 2.
The total number of control states generated by the SDC-based
scheduling algorithm is shown in the second column of Table 2. We
also list the estimated worst-case cycle counts in the third column
for the scheduled designs. The final frequency (in MHz) and the
resource usage (including logic element count and DSP9x9 block
count) results are shown in the last three columns.

Table 2: SDC-based scheduling results on our benchmarks.
Benchmark State# Cycle# Fmax LE# DSP#
PR 8 8 159.5 508 32
DIT 10 10 174.2 592 28
DWT 51 6926 183.6 1926 128
CACHE 47 * 161.6 371 0
EDGELOOP 107 * 100.1 7440 80
* Design contains loops with data-dependent iteration counts

To validate the quality of results of our scheduler, we make com-
parisons with SPARK [7] on the same benchmark suite. SPARK
is a state-of-the-art academic behavioral synthesis system which
also synthesizes C descriptions into VHDLs. As mentioned in Sec-
tion 1, SPARK features a list-scheduling-based heuristic with the
capability of performing global speculative code motions. How-
ever, SPARK does not support relative timing constraints, and it
only handles the loops with fixed constant iteration counts.

Table 3: SPARK results on our benchmarks.
Benchmark State# Cycle# Fmax LE# DSP#
PR 8 8 134.3 462 32
DIT 10 10 130.7 724 28
DWT 53 7884 – – –

The synthesis results of SPARK are shown in Table 3. Under the
same frequency and resource constraints, SPARK produces similar
cycle count and area results on two DCT benchmarks. However,
their final frequencies are inferior to ours by 25% since we can effi-
ciently distribute the edge slacks to accommodate the interconnect
delays. For DWT design, we are unable to obtain the final results
on FPGA for SPARK due to its inefficient memory handling.3 Fur-
ther, SPARK fails on CACHE and EDGELOOP due to its lack of
support for relative timing constraints and general loop constructs.

4.2 Results on SPARK’s Benchmarks

Table 4: Four SPARK’s benchmarks.
Benchmark Op# BB# Loop# Resources
ADPCM-dec 59 31 1 2+, 1*, 2<<, 2<, 2[]
ADPCM-enc 59 41 1 2+, 1*, 2<<, 2<, 2[]
GIMP-tiler 150 34 2 3+, 1*, 1/, 2<<, 2<, 2[]
MPEG-dpframe 236 37 4 4+, 1*, 2<<, 2<, 2[]

We make further comparisons with SPARK using another four
designs from SPARK’s benchmark suite. These designs are de-
scribed in Table 4, where “<” is a comparator and “<<” is a shifter.

Since all of these four benchmarks contain memory (array) ac-
cesses, we only compare the worst-case cycle counts of the sched-
uled designs. The results are shown in Table 5. We set a 10ns target
cycle time for both schedulers. Although currently our scheduler
does not perform any speculative code motions, we can still effi-
ciently schedule the multiple simple basic blocks (e.g., an if-then-
else construct) into a single state and perform operation chaining to
reduce the cycle count without violating the frequency constraint.
On average, our scheduler is 16% better than SPARK in terms of
the estimated worst-case total number of clock cycles.
3SPARK currently flattens all the arrays into primary input/output
pins. This makes the synthesized RTL infeasible for implementa-
tion on the target FPGA device with limited I/O resources.

Table 5: Our scheduler vs. SPARK: Cycle count comparison.

Benchmark
SPARK SDC SDC /

State# Cycle# State# Cycle# SPARK
ADPCM-dec 15 327 13 278 0.85
ADPCM-enc 16 133 13 112 0.84
GIMP-tiler 27 2234 32 1877 0.84
MPEG-dpframe 32 424 35 352 0.83

5. CONCLUSIONS AND ONGOING WORK
This paper presents an SDC-based scheduling algorithm which

provides efficient solutions for a wide range of application domains
and honors a rich set of design constraints. The experimentation
demonstrates that the proposed technique can effectively optimize
system performance. We are currently enhancing our scheduler to
incorporate speculative execution and loop pipelining.
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