
Behavior and Communication Co-Optimization for
Systems with Sequential Communication Media

Jason Cong, Yiping Fan, Guoling Han, Wei Jiang, Zhiru Zhang
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095, USA

{cong, fanyp, leohgl, wjiang, zhiruz}@cs.ucla.edu

ABSTRACT
In this paper we propose a new communication synthesis approach
targeting systems with sequential communication media (SCM).
Since SCMs require that the reading sequence and writing
sequence must have the same order, different transmission orders
may have a dramatic impact on the final performance. However,
the problem of determining the best possible communication order
for SCMs is not adequately addressed by prior work. The goal of
our work is to consider behaviors in communication synthesis for
SCM, detect appropriate transmission order to optimize latency,
automatically transform the behavior descriptions, and
automatically generate driver routines and glue logics to access
physical channels. Our algorithm, named SCOOP, successfully
achieves these goals by behavior and communication co-
optimization. Compared to the results without optimization, we
can achieve an average 20% improvement in total latency on a set
of real-life benchmarks.

Categories and Subject Descriptors
B.4.4 [Hardware] Input/Output and Data Commutations

General Terms
Algorithms, Performance, Experimentation

Keywords
Communication, FIFO, Optimization, Scheduling, Reordering

1. INTRODUCTION
With the rapid increase of complexity in system-on-a-ship (SoC)
design, the synthesis community is moving from RTL (register
transfer level) synthesis to a higher level of abstraction (e.g.,
behavioral-level and system-level synthesis). Two of the essential
problems related to system-level design are partitioning and
communication synthesis. The goal of partitioning is to distribute
and parallelize the functionalities of a system to subsystems.
Communication synthesis is another important sub-task for
system-level synthesis [2]. Typical communication synthesis
techniques adopt a top-down approach, including the following
steps: (i) channel binding and network synthesis (e.g., [3][6][12]);
(ii) protocol refinement (e.g., [4]); (iii) interface synthesis (e.g.,
[6][9][10][11]). The communication synthesis approach proposed

by Yen in [3] handles the network topology generation. Their
algorithm can create new PEs and buses to meet the design time
constraints. Some platform-based approaches such as Daveau’s
work in [5], take a given communication library and solve channel
binding, protocol refinement and interface generation in a more
integrated way as a binding problem. In [7] Knudsen incorporates
the communication protocol selection as a design parameter within
the hardware/software partitioning.
Most of the aforementioned approaches [3][4][6][8][9][10][11]
consider communication synthesis as the final step of the co-
synthesis systems, and the behavior of each subsystem is retained
during communication synthesis. However, this type of approach
may lose optimization opportunities, especially when SCMs
(sequential communication media) are used to implement the
communication channels. The transmission order of SCMs may
have a dramatic impact on the performance of the entire system.
According to our experiments on several real-life designs, the
performance may be 2X better if the order is carefully optimized.
A well-known example is the fast simplex link (FSL) [20] in
Xilinx FPGAs. Buses could be also considered as an SCM with
respect to each transaction from one specific master to a slave.
An example is shown in Figure 1. Figure 1(a) shows the original C
description of an application, which is a matrix multiplication
algorithm. Suppose after the design exploration step, as shown in
Figure 1(b), the system-level synthesis engine decomposes the
system into two processes, one for generating arrays A and B, and
the other for matrix multiplication. An abstract channel is
introduced to transfer A and B. In Figure 1(c) the two processes
are mapped to two processing elements (PE), and communicate
data through a FIFO. A better order than the native row-based
layout order is shown in Figure 1(d), which sends the two matrices
in an interleave fashion, and calculates the product based on the
data received. Our simulation result shows a 17% improvement in
total latency with the new order.
Our approach to communication synthesis mainly focuses on the
following objectives: detect the optimal communication order and
computation order for data communication on SCM to optimize
total latency; transform the behavior description based on the
computation order, and automatically generate drivers and glue
logics. To our knowledge, this is the first work that integrates
behavior transformation with communication optimization at the
communication synthesis step.
The remainder of our paper is organized as follows: Section 2
formally defines our problem. An algorithm to solve this problem
is explained in details in Section 3. Section 4 shows the
experimental results and is followed by our conclusions in Section
5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA..
Copyright 2004 ACM 1-59593-381-6/06/0007…$5.00.

Process 2

Process 1

for (int i=0; i<N; i++)
for (int j=0; j <N; j++)

S1: A[i][j] = …;
for (int i=0; i<N; i++)

for (int j=0; j <N; j++)
S2: B[i][j] = …;

for (int i=0; i<N; i++)
for (int j=0; j<N; j++) {

S3: C[i][j] = 0;
for (int k=0; ...

}

(a)

for (int i=0; i<N; i++)
for (int j=0; j<N;

j++)
S1: A[i][j] = …;

for (int i=0; i<N; i++)
for (int j=0; j<N; j++) {

S3: ...
}

(b)

Custom
Logic

Processor

Process 1 Process 2

Channel c

PE1

FIFO

A[N][N], B[N][N]

PE2
(c)

A

B

A

B

A

B

A

B

C

(d)

Figure 1. (a) Original C description; (b) Process network
model after partitioning; (c) Hardware implementation model;
(d) A better order than the native row-based order.

2. PROBLEM DESCRIPTION
In our SCM communication optimization approach, we assume
that a set of processes P = {pi | i = 1, 2... n} is given. Since FIFO
is widely used in practice, in the following context we will not
distinguish SCM and FIFO. The behavior for each process pi, is
captured by a control data flow graph (CDFGi). A CDFG contains
a set of basic blocks connected by control edges. Each basic block
is a data flow graph, in which a node represents an operation and
an edge represents a data dependency between two nodes.
For each process pi, we assume that it is already allocated to one
physical processing element PEi. The characteristics of each PEi,
such as delay, area and power, can be obtained from the target
platform specification. Design constraints such as resource
constraints and timing constraints are associated to each process as
well.
Processes communicate via a set of abstract channels C. Each
abstract channel ci is associated with a data set D = {d1, d2… dm}
to be transferred from the producer process to the consumer
process. As mentioned before, Figure 1 shows an example of a
process network and physical channels.
With the above notions, we can formulate the SCM
communication synthesis problem as follows:
Problem: Given a set of processes P connected by channels in C,
and a set of data D = {d1, d2, …, dm} to be transmitted on each
channel cj, find the optimal transmission order based on the CDFG
of each process, such that the overall latency of the process
network is minimized subject to the given design constraints and
platform specification, and generate drivers and glue logics for
each process automatically.
This problem can be divided into three sub-problems:
(i) Communication order detection: Given the CDFG model of
each process, the data to be transmitted and the platform
information, we detect the optimal transmission order to minimize
the total latency.
(ii) Code transformation: To enable the optimal communication
reordering, we may also need to change the computation order in

the appropriate behavioral models. These changes are carried out
without violating the data dependency.
(iii) Interface generation: We generate interface drivers and glue
logics for given physical channels.

3. SCOOP ALGORITHM
This section introduces our overall design flow to solve the SCM
optimization problem. First, we try to detect the optimal order.
Based on that order, we then automatically transform the code and
generate the interfaces. An indices compression step is performed
to further reduce loop transformation overhead. Our algorithm is
called SCOOP (SCM CO-OPtimizaiton).

3.1 Communication Order Detection
In this step we try to find a transmission order of data
communication that leads to the minimum latency, with the
freedom to change the order of computations in processes as well.
In particular, we show that our problem can be transformed to the
resource-constrained scheduling problem. The main steps of our
communication order detection algorithm are outlined below.
Step 1: Construct a global CDFG by merging the individual
CDFGs of each process in the process network.
Step 2: Change each data element d which is transmitted by SCMi
to a special type of operation Ti. At most k number of Ti operations
can be executed at any point of time for each SCMi, where k is the
number of concurrent operations allowed on SCMi (typically, k
equals one for a FIFO). We then set up the correct data
dependencies by linking the definition and uses of d to Ti.
Step 3: Solve a resource-constrained scheduling problem to
optimize the total latency of the global CDFG.
Figure 2(a) shows a simple process network with two processes
communicating by FIFO. In this example, we are transmitting
three elements. Using the original order (1, 2, 3), the final total
latency is seven cycles, as shown in Figure 2(b). If we add the T-
type operations and the appropriate data dependencies to obtain
the global CDFG, we can reduce the totally latency to five cycles.
The new schedule is shown in Figure 2(c) and the corresponding
communication order is (1, 3, 2) which maximizes the overlap of
computations and communications.
Theorem: Solving the order detection problem is equivalent to
solving the resource constrained scheduling problem on the global
CDFG constructed in Step 2, and we can obtain the optimal
solution if the algorithm used in Step 3 gives the optimal solution.
Proof: Since we assume that each FIFO has a fixed transfer delay,
it could be viewed as a special hardware resource. We could
enforce the resource constraints in the scheduling problem as
follows: There are |C| types of transmission resources T = {tr1,
tr2 … tr|c|} where C is the set of available FIFOs in the process
network. Hence, we are able to reduce the problem to the
resource-constrained scheduling problem on the global CDFG
constructed in Step 2.
The scheduling problem with resource constraints is NP-complete
in general. In this work we adopt a list-scheduling-based algorithm
to solve our problem. List scheduling [13] is one of the most
popular techniques for the resource-constrained scheduling. In our
case, we combine the ALAP (as late as possible) and ASAP (as
soon as possible) schedules to prioritize the operations.

Process 1

Process 2

+ +

(a) (b) (c)

T1 T2
T3

− −

*

−

−

+

T1

T2

T3

−

−

*

−

−

+

T1

T2

T3

−

−

*

−

Figure 2. (a) Merged CDFG; (b) Scheduling result with order
(1, 2, 3); (c) Scheduling result with order (1, 3, 2).
Note that the traditional list scheduling algorithm primarily works
well on the data flow graphs. Nevertheless, we can further extend
our algorithm to handle loop-intensive and data-intensive designs
with control flows, which prevail in the multimedia processing
domain. To apply our algorithm to general CDFGs, we try to
collapse a CDFG C to a DFG D. For an if-then-else statement, our
algorithm treats this structure as a non-decomposable operation in
D, and takes the longest execution path as the latency. With a for
loop, we cannot simply change the loop body into one operation
since it may iterate multiple times. In one loop iteration, we
change the loop body to a set of nodes in the new DFG D, and
calculate indices for each array access. The iteration spaces in C
are then fully expanded in D. Currently we do not perform any
optimizations on more general loops (e.g. while loops). However,
users may choose to restructure a while loop into a for loop if the
iteration bound can be derived from the program.
After the above transformations, the size of D may become much
larger than the original CDFG. However, after the order detection
step, we will use the code transformation techniques described in
the following section to compress a set of nodes in D back into a
loop structure.

3.2 Code Transformation
Once we obtain the optimal communication order, we need to
make necessary changes to the original behaviors, as well as
generate the drivers and the glue logics for those processes.
For DFG cases, the code transformation and interface generation
are quite straightforward. We dump the behavior of each process
based on the computation order we obtained, and insert drivers
and glue logics for each process. If the computation order is
consistent with the data communication order, drivers and glue
logics are inserted immediately when the data is ready to be read
or written to the physical channel; otherwise, we should delay the
interface generation for one element until all the elements, which
should be transmitted earlier, have been processed.
The main difficulties in dealing with for CDFG code
transformation are the loops. Since the loop iteration space has
been completely expanded in code detection, it is not feasible to
dump the expanded code directly. Therefore, we use the iteration
reordering technique to generate reconstructed loops. In the
compiler domain, a great deal of literatures focus on loop iteration
reordering [14][15]. Our approach does the loop transformations
in the compile-time, with auxiliary memory space to store the
reordered sequence for handling general loop transformations.
A loop’s iteration space is a set of integer tuples with constraints

indicating the loop bounds.

 J = {[j1, j2… jn] | lb1≤j1≤ub1 ∧…∧ lbn≤jn≤ubn}
Each iteration space has a function f: J Z+ to map the iteration
space to the logic time steps (Z+ denotes the positive integers). An
iteration-reordering transformation is expressed with a mapping T
that assigns each iteration vector ji in an original iteration space to
ji’ in a new iteration space, so that f(ji)=f’(j’i). An intuitive way to
implement iteration reordering is shown in Figure 3(b): a
reordering array (RA) is generated for each loop, and at the
beginning of each iteration, and we should read in the new
iteration vector from the RAs.

(a)

Before:

After:

{(0,0),(0,1),(0,2),(0,3),…..(4,0),(4,1),(4,2),(4,3),(4,4)}

{(0,0),(1,0),(2,0),(3,0),…..(0,4),(1,4),(2,4),(3,4),(4,4)}

// Reordering arrays
int RA_i = {0, 0, 0, 0,…4, 4, 4, 4} ;
int RA_j = {0, 1, 2, 3,…1, 2, 3, 4};
for (int i=0; i<N;i++)

for (int j=0; j<N; j++) {
int i’ = map_i(i);
int j’ = map_j(j);
A[i’][j’] = …;
fifo_write(A[i’][j’]);

}

(b) (c)

// After indices compression
for (int i=0; i<N;i++)

for (int j=0; j<N; j++) {
int i’ = j;
int j’ = i;
A[i’][j’] = …;
fifo_write(A[i’][j’]);

}

Figure 3. (a) Iteration space before and after order detection;
(b) Iteration reordering through reordering arrays; (c)
Transformed code after indices compression.
The overhead of above approach is a result of two factors: storage
overhead introduced by RAs and computational overhead of
memory access at the beginning of iterations. Pre-fetching can
reduce the computational overhead if the target PE supports
certain parallelism in execution. We also developed another
technique to reduce storage size which is called indices
compression. The problem is described as follows:
Problem: Given two sets of m-tuples {J1, J2 …Jn} and {J’1, J’2,…,
J’n} where each Ji (or Ji’) represents an indices vector of one
iteration, find the minimum number of intervals [pi, qi], satisfying
that within each interval there exists a (qi - pi + 1) × m matrix Mi,
such that
 Ji*Mi=J’i, for all pi≤i≤qi

It is clear that if we can find a matrix Mi for each interval [pi, qi],
we then can express the new iteration vector using a linear
combination of old indices variables. In Figure 3(c), the total
iteration vectors can be merged into one interval with Mi as a
reverse matrix, the new code after indices compression can
remove all those RAs. We solve this problem in a greedy but near-
optimal way. We start at an interval with zero length, and the
interval continues to grow as long as the above condition is
satisfied. If the current interval cannot grow any more, a new
interval is inserted. The condition test can be performed by solving
linear equations. If the number of intervals is small, then we can
transform the original loops into several loops. Otherwise, we will
store the start position of intervals and their matrices Mi in RAs,
and change the loop body to calculate reordered iteration vectors
based on current interval. In the worst case, after these
optimizations the overhead introduced by iteration reordering may
still offset the performance gain by reordering. However, in

practice, the number of intervals we generated is reasonably small
due to the regular patterns in the programs.

4. EXPERIMENTAL RESULTS
We implemented our SCOOP communication synthesis system in
C++/Unix environments. The target communication architecture in
this experiment is currently fixed to a two-process producer-
consumer model. Our SCOOP algorithm works as an optimization
pass in our platform-based system-level and behavior-level
synthesis infrastructure [1], which can take C or SystemC as the
input. The scheduler [17] inside our behavior-level synthesis
system is used to solve the scheduling problem mentioned in
Section 3.1. Without the SCM co-optimization, our system will
transmit data, including arrays and scalars, based on their original
program order, and each array is sent according to the memory
layout. After the SCM co-optimization, we will insert drivers to
access SCM based on the optimized order, as discussed before.
We use the mathematics library LAPACK++ [18] to solve linear
equations in indices compression. We generate the VHDL code
using the RTL backend of the system-level synthesis system for
both scenarios. To obtain the final latency, Modelsim [19] is used
as the simulator, and we developed a FIFO module in VHDL
which resembles the behaviors of the Xilinx FSL.
Benchmarks can be divided into two categories. One set of
benchmarks includes DCT1, DWT and Haar, which are all DFG
examples. The DCT1 example is an unrolled version of
chenDCT8x8, which does the row and column DCT
transformation on an 8x8 data block. The DWT example is part of
the JPEG2000 program. The Haar example implements a simple
Haar transformation in image processing. The comparison results
on those benchmarks are shown in Table 1. We can see that
SCOOP will improve about 10% on those three examples in terms
of latency in cycles.

Table 1 .Experimental results.
 Total latency (Cycle#) RAs Compression
Designs Trad. SCOOP Reduction Before After

DCT1 325 290 10.77% 0 0
DWT 689 617 10.45% 0 0
Haar 142 134 5.63% 0 0
DCT2 483 419 13.25% 80 64
Dot 1903 1084 43.04% 300 0
Masking 620 420 32.26% 192 0
Mat_mul 408 339 16.91% 96 20

Another set of benchmarks consists of CDFG examples, including
DCT2, Dot, Masking, and Mat_mul. The DCT2 example is the
CDFG version of chenDCT8x8. Mat_mul and Image masking are
all from Mediabench [16]. The Dot production example
implements a dot production algorithm. An average of 26%
improvement in total latency can be achieved for those examples,
as shown in Table 1. Intuitively our approach gets better results on
CDFG cases because CDFG has more control dependencies on
operations than DFG (e.g., the instructions in the loop body must
be executed consecutively), thus our decision will have a bigger
impact for CDFGs. As shown in Table 1, RA compression can
dramatically reduce the storage size (in number of integer data
entries) needed for iteration reordering.

5. CONCLUSIONS AND FUTURE WORK
In this paper the behavior-communication co-optimization
problem is addressed for SCMs, and a two-step approach is

developed to solve this problem. Our algorithm applies to both
DFG and CDFG. Experimental results demonstrate the efficacy of
our work. Our future work will focus on further reducing the
overhead introduced by reordering and applying the SCOOP
algorithm in our platform-based synthesis system for design space
exploration.

ACKNOWLEDGMENTS
This research is supported by the Semiconductor Research
Corporation, Gigascale Silicon Research Center, National Science
Foundation, and grants from the Altera Corporation, Magma
Design Automation, Inc., and Xilinx, Inc. under the California /
MICRO program.

REFERENCES
[1] Deming Chen, Jason Cong, Yiping Fan, Guoling Han, Wei Jiang,

Zhiru Zhang. xPilot: A Platform-Based Behavioral Synthesis
System. SRC TechCon’05, Portland, OR, Nov. 2005.

[2] T. B. Ismail, and A. A. Jerraya. Synthesis Steps and Design
Models for Codesign. IEEE Computer, Special Issue on Rapid-
Prototyping of Microelectronic Systems, 28(2):44-52, Feb, 1995.

[3] T. Yen and W. Wolf. Communication Synthesis for Distributed
Embedded Systems. In Proc. ICCAD, Nov. 1995.

[4] S. Narayan, and D. D. Gajski. Protocol Generation for
Communication Channels. In Proc. DAC, Jun. 1994.

[5] J. Daveau, G. F. Marchioro, and T. Ben-Ismail. Protocol
Selection and Interface Generation for HW-SW Codesign. IEEE
Transactions on VSLI Systems, 5(1):136-144, Mar. 1997.

[6] B. H. Chou, R. B. Ortega, and G. Boriello. The Chinook
Hardware/Software Co-Synthesis System. In Proc. ISSS, 1995.

[7] P. V. Knudsen and J. Madsen. Integrating Communication
Protocol Selection with Partitioning in Hardware/Software
Codesign. In Proc. 11th Int. Symp. System Synthesis, 1998.

[8] S. Narayan and D. Gajski. Synthesis of System-Level Bus
Specification in HDLs. In Proc. European Design Automat. Conf.
Euro-VHDL, pp. 395-399, Sept. 1993.

[9] P. Chou, R. B. Ortega, and G. Borriello. Interface Co-Synthesis
Techniques for Embedded System. In Proc. ICCAD, 1995.

[10] M. Luthra, et al. Interface Synthesis using Memory Mapping for
an FPGA Platform. In Proc. ICCD, 2003.

[11] J. Pino, M. C. Williamson, and E. Lee. Interface Synthesis in
Heterogeneous System Level DSP Design Tools. IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing, May 1996.

[12] J. Hu, and R. Marculescu. Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC
Architectures. In Proc. DATE Conf., Mar. 2003.

[13] R. Jain, A. Mujumdar, A. Sharma and H.Wang. Empirical
Evaluation of Some High-Level Synthesis Scheduling Heuristics.
In Proc. 28th DAC, pp. 686-689, Jun. 1991.

[14] M. E. Wolf and M. S. Lam. A Loop Transformation Theory and
an Algorithm to Maximize Parallelism. IEEE Trans. On Parallel
and Distributed Systems, 2(4), Oct. 1991.

[15] C. Ding and K. Kennedy. Improving Cache Performance in
Dynamic Applications through Data and Computation
Reorganization at Run Time. In Proc. PLDI, May 1999.

[16] C. Lee, M. Potkonjak and W. H. Mangione-Smith. MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and
Communications Systems. In Proc. International Symposium on
Microarchitecture, 1997.

[17] J. Cong and Z. Zhang. An Efficient and Versatile Scheduling
Algorithm Based on SDC Formulation. In Proc. DAC, 2006.

[18] Lapack++ API documentation. http://lapackpp.sourceforge.net.
[19] Mentor Graphics Website. http://www.mentor.com.
[20] Xilinx Website. http://www.xilinx.com.

