
Architecture and Synthesis for Multi-Cycle Communication

ABSTRACT
For multi-gigahertz designs in nanometer technologies, data
transfers on global interconnects take multiple clock cycles. In
this paper, we propose a regular distributed register (RDR)
micro-architecture for multi-cycle on-chip communication. An
RDR architecture structurally consists of a two-dimensional array
of islands, each of which contains a cluster of computational logic
and local register files. We also propose a new synthesis
methodology based on the RDR architecture. Novel layout-driven
architectural synthesis algorithms have been developed for RDR.
Application of these algorithms to several real-life benchmarks
demonstrates 44% improvement on average in terms of the clock
period and 37% improvement on average in terms of the final
latency.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS – Design Aids

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
RDR, multi-cycle communication, deep sub-micron, timing
closure, scheduling, binding, placement, interconnect

1. INTRODUCTION
There are two important inflection points in the development of
deep sub-micron (DSM) process technologies. One is when the
average interconnect delay exceeds the gate delay, which
happened during mid 1990’s and led to the timing closure
problem. The other is when we cannot reach every part of the chip
in a single clock cycle, which is happening now. It has been
shown in [1] that, even with the aggressive interconnect
optimization techniques (such as buffer insertion and wire-sizing),
7 clock cycles are still needed to go from corner-to-corner for the
predicted die-size in the 0.07µm technology generation, assuming
a 5GHz clock, based on NTRS’97 [2]. Although the exact clock
cycles may vary given the recent update of the roadmap [3], this

still clearly suggests that multi-cycle on-chip communication is a
necessity in multi-gigahertz synchronous designs. However, given
the fact that most existing design tools only deal with the first
problem but completely lack consideration of multi-cycle
communication, further system performance increase is at risk.
To address the multi-cycle communication problem, one can
explore the following design methodologies:
1. Asynchronous design: The state transitions of an

asynchronous design are triggered by events instead of
periodic clocks. This makes asynchronous designs operate
correctly, regardless of the delays on gates and wires [4].
However, due to the lack of design tools and performance
overhead, it only applies to a very limited class of circuits. In
general, it is unclear whether asynchronous designs can yield
high performance in practice.

2. Global asynchronous locally synchronous (GALS) design
[5]: In a GALS design, all major modules are designed in
accordance with proven synchronous clocking disciplines.
Each module is run from its own local clock. Data exchange
between any two modules strictly follows a full handshake
protocol. GALS hopes to combine the advantages of
synchronous and asynchronous design methodologies.
However, the overhead for the “self-timed wrapper” may
compromise both performance and area of the design.

3. Synchronous design with multi-cycle communication:
Synchronous design is still by far the most popular design
methodology. It is well understood and supported by the
mature CAD toolset. However, the ever increasing gap
between gate delays and interconnect delays requires the
handling of multi-cycle communication that cannot be
overcome by the traditional synchronous design flow. This
paper will focus on the synchronous designs and propose a
way to systematically handle multi-cycle communication.

In the context of the synchronous designs, several layout-driven
synthesis approaches have been proposed in recent literature to
alleviate the problem introduced by the long interconnect. At the
gate-level, simultaneous retiming and placement or floorplanning
is performed in [6][7] to optimize the register-to-register delay
(i.e., the clock period). Unfortunately, exploring multi-cycle
communication during logic synthesis has a big limitation. As
discussed in [8], the minimum clock period that can be achieved
by logic optimization is bounded by the maximum delay-to-
register (DR) ratio of the loops in the circu s. This requires the
consideration of multi-cycle communication during architectural
& behavioral synthesis. [10] proposed an a
approach which incorporates a performance
guide the post-layout scheduling. The tar

Jason Cong, Yiping Fan, Xun Yang, Zhiru Zhang
Computer Science Department

University of California, Los Angeles
Los Angeles CA 90095 USA

{cong, fanyp, yangxun, zhiruz}@cs.ucla.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’03, April 6–9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004…$5.00.
it

rchitectural synthesis
-driven placement to
get architecture they

proposed is the distributed-register architecture which helps to
explicitly separate the long interconnect delays from logic delays.
Under this architecture, [11] performed an integrated resource
sharing and placement to eliminate the slack time violation due to
the interconnect delays. Note that the irregular structure used by
both [10] and [11] may cause difficulty for interconnect delay
estimation. Regular circuit and layout structures [12] can be
employed to avoid this problem. Generally, regular structure
facilitates predictability and simplifies the implementation
process.
In this paper, we present a new synthesis methodology for
synchronous designs with multi-cycle communication. Our
contributions are as follows (i) we propose a regular distributed
register (RDR) micro-architecture which offers high regularity
and direct support of multi-cycle communication; (ii) we propose
synthesis methodology and develop novel architectural synthesis
algorithms which efficiently synthesize behavior-level input onto
the RDR architecture.
The remainder of the paper is organized as follows. Section 2
introduces the RDR architecture. Section 3 sketches our synthesis
methodology and the algorithms for RDR architecture. The
experimental results are shown in Section 4, followed by the
conclusions and future work in Section 5.

2. REGULAR DISTRIBUTED REGISTER
ARCHITECTURE
In this section, we propose a regular distributed register (RDR)
micro-architecture. It provides high regularity and direct support
of multi-cycle communication over global interconnects.

Global Interconnect

LCC

Reg. File

FSM

LCC

Reg. File

FSM

LCC

Reg. File

FSM

LCC

Reg. File
FSM

LCC

Reg. File

FSM

LCC

Reg. File

FSM

IC-2
IC-1

Figure 1. A 2××××3 island-based RDR architecture

An RDR architecture consists of a two-dimensional array of
islands. The size of each island is chosen such that intra-island
computation and communication can be done in a single clock
cycle. In other words, the data obtained from a local register can
be processed by a certain functional unit, and then be stored to a
local register within only one cycle.

Figure 1 illustrates a 2×3 island-based RDR architecture. Figure 2
details the structure of a single island, which consists of the
following components:
1. Local computational cluster (LCC): It contains the

computational elements of an island such as adders,
multipliers and dividers, etc. The size of the LCC is subject
to certain area constraints and a target clock period.

2. Register file: The dedicated local storages resides in the
register file. The registers are partitioned into k banks for 1
cycle, 2 cycle, … k cycle interconnect communication, under
the assumption that we need up to k cycles to cross the chip.
For example, Figure 1 shows a short interconnect labeled as
IC-1 and a long interconnect labeled as IC-2. IC-1 takes only
1 cycle and IC-2 takes 2 cycles. Therefore, the register that
drives IC-2 needs to hold its value for 2 clock cycles when
we transfer the data over IC-2. On the other hand, the register
that drives IC-1 only needs to hold 1 cycle for the
communication over IC-1.

3. Finite state Machine (FSM): The controller for the
computational elements is implemented as an FSM.

Local
Computational

Cluster
(LCC)

Register File

FSM

Wi

Hi

Cluster with area constraint
DIV

B
ank k

B
ank 1

Bank 2

ADD MUL

Figure 2. Components of a single island

As discussed in [10], one of the advantages of distributed register
architecture over centralized register architecture is that it can
achieve a short clock period and effectively reduce the overall
performance degradation due to the interconnect delay.
Since we distribute registers to each island, the delays of long
wires do not lengthen the clock period. The potential drawback of
this approach is that it may demand extra communication cycles
for inter-island data transfer. Fortunately, this can be properly
harnessed by a smart coarse placement to hide as many critical
data transfers as possible. The regularity from RDR architecture
ensures the placement a meaningful delay estimation on
interconnects.
The RDR architecture has the added advantage that by varying the
size of the basic island, we can target at different clock periods
and systematically explore the cycle time vs. latency tradeoff.
Given a target clock period, the following formula shows how to
compute the geometrical dimension of a basic island:

Dintra-island ≤ Dlogic + 2 × Dopt-int (Wi + Hi) ≤ Tclk
where Tclk is the target clock period, Dlogic is the largest logic
delay, Dopt-int(x) is a function which estimates the interconnect
delay over a certain distance x, Wi is the island width, Hi is the
island height, and Dintra-island is the average intra-island delay. The
average intra-island delay should be no greater than the largest
logic delay Dlogic plus the worst-case interconnect delay, which
approximates to 2×Dopt-int(Wi+Hi) (i.e., the estimated interconnect
delay over a corner-to-corner round trip within an island).

Figure 3 shows an RDR architecture with a 12×12 island-based
array for a 5GHz design in 70nm technology by 2008 [2]. We
assume a chip dimension of 620 mm2 (24.9mm x 24.9mm) in
which the signal of a wire can travel up to 7.52mm within 1 clock
cycle under interconnect optimization. We need a total of 7 clock
cycles to cross the chip. Based on the above formula, we can
derive the base dimension of each island Wi=Hi=2.08mm.

Figure 3. Example: An RDR architecture for

70nm technology

3. PLACEMENT-DRIVEN
ARCHITECTURAL SYNTHESIS USING
RDR ARCHITECTURE
In this section, we present our architectural synthesis system for
RDR architecture, named MCAS. We will first introduce the
overall design flow in Section 3.1, followed by a motivational
example in Section 3.2. Then we will present the key modules of
the MCAS system, including the scheduling-driven placement, the
placement-driven simultaneous rescheduling and rebinding, and
the datapath & FSM generation.

3.1 Overall Design Flow
Figure 4 shows the overall synthesis flow of the MCAS system.
MCAS starts with a synthesizable behavioral C or VHDL
description. RDR architecture specification is needed (including
the island structure, functional unit library and delay table). The
target clock period is also given and used in the followed
synthesis steps. If the final design cannot meet the clock period
requirement, we can adjust the island size of the RDR architecture
and perform another iteration by binary search of clock period.
We first generate the control data flow graph (CDFG) from the
behavioral descriptions. In the next step, we obtain the resource
allocation from a force-directed scheduling algorithm [13] using
the critical path length as the timing constraint. Then we perform
an initial functional unit binding and derive an interconnected
component graph from the bound CDFG.
After that, the interconnected component graph is fed to the
scheduling-driven placement to provide location information (i.e.,
island index) of each functional unit. The scheduling-driven
placement algorithm will be discussed in Section 3.3. Based on
the physical information, we perform simultaneous rescheduling
and rebinding on the CDFG. This algorithm will be presented in
Section 3.4. At the backend, all of the scheduling and binding
information is back-annotated to the CDFG and fed to the
datapath & FSM generation module. A datapath in structural

VHDL format and controllers in behavioral FSM style are
generated. This module will be discussed in Section 3.5
The synthesis system finally generates RT-level VHDL files for
logic synthesis and outputs floorplan constraints and multi-cycle
path constraints for placement & routing.

CDFG

Interconnected Component graph

C / VHDL

Location information

Functional unit binding

Placement-driven
rebinding & scheduling

Scheduling-driven placement

CDFG generation

Register and port binding

Datapath & FSM generation
RTL VHDL files;
Floorplan constraints;
Multi-cycle path constraints

Resource allocation
Resource constraints

R
D

R
 A

rc
h.

 S
pe

c.

Ta
rg

et
 c

lo
ck

 p
er

io
d

Figure 4. MCAS architectural synthesis system

3.2 A Motivational Example
In this subsection, we use a motivational example to illustrate the
advantage of using multi-cycle communication and the need for
the consideration of multi-cycle communication during
architectural synthesis.
Figure 5 is a data flow graph (DFG) extracted from a discrete
cosine transform (DCT) algorithm [14]. In this DFG, nodes 1, 2,
5, 6, 9 and 10 are addition or subtraction operations, and nodes 3,
4, 7, 8, 11 and 12 are multiplication operations. In this example,
we assume that the delay of a multiplication operation is 2 ns and
that of an addition or a subtraction operation is 1 ns.

 1 2

3 4

5 6

11

8
7

12

9 10

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

+1

+1

+1

(a)

+ ALU1 ALU2

MUL1 MUL2

R e g . F ile FSM

L C C

R e g . F ile FSM

R e g . F ile FSM

R e g . F ile FSM

M U L 2
3 ,7 ,1 2

A L U 1
1 ,5 ,1 0

A L U 2
2 ,6 ,9

M U L1
4 ,8 ,11

(b)
Figure 5. (a) Schedule and binding without

consideration of interconnect delays;
(b) Layout of wirelength-driven placement

In the traditional architectural synthesis approaches, interconnect
delay is assumed to be negligible compared with the functional
unit delay, which is not realistic anymore in DSM era. Without
considerations of interconnect delays, the DFG is scheduled in 6

clock cycles with an estimated clock period of 2 ns. The total
schedule latency is 12 ns. Two multipliers and two ALUs are
allocated. The nodes in the same pattern are bound to the same
functional unit.
However, interconnect may introduce extra delays on the DFG
edges after place & route. Figure 5 (b) shows the layout produced
by a wirelength-driven placement. Each box represents a
functional unit, and the numbers inside the box denote the DFG
nodes bound to the functional unit. The horizontal wires represent
short interconnects with a delay of 1 ns. The vertical wires
represent long interconnects with a delay of 2 ns. The interconnect
delays are back-annotated to the DFG edges. On the DFG edges in
Figure 5 (a), a solid line represents a long interconnect delay, and
a dash line represents a short interconnect delay. The introduction
of interconnect delay has lengthened the actual clock period to 4
ns, resulting in 24 ns of the final schedule latency.
Observe that in Figure 5, the interconnect delay has significantly
compromised the final latency. We can minimize the negative
impact of interconnect delay by using our RDR architecture to
allow multi-cycle communication. Figure 6 shows the rescheduled
result based on fixed placement and binding under the assumption
that interconnect delays can be more than one clock cycle. The
resulting clock period is 2 ns. Although the cycle number
increases to 9 clock cycles, the total schedule latency is reduced to
18 ns. Note that in the figure, a short line on a dash edge indicates
to merge a 1 ns interconnect delay to a 1 ns operation.
The following subsections will demonstrate that the latency can
be further reduced if we consider the multi-cycle communication
during scheduling and binding, which are two crucial steps of
architectural synthesis.

9

12

1

3

45

11

7

6

8 10

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

2

+ ALU1

ALU2

MUL1

MUL2

Figure 6. Schedule with multi-cycle interconnect delay

3.3 Scheduling-Driven Placement
In previous work, rescheduling based on fixed binding and
placement is used to reduce scheduling latency [10]. However, the
effect of scheduling on placement has been rarely studied.
In Figure 6, we have seen that long interconnect delays are on the
critical path of DFG. A pure wirelength-driven placement may
produce a poor solution with long critical path. To address this
problem, we propose a scheduling-driven placement algorithm, in
which scheduling guides the placement to find a placement
solution with a minimal total schedule latency.
Using the same example from Figure 6, Figure 7 shows that by
applying a scheduling-driven placement with the critical path

awareness, the DFG can be scheduled in 8 clock cycles and the
total schedule latency can be reduced 16 ns.

1 2

3 4

5 6

7

11

8

12

9

10

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Reg. File FSM

Reg. File FSM

Reg. File FSM

Reg. File FSM

MUL2
3,7,12

ALU1
1,5,10

ALU2
2,6,9

MUL1
4,8,11

(a) (b)
Figure 7. (a) Schedule of scheduling-driven placement;

(b) Layout of scheduling-driven placement
Our scheduling-driven placement is formulated as follows. The
inputs to the placer are the following: (1) Target clock period: Tclk
(2) Original CDFG: G=(N, E). (3) Interconnected Component
graph: G*=(N*, E*), which is derived from the bound CDFG.
Nodes in N* represent the functional units to which operation
nodes in G are bound such as ALUs, multipliers, dividers, etc.
Edges in E* represent the data transfers between these nodes.
These edges are annotated with a delay D(e) corresponding to the
physical delay between the functional units. The goal is to place
the nodes of N* so that the total schedule latency of G is
minimized.
We integrate scheduling with an SA-based coarse placement
algorithm [15]. A fast list scheduling is performed on G instead of
the classical timing analysis at every temperature during the SA
process to identify critical edges in E*, and assign higher weights
to them. By reducing the weighted wirelength, we try to hide as
many critical data transfers into intra-island communication as
possible, and make the uncritical data transfers go through the
inter-island, multi-cycle communication over global interconnect.
Initially, we define the bin structure of the coarse placement to be
the given island structure. The criticalities of the corresponding
nets are obtained and converted to weight on the nets at each
temperature during the SA process (once scheduling-based timing
analysis is performed). Our net weighting method is similar to
[16]. The criticality of an edge is defined to be

crit(e)=1-slack(e)/L
where L is the schedule latency and slack(e) is the edge slack
produced by the list-scheduling algorithm.
After the placement, the functional units that are placed in the
same bin will be clustered into the LCC of the corresponding
island.

3.4 Placement-Driven Simultaneous
Rescheduling and Rebinding
In [17], functional unit binding is performed simultaneously with
a floorplanning to estimate the quality of the floorplan. In [18],
floorplanning is used to estimate layout after scheduling and

allocation. The limitation of both [17] and [18] is that they only
optimize the clock period without performing rescheduling to
reduce the clock cycle number.

1 2

3 4

5 6

7 12

9 10

8 11

Cycle1

Cycle2

Cycle3

Cycle4

Cycle5

Cycle6

Cycle7

Reg. File FSM

Reg. File FSM

Reg. File FSM

Reg. File FSM

MUL2
3,7,11

ALU1
1,5,10

ALU2
2,6,9 MUL1

4,8,12

(a) (b)
Figure 8. (a) Schedule of placement-driven simultaneous
scheduling and binding; (b) Layout of placement-driven

simultaneous scheduling and binding
From Figure 8 (a), it can be seen that the schedule latency can be
further reduced to 14 ns if we apply simultaneous rescheduling
and rebinding based on the given placement of Figure 8 (b).
A concurrent scheduling and binding algorithm based on a given
floorplan is proposed in [9]. It uses the concept of dynamic
critical path list-scheduling (CPLS) introduced by [19]. The
algorithm schedules the ready operations in descending order of
the critical path length, and simultaneously binds the operations to
functional units in such a way that the binding incurs the least
increase of total schedule latency. However, this algorithm does
not consider potential resource competition during scheduling and
may produce suboptimal solution. Figure 9 illustrates this
limitation.

(b) (a)

1 ns

MUL1 ALU2

MUL2

ALU1

2 ns

1 ns 1 ns
*1

+3

*2

+4

MUL1 MUL2

ALU2 ALU1

*1

+3

*2

+4

(c)

MUL1 MUL2

ALU1

ALU2

Figure 9. Algorithm in [9] may result in a bad solution

(a) The interconnected component graph with edge delay
information; (b) A good scheduling and binding solution;

(c) A bad scheduling and binding solution
Figure 9 (a) shows an interconnected component graph where
functional units are represented by the rectangular nodes, and the
edges are associated with interconnect delays. Figure 9 (b) and (c)
shows two different scheduling and binding solutions of a simple
DFG with only 4 nodes. The functional unit binding is shown
beside the DFG node. According to the algorithm in [9], both
nodes 3 and 4 will be ready and compete for ALU1 in clock cycle
3. Since they have the same priority (i.e., critical path length),
either one of them may be chosen and be bound to ALU1. If node
3 is scheduled first, the DFG will be scheduled in 3 clock cycles.
However, if node 4 is scheduled first and bound to ALU1, we will
end up with a DFG scheduled in 4 clock cycles.
To overcome this problem, we propose a new algorithm based on
a force-directed list-scheduling framework [13]. It integrates with

simultaneous rebinding, and tries to minimize the schedule
latency with consideration of interconnect delays.
The first step of our algorithm is to defer the node selection. The
node with the least force is deferred. The critical path length
(CPL) and the earliest start time (EST) are used as the secondary
and tertiary priority functions to break ties. The nodes are deferred
one-by-one until enough functional units are available. In the
second step, the remaining ready nodes are scheduled and bound
in decreasing order of CPL, and EST is used to break ties. It is
possible that some nodes cannot be scheduled to the earliest clock
cycle due to resource competitions. In the third step, if there are
spare resources available, the previously deferred nodes will be
explored and scheduled to the current clock cycle in the reverse
order of deferral. After that, the algorithm will proceed to next
iteration until all nodes are scheduled and bound.

3.5 Datapath & FSM Generation
After the previous phases, the binding and scheduling information
is back-annotated to the CDFG’s edges and nodes. The backend
of our architectural synthesis system will extract this information
to construct datapath and controllers. The datapath, including
instances of functional units, registers and steering logic, is
generated as a structural VHDL file. This step also generates
floorplan information and multi-cycle constraints for RDR
synthesis flows. The floorplan information is used to constrain the
placement location for every instance in the datapath. The multi-
cycle constraints correspond to the multi-cycle communication
paths between registers, and are used to guide the physical design
tools to optimize the clock period.
In each island, an FSM controller is generated to control the
instances inside the island. These distributed controllers of
different islands have identical state transition diagrams, but
different output signals. The VHDL files for the datapath and the
controllers, the floorplan and multi-cycle paths constraints, are fed
into the logic synthesis and physical design tools to produce the
final design layout.

4. EXPERIMENTAL RESULTS
We implemented our MCAS system in C++/UNIX environments.
To obtain the final performance results, Altera’s Quartus II
version 2.2 [20] is used to implement the datapath part into a real
FPGA device, Stratix™ EP1S40F1508C5. All of the pipelined
multipliers are implemented into the dedicated DSP blocks in the
Stratix™ device. We set the target clock frequency at 200 MHz
and use the default compilation options. We impose LogicLock™
to constrain every instance into its corresponding island, and set
multi-cycle path constraints for multi-cycle communication paths.
For comparison, we also set up two alternative flows. Figure 10
shows the three flows labeled as 1, 2 and 3. Flow 3 is our MCAS
flow discussed in Section 3.1. The simplest flow (flow 1 in Figure
10) uses the traditional scheduling algorithm based on fixed
binding information. Similar to flow 3, flow 2 is also based on the
RDR architecture and the location information provided by the
scheduling-driven placement. However, flow 2 only performs
scheduling for the given binding instead of simultaneous
rebinding and scheduling in flow 3. The same list-scheduling
algorithm is applied for all three flows. These three scheduling
flows are converged in later synthesis phases.

CDFG

Interconnected component graph

C / VHDL

Location information

1

Functional unit
allocation & binding

Altera FPGA development system

Placement-driven
rebinding & rescheduling

Scheduling-driven placement

CDFG generation

2 3
Register and port binding

Placement-driven
scheduling

Scheduling

Datapath & FSM generation
RTL VHDL files;
Floorplan constraints;
Multi-cycle path constraints

R
D

R
 A

rc
h.

 S
pe

c.

Ta
r g

et
 c

lo
ck

 p
er

io
d

Figure 10. Three experimental flows

We have tested the three different flows for a set of real-life
benchmarks, which include several different DCT algorithms,
such as Planar Rotation (PR), WANG, LEE and DIR, and several
DSP programs such as MCM, HONDA, CHEM, and U5ML12.
All of the benchmarks are from [21]. In the experiments, we
applied 7×4 RDR architecture for small designs (PR, WANG,
LEE, DIR, MCM, and HONDA), and 4×4 architecture for CHEM
and U5ML12.

Table 1. Functional unit and register binding results
Register# Node# ALU# MULT#

F 1 F 2 F 3
PR 46 6 2 34 38 35

WANG 52 5 8 35 46 46
LEE 53 8 4 36 40 41

MCM 98 6 3 35 53 50
HONDA 101 6 8 42 55 56

DIR 152 7 4 61 68 66
CHEM. 351 13 11 69 103 101

U5ML12 551 18 13 89 153 131
Ave Ratio - - - 1.00 1.34 1.28

Table 1 shows the binding results, which are from the functional
unit binding and the register binding. The second column lists the
node numbers of the CDFG examples. ALU and MULT are the
numbers of the corresponding functional unit usages after the
initial binding. Although the three flows generate the same
functional unit usages, flow 3 has different binding results due to

the rebinding process. The next three columns are register usage
numbers from the different flows. On average for this set of
benchmarks, flows 2 and 3 use 34% and 28% more registers than
flow 1 respectively. Flow 3, which has permuted the functional
unit binding, results in a smaller register usage than flow 2.
In Table 2, we list the control step numbers (CS), clock periods
(CP) reported by QuartusII, and total latencies (Lat, the product of
CS and CP) produced by the three flows. Considering the
interconnect delay, flows 2 and 3 introduce more cycles for the
communication between registers. Compared with flow 1, flows 2
and 3 produce 14% more cycles. However, since flows 2 and 3
separate the communications from the computations and even
apply multi-cycle path constraints for communications, the
individual paths in the final layout are reduced, resulting in much
smaller clock periods (more than a 40% reduction).
We also illustrate the total latencies in Figure 11, where the three
bars in every group represent the results from flows 1, 2 and 3
respectively. Compared to the traditional flow, our architectural
synthesis based on RDR approaches (flows 2 and 3) reduces the
final latencies of the designs by 35% and 37% respectively. It can
also be seen that flow 3 has better latency than flow 2. It proves
our conviction that scheduling-driven placement can reduce
schedule latency and simultaneous rescheduling and rebinding
can further improve design performance.

0

100

200

300

400

500

600

700

pr wang lee mcm honda dir chem u5ml12

La
te

nc
y

(n
s)

Flow 1

Flow 2

Flow 3

Figure 11. Total latency comparison for the three flows

Table 3 lists the resources used by different design flows in terms
of LUT and register. It can be seen that flows 2 and 3 introduce
less than 20% LUT overhead, but more than 100% registers as
overhead. Since our RDR architecture uses more registers than the
traditional approach, the register usage is increased. The increased
register number also increases the complexity of the steering logic
structure, such as multiplexors, which then contributes an
observable portion of the area in the final layout, especially for an
FPGA design.

Table 2. Cycle number, clock period, and overall latency comparison for the three flows
Flow 1 Flow 2 Flow 3

CS CP (ns) Lat (ns) CS CP (ns) Lat (ns) CS CP (ns) Lat (ns)
PR 27 5.79 156.33 29 3.53 102.37 29 3.66 106.14

WANG 14 7.54 105.56 20 4.14 82.80 20 3.81 76.20
LEE 20 6.25 125.00 27 3.36 90.72 26 3.38 87.88

MCM 34 7.64 259.76 39 4.81 187.59 38 4.57 173.66
HONDA 23 7.58 174.34 24 3.78 90.72 24 4.18 100.32

DIR 50 7.03 351.50 51 4.41 224.91 51 4.33 220.
CHEM 50 8.27 413.50 53 4.64 245.92 52 4.49 233.

U5ML12 68 9.30 632.40 70 5.34 373.80 70 4.30 301.
Ave Ratio 1.00 1.00 1.00 1.14 0.57 0.65 1.13 0.56 0.6
83
48

00
3

Table 3. LUT and register usage comparison
LUT Register

F 1 F 2 F 3 F 1 F 2 F 3
PR 787 867 891 436 870 804

WANG 945 1089 931 272 769 793
LEE 709 738 793 223 700 653

MCM 1959 2055 1983 735 1167 1095
HONDA 1076 1292 1460 554 1010 1034

DIR 1913 2351 2018 956 1536 1433
CHEM 3597 4720 4901 933 2155 2107

U5ML12 5676 7953 7786 1358 3278 2750
Ave Ratio 1.00 1.19 1.17 1.00 2.21 2.10

5. CONCLUSIONS & FUTURE WORK
We have proposed a novel RDR architecture to support multi-
cycle on-chip communication in multi-gigahertz designs.
Compared with several existing methodologies, the regularity of
RDR architecture facilitates the predictability of interconnect
delays at the higher design levels. An architectural synthesis
system using the RDR architecture has been developed. The
experimental results on Altera’s Startix™ device have
demonstrated the effectiveness of our proposed architecture,
design methodology, and synthesis algorithms.
In the future, we will extend our architectural synthesis system to
support control-intensive applications. Many problems, such as
variable renaming and allocation, distributed controller
generation, etc., will be further studied. In addition, we have
observed that the steering logic has a great impact on the
performance and area of the final layout, and we will consider
optimizing them in the future synthesis flow.

6. ACKNOWLEDGEMENTS
This research is partially supported by National Science
Foundation under award CCR-0096383, MARCO/DARPA
Gigascale Silicon Research Center (GSRC), and Altera
Corporation under the California MICRO program. The authors
would like to thank Professor Miodrag Potkonjak of UCLA for
his contributions of the benchmarks, and Professor Kiyoung Choi
of Seoul National University, Korea for providing the CDFG
packages.

7. REFERENCES
[1] J. Cong, “Timing Closure Based on Physical Hierarchy,” in

Proceedings of 2002 International Symposium on Physical
Design, pp. 170-174, 2002.

[2] Semiconductor Industry Association, The National
Technology Roadmap for Semiconductors, 1997.

[3] Semiconductor Industry Association, International
Technology Roadmap for Semiconductors, 2001.

[4] J. T. Udding, “A Formal Model for Defining and Classifying
Delay-Insensitive Circuits,” Distributed Computing, vol.
1(4), pp. 197-204, 1986.

[5] D. M. Chapiro, “Globally-Asynchronous Locally-
Synchronous Systems,” PhD thesis, Stanford University,
Oct. 1984.

[6] J. Cong and S. K. Lim, “Physical Planning with Retiming,”
in Proceedings of International Conference on Computer
Aided Design, pp. 2-7, 2000.

[7] D. P. Singh and S. D. Brown, “Integrated Retiming and
Placement for Field Programmable Gate Arrays,” in
Proceedings of International Symposium on Field
Programmable Gate Arrays, pp. 67-76, 2002.

[8] J. Cong and C. Wu, “FPGA Synthesis with Retiming and
Pipelining for Clock Period Minimization of Sequential
Circuits,” in Proceedings of the 34th ACM/IEEE Design
Automation Conference, pp. 644-649, 1997.

[9] J. Jeon, D. Kim, D. Shin and K. Choi, “High-level Synthesis
under Multi-Cycle Interconnect Delay,” in Proceedings of
Asia and South Pacific Design Automation Conference, pp.
662-667, 2001.

[10] D. Kim, J. Jung, S. Lee, J. Jeon and K. Choi, “Behavior-to-
Placed RTL Synthesis with Performance-Driven Placement,”
in Proceedings of International Conference on Computer
Aided Design, pp. 320-326, 2001.

[11] J. Um, J. Kim and T. Kim, “Layout-Driven Resource Sharing
in High-Level Synthesis,” in Proceedings of International
Conference on Computer Aided Design, pp. 614-618, 2002.

[12] F. Mo and R. K. Brayton, “Regular Fabrics in Deep Sub-
Micron Integrated-Circuit Design,” 11th IEEE/ACM
International Workshop on Logic & Synthesis, pp. 7-12,
2002.

[13] P. Paulin and J. Knight, “Force-Directed Scheduling for
Behavioral Synthesis of ASICs,” in IEEE Trans. on CAD,
vol. 8(6), pp. 661-679, June 1989.

[14] W. H. Chen, C. Smith and S. Fralick, “A Fast Computational
Algorithm for the Discrete Cosine Transform,” in IEEE
Trans. on Communications, vol. 25(9), pp. 1004-1009, Sept.
1977.

[15] C. C. Chang, J. Cong, Z. Pan and X. Yuan, “Physical
Hierarchy Generation with Routing Congestion Control,” in
Proceedings of 2002 International Symposium on Physical
Design, pp. 36-41, 2002.

[16] A. Marquardt, V. Betz and J. Rose, “Timing-driven
placement for FPGAs,” in Proceedings of International
Symposium on Field Programmable Gate Arrays, pp. 203-
213, 2000.

[17] Y. M. Fang and D. F. Wong, “Simultaneous Functional-Unit
Binding and Floorplanning,” in Proceedings of International
Conference on Computer Aided Design, pp. 317-321, 1994.

[18] M. Xu and F. J. Kurdahi, “Layout-Driven RTL Binding
Techniques for High-Level Synthesis,” in Proceedings of 9th
International Symposium on System Synthesis, pp. 33-38,
1996.

[19] Y. Kwok and I. Ahmad, "Dynamic Critical-Path Scheduling:
An Effective Technique for Allocating Task Graphs to
Multiprocessors," in IEEE Trans. on Parallel and
Distributed Systems, vol. 7(5), pp. 506 -521, May 1996.

[20] Altera Web Site, http://www.altera.com/.
[21] M. B. Srivastava and M. Potkonjak, “Optimum and Heuristic

Transformation Techniques for Simultaneous Optimization
of Latency and Throughput,” in IEEE Trans. on VLSI
Systems, vol. 3(1), pp. 2-19, March 1995.

	A
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	INTRODUCTION
	REGULAR DISTRIBUTED REGISTER ARCHITECTURE
	PLACEMENT-DRIVEN ARCHITECTURAL SYNTHESIS USING RDR ARCHITECTURE
	Overall Design Flow
	A Motivational Example
	Scheduling-Driven Placement
	Placement-Driven Simultaneous Rescheduling and Rebinding
	Datapath & FSM Generation

	EXPERIMENTAL RESULTS
	CONCLUSIONS & FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

