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ABSTRACT 
For multi-gigahertz designs in nanometer technologies, data 
transfers on global interconnects take multiple clock cycles. In 
this paper, we propose a regular distributed register (RDR) 
micro-architecture for multi-cycle on-chip communication. An 
RDR architecture structurally consists of a two-dimensional array 
of islands, each of which contains a cluster of computational logic 
and local register files. We also propose a new synthesis 
methodology based on the RDR architecture. Novel layout-driven 
architectural synthesis algorithms have been developed for RDR. 
Application of these algorithms to several real-life benchmarks 
demonstrates 44% improvement on average in terms of the clock 
period and 37% improvement on average in terms of the final 
latency. 
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1. INTRODUCTION 
There are two important inflection points in the development of 
deep sub-micron (DSM) process technologies. One is when the 
average interconnect delay exceeds the gate delay, which 
happened during mid 1990’s and led to the timing closure 
problem. The other is when we cannot reach every part of the chip 
in a single clock cycle, which is happening now. It has been 
shown in [1] that, even with the aggressive interconnect 
optimization techniques (such as buffer insertion and wire-sizing), 
7 clock cycles are still needed to go from corner-to-corner for the 
predicted die-size in the 0.07µm technology generation, assuming 
a 5GHz clock, based on NTRS’97 [2]. Although the exact clock 
cycles may vary given the recent update of the roadmap [3], this 

still clearly suggests that multi-cycle on-chip communication is a 
necessity in multi-gigahertz synchronous designs. However, given 
the fact that most existing design tools only deal with the first 
problem but completely lack consideration of multi-cycle 
communication, further system performance increase is at risk. 
To address the multi-cycle communication problem, one can 
explore the following design methodologies: 
1. Asynchronous design: The state transitions of an 

asynchronous design are triggered by events instead of 
periodic clocks. This makes asynchronous designs operate 
correctly, regardless of the delays on gates and wires [4]. 
However, due to the lack of design tools and performance 
overhead, it only applies to a very limited class of circuits. In 
general, it is unclear whether asynchronous designs can yield 
high performance in practice. 

2. Global asynchronous locally synchronous (GALS) design 
[5]: In a GALS design, all major modules are designed in 
accordance with proven synchronous clocking disciplines. 
Each module is run from its own local clock. Data exchange 
between any two modules strictly follows a full handshake 
protocol. GALS hopes to combine the advantages of 
synchronous and asynchronous design methodologies. 
However, the overhead for the “self-timed wrapper” may 
compromise both performance and area of the design. 

3. Synchronous design with multi-cycle communication: 
Synchronous design is still by far the most popular design 
methodology. It is well understood and supported by the 
mature CAD toolset. However, the ever increasing gap 
between gate delays and interconnect delays requires the 
handling of multi-cycle communication that cannot be 
overcome by the traditional synchronous design flow. This 
paper will focus on the synchronous designs and propose a 
way to systematically handle multi-cycle communication.  

In the context of the synchronous designs, several layout-driven 
synthesis approaches have been proposed in recent literature to 
alleviate the problem introduced by the long interconnect. At the 
gate-level, simultaneous retiming and placement or floorplanning 
is performed in [6][7] to optimize the register-to-register delay 
(i.e., the clock period). Unfortunately, exploring multi-cycle 
communication during logic synthesis has a big limitation. As 
discussed in [8], the minimum clock period that can be achieved 
by logic optimization is bounded by the maximum delay-to-
register (DR) ratio of the loops in the circu s. This requires the 
consideration of multi-cycle communication during architectural 
& behavioral synthesis. [10] proposed an a
approach which incorporates a performance
guide the post-layout scheduling. The tar
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proposed is the distributed-register architecture which helps to 
explicitly separate the long interconnect delays from logic delays. 
Under this architecture, [11] performed an integrated resource 
sharing and placement to eliminate the slack time violation due to 
the interconnect delays. Note that the irregular structure used by 
both [10] and [11] may cause difficulty for interconnect delay 
estimation. Regular circuit and layout structures [12] can be 
employed to avoid this problem. Generally, regular structure 
facilitates predictability and simplifies the implementation 
process.  
In this paper, we present a new synthesis methodology for 
synchronous designs with multi-cycle communication. Our 
contributions are as follows (i) we propose a regular distributed 
register (RDR) micro-architecture which offers high regularity 
and direct support of multi-cycle communication; (ii) we propose 
synthesis methodology and develop novel architectural synthesis 
algorithms which efficiently synthesize behavior-level input onto 
the RDR architecture. 
The remainder of the paper is organized as follows. Section 2 
introduces the RDR architecture. Section 3 sketches our synthesis 
methodology and the algorithms for RDR architecture. The 
experimental results are shown in Section 4, followed by the 
conclusions and future work in Section 5.  

2. REGULAR DISTRIBUTED REGISTER 
ARCHITECTURE 
In this section, we propose a regular distributed register (RDR) 
micro-architecture. It provides high regularity and direct support 
of multi-cycle communication over global interconnects. 
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Figure 1. A 2××××3 island-based RDR architecture 

An RDR architecture consists of a two-dimensional array of 
islands. The size of each island is chosen such that intra-island 
computation and communication can be done in a single clock 
cycle. In other words, the data obtained from a local register can 
be processed by a certain functional unit, and then be stored to a 
local register within only one cycle. 

Figure 1 illustrates a 2×3 island-based RDR architecture. Figure 2 
details the structure of a single island, which consists of the 
following components: 
1. Local computational cluster (LCC): It contains the 

computational elements of an island such as adders, 
multipliers and dividers, etc. The size of the LCC is subject 
to certain area constraints and a target clock period. 

2. Register file: The dedicated local storages resides in the 
register file. The registers are partitioned into k banks for 1 
cycle, 2 cycle, … k cycle interconnect communication, under 
the assumption that we need up to k cycles to cross the chip. 
For example, Figure 1 shows a short interconnect labeled as 
IC-1 and a long interconnect labeled as IC-2. IC-1 takes only 
1 cycle and IC-2 takes 2 cycles. Therefore, the register that 
drives IC-2 needs to hold its value for 2 clock cycles when 
we transfer the data over IC-2. On the other hand, the register 
that drives IC-1 only needs to hold 1 cycle for the 
communication over IC-1. 

3. Finite state Machine (FSM): The controller for the 
computational elements is implemented as an FSM.  
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Figure 2. Components of a single island  

As discussed in [10], one of the advantages of distributed register 
architecture over centralized register architecture is that it can 
achieve a short clock period and effectively reduce the overall 
performance degradation due to the interconnect delay.  
Since we distribute registers to each island, the delays of long 
wires do not lengthen the clock period. The potential drawback of 
this approach is that it may demand extra communication cycles 
for inter-island data transfer. Fortunately, this can be properly 
harnessed by a smart coarse placement to hide as many critical 
data transfers as possible. The regularity from RDR architecture 
ensures the placement a meaningful delay estimation on 
interconnects. 
The RDR architecture has the added advantage that by varying the 
size of the basic island, we can target at different clock periods 
and systematically explore the cycle time vs. latency tradeoff. 
Given a target clock period, the following formula shows how to 
compute the geometrical dimension of a basic island: 

Dintra-island ≤ Dlogic + 2 × Dopt-int (Wi + Hi) ≤ Tclk 
where Tclk is the target clock period, Dlogic is the largest logic 
delay, Dopt-int(x) is a function which estimates the interconnect 
delay over a certain distance x, Wi is the island width, Hi is the 
island height, and Dintra-island is the average intra-island delay. The 
average intra-island delay should be no greater than the largest 
logic delay Dlogic plus the worst-case interconnect delay, which 
approximates to 2×Dopt-int(Wi+Hi) (i.e., the estimated interconnect 
delay over a corner-to-corner round trip within an island). 



Figure 3 shows an RDR architecture with a 12×12 island-based 
array for a 5GHz design in 70nm technology by 2008 [2]. We 
assume a chip dimension of 620 mm2 (24.9mm x 24.9mm) in 
which the signal of a wire can travel up to 7.52mm within 1 clock 
cycle under interconnect optimization. We need a total of 7 clock 
cycles to cross the chip. Based on the above formula, we can 
derive the base dimension of each island Wi=Hi=2.08mm. 

 

 
Figure 3. Example: An RDR architecture for  

70nm technology 

3. PLACEMENT-DRIVEN 
ARCHITECTURAL SYNTHESIS USING 
RDR ARCHITECTURE 
In this section, we present our architectural synthesis system for 
RDR architecture, named MCAS. We will first introduce the 
overall design flow in Section 3.1, followed by a motivational 
example in Section 3.2. Then we will present the key modules of 
the MCAS system, including the scheduling-driven placement, the 
placement-driven simultaneous rescheduling and rebinding, and 
the datapath & FSM generation.  

3.1 Overall Design Flow 
Figure 4 shows the overall synthesis flow of the MCAS system. 
MCAS starts with a synthesizable behavioral C or VHDL 
description. RDR architecture specification is needed (including 
the island structure, functional unit library and delay table). The 
target clock period is also given and used in the followed 
synthesis steps. If the final design cannot meet the clock period 
requirement, we can adjust the island size of the RDR architecture 
and perform another iteration by binary search of clock period.  
We first generate the control data flow graph (CDFG) from the 
behavioral descriptions. In the next step, we obtain the resource 
allocation from a force-directed scheduling algorithm [13] using 
the critical path length as the timing constraint. Then we perform 
an initial functional unit binding and derive an interconnected 
component graph from the bound CDFG.  
After that, the interconnected component graph is fed to the 
scheduling-driven placement to provide location information (i.e., 
island index) of each functional unit. The scheduling-driven 
placement algorithm will be discussed in Section 3.3. Based on 
the physical information, we perform simultaneous rescheduling 
and rebinding on the CDFG. This algorithm will be presented in 
Section 3.4. At the backend, all of the scheduling and binding 
information is back-annotated to the CDFG and fed to the 
datapath & FSM generation module. A datapath in structural 

VHDL format and controllers in behavioral FSM style are 
generated. This module will be discussed in Section 3.5  
The synthesis system finally generates RT-level VHDL files for 
logic synthesis and outputs floorplan constraints and multi-cycle 
path constraints for placement & routing.  
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Figure 4. MCAS architectural synthesis system 

3.2 A Motivational Example 
In this subsection, we use a motivational example to illustrate the 
advantage of using multi-cycle communication and the need for 
the consideration of multi-cycle communication during 
architectural synthesis. 
Figure 5 is a data flow graph (DFG) extracted from a discrete 
cosine transform (DCT) algorithm [14]. In this DFG, nodes 1, 2, 
5, 6, 9 and 10 are addition or subtraction operations, and nodes 3, 
4, 7, 8, 11 and 12 are multiplication operations. In this example, 
we assume that the delay of a multiplication operation is 2 ns and 
that of an addition or a subtraction operation is 1 ns. 
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Figure 5. (a) Schedule and binding without  

consideration of interconnect delays;  
(b) Layout of wirelength-driven placement 

In the traditional architectural synthesis approaches, interconnect 
delay is assumed to be negligible compared with the functional 
unit delay, which is not realistic anymore in DSM era. Without 
considerations of interconnect delays, the DFG is scheduled in 6 



clock cycles with an estimated clock period of 2 ns. The total 
schedule latency is 12 ns. Two multipliers and two ALUs are 
allocated. The nodes in the same pattern are bound to the same 
functional unit. 
However, interconnect may introduce extra delays on the DFG 
edges after place & route. Figure 5 (b) shows the layout produced 
by a wirelength-driven placement. Each box represents a 
functional unit, and the numbers inside the box denote the DFG 
nodes bound to the functional unit. The horizontal wires represent 
short interconnects with a delay of 1 ns. The vertical wires 
represent long interconnects with a delay of 2 ns. The interconnect 
delays are back-annotated to the DFG edges. On the DFG edges in 
Figure 5 (a), a solid line represents a long interconnect delay, and 
a dash line represents a short interconnect delay. The introduction 
of interconnect delay has lengthened the actual clock period to 4 
ns, resulting in 24 ns of the final schedule latency.  
Observe that in Figure 5, the interconnect delay has significantly 
compromised the final latency. We can minimize the negative 
impact of interconnect delay by using our RDR architecture to 
allow multi-cycle communication. Figure 6 shows the rescheduled 
result based on fixed placement and binding under the assumption 
that interconnect delays can be more than one clock cycle. The 
resulting clock period is 2 ns. Although the cycle number 
increases to 9 clock cycles, the total schedule latency is reduced to 
18 ns. Note that in the figure, a short line on a dash edge indicates 
to merge a 1 ns interconnect delay to a 1 ns operation. 
The following subsections will demonstrate that the latency can 
be further reduced if we consider the multi-cycle communication 
during scheduling and binding, which are two crucial steps of 
architectural synthesis.  
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Figure 6. Schedule with multi-cycle interconnect delay 

3.3 Scheduling-Driven Placement 
In previous work, rescheduling based on fixed binding and 
placement is used to reduce scheduling latency [10]. However, the 
effect of scheduling on placement has been rarely studied. 
In Figure 6, we have seen that long interconnect delays are on the 
critical path of DFG. A pure wirelength-driven placement may 
produce a poor solution with long critical path. To address this 
problem, we propose a scheduling-driven placement algorithm, in 
which scheduling guides the placement to find a placement 
solution with a minimal total schedule latency.  
Using the same example from Figure 6, Figure 7 shows that by 
applying a scheduling-driven placement with the critical path 

awareness, the DFG can be scheduled in 8 clock cycles and the 
total schedule latency can be reduced 16 ns. 
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Figure 7. (a) Schedule of scheduling-driven placement;  

(b) Layout of scheduling-driven placement 
Our scheduling-driven placement is formulated as follows. The 
inputs to the placer are the following: (1) Target clock period: Tclk 
(2) Original CDFG: G=(N, E). (3) Interconnected Component 
graph: G*=(N*, E*), which is derived from the bound CDFG. 
Nodes in N* represent the functional units to which operation 
nodes in G are bound such as ALUs, multipliers, dividers, etc. 
Edges in E* represent the data transfers between these nodes. 
These edges are annotated with a delay D(e) corresponding to the 
physical delay between the functional units. The goal is to place 
the nodes of N* so that the total schedule latency of G is 
minimized. 
We integrate scheduling with an SA-based coarse placement 
algorithm [15]. A fast list scheduling is performed on G instead of 
the classical timing analysis at every temperature during the SA 
process to identify critical edges in E*, and assign higher weights 
to them. By reducing the weighted wirelength, we try to hide as 
many critical data transfers into intra-island communication as 
possible, and make the uncritical data transfers go through the 
inter-island, multi-cycle communication over global interconnect. 
Initially, we define the bin structure of the coarse placement to be 
the given island structure. The criticalities of the corresponding 
nets are obtained and converted to weight on the nets at each 
temperature during the SA process (once scheduling-based timing 
analysis is performed). Our net weighting method is similar to 
[16]. The criticality of an edge is defined to be  

crit(e)=1-slack(e)/L  
where L is the schedule latency and slack(e) is the edge slack 
produced by the list-scheduling algorithm. 
After the placement, the functional units that are placed in the 
same bin will be clustered into the LCC of the corresponding 
island. 

3.4 Placement-Driven Simultaneous 
Rescheduling and Rebinding 
In [17], functional unit binding is performed simultaneously with 
a floorplanning to estimate the quality of the floorplan. In [18], 
floorplanning is used to estimate layout after scheduling and 



allocation. The limitation of both [17] and [18] is that they only 
optimize the clock period without performing rescheduling to 
reduce the clock cycle number. 
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Figure 8. (a) Schedule of placement-driven simultaneous 
scheduling and binding; (b) Layout of placement-driven 

simultaneous scheduling and binding 
From Figure 8 (a), it can be seen that the schedule latency can be 
further reduced to 14 ns if we apply simultaneous rescheduling 
and rebinding based on the given placement of Figure 8 (b). 
A concurrent scheduling and binding algorithm based on a given 
floorplan is proposed in [9]. It uses the concept of dynamic 
critical path list-scheduling (CPLS) introduced by [19]. The 
algorithm schedules the ready operations in descending order of 
the critical path length, and simultaneously binds the operations to 
functional units in such a way that the binding incurs the least 
increase of total schedule latency. However, this algorithm does 
not consider potential resource competition during scheduling and 
may produce suboptimal solution. Figure 9 illustrates this 
limitation. 
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Figure 9. Algorithm in [9] may result in a bad solution 

(a) The interconnected component graph with edge delay 
information; (b) A good scheduling and binding solution;  

(c) A bad scheduling and binding solution 
Figure 9 (a) shows an interconnected component graph where 
functional units are represented by the rectangular nodes, and the 
edges are associated with interconnect delays. Figure 9 (b) and (c) 
shows two different scheduling and binding solutions of a simple 
DFG with only 4 nodes. The functional unit binding is shown 
beside the DFG node. According to the algorithm in [9], both 
nodes 3 and 4 will be ready and compete for ALU1 in clock cycle 
3. Since they have the same priority (i.e., critical path length), 
either one of them may be chosen and be bound to ALU1. If node 
3 is scheduled first, the DFG will be scheduled in 3 clock cycles. 
However, if node 4 is scheduled first and bound to ALU1, we will 
end up with a DFG scheduled in 4 clock cycles. 
To overcome this problem, we propose a new algorithm based on 
a force-directed list-scheduling framework [13]. It integrates with 

simultaneous rebinding, and tries to minimize the schedule 
latency with consideration of interconnect delays. 
The first step of our algorithm is to defer the node selection. The 
node with the least force is deferred. The critical path length 
(CPL) and the earliest start time (EST) are used as the secondary 
and tertiary priority functions to break ties. The nodes are deferred 
one-by-one until enough functional units are available. In the 
second step, the remaining ready nodes are scheduled and bound 
in decreasing order of CPL, and EST is used to break ties. It is 
possible that some nodes cannot be scheduled to the earliest clock 
cycle due to resource competitions. In the third step, if there are 
spare resources available, the previously deferred nodes will be 
explored and scheduled to the current clock cycle in the reverse 
order of deferral. After that, the algorithm will proceed to next 
iteration until all nodes are scheduled and bound. 

3.5 Datapath & FSM Generation 
After the previous phases, the binding and scheduling information 
is back-annotated to the CDFG’s edges and nodes. The backend 
of our architectural synthesis system will extract this information 
to construct datapath and controllers. The datapath, including 
instances of functional units, registers and steering logic, is 
generated as a structural VHDL file. This step also generates 
floorplan information and multi-cycle constraints for RDR 
synthesis flows. The floorplan information is used to constrain the 
placement location for every instance in the datapath. The multi-
cycle constraints correspond to the multi-cycle communication 
paths between registers, and are used to guide the physical design 
tools to optimize the clock period.  
In each island, an FSM controller is generated to control the 
instances inside the island. These distributed controllers of 
different islands have identical state transition diagrams, but 
different output signals. The VHDL files for the datapath and the 
controllers, the floorplan and multi-cycle paths constraints, are fed 
into the logic synthesis and physical design tools to produce the 
final design layout.  

4. EXPERIMENTAL RESULTS 
We implemented our MCAS system in C++/UNIX environments. 
To obtain the final performance results, Altera’s Quartus II 
version 2.2 [20] is used to implement the datapath part into a real 
FPGA device, Stratix™ EP1S40F1508C5. All of the pipelined 
multipliers are implemented into the dedicated DSP blocks in the 
Stratix™ device. We set the target clock frequency at 200 MHz 
and use the default compilation options. We impose LogicLock™ 
to constrain every instance into its corresponding island, and set 
multi-cycle path constraints for multi-cycle communication paths.  
For comparison, we also set up two alternative flows. Figure 10 
shows the three flows labeled as 1, 2 and 3. Flow 3 is our MCAS 
flow discussed in Section 3.1. The simplest flow (flow 1 in Figure 
10) uses the traditional scheduling algorithm based on fixed 
binding information. Similar to flow 3, flow 2 is also based on the 
RDR architecture and the location information provided by the 
scheduling-driven placement. However, flow 2 only performs 
scheduling for the given binding instead of simultaneous 
rebinding and scheduling in flow 3. The same list-scheduling 
algorithm is applied for all three flows. These three scheduling 
flows are converged in later synthesis phases.  
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Figure 10. Three experimental flows 

We have tested the three different flows for a set of real-life 
benchmarks, which include several different DCT algorithms, 
such as Planar Rotation (PR), WANG, LEE and DIR, and several 
DSP programs such as MCM, HONDA, CHEM, and U5ML12. 
All of the benchmarks are from [21]. In the experiments, we 
applied 7×4 RDR architecture for small designs (PR, WANG, 
LEE, DIR, MCM, and HONDA), and 4×4 architecture for CHEM 
and U5ML12. 

Table 1. Functional unit and register binding results 
Register# Node# ALU# MULT# 

F 1 F 2 F 3
PR 46 6 2 34 38 35

WANG 52 5 8 35 46 46
LEE 53 8 4 36 40 41

MCM 98 6 3 35 53 50
HONDA 101 6 8 42 55 56

DIR 152 7 4 61 68 66
CHEM. 351 13 11 69 103 101

U5ML12 551 18 13 89 153 131
Ave Ratio - - - 1.00 1.34 1.28

Table 1 shows the binding results, which are from the functional 
unit binding and the register binding. The second column lists the 
node numbers of the CDFG examples. ALU and MULT are the 
numbers of the corresponding functional unit usages after the 
initial binding. Although the three flows generate the same 
functional unit usages, flow 3 has different binding results due to 

the rebinding process. The next three columns are register usage 
numbers from the different flows. On average for this set of 
benchmarks, flows 2 and 3 use 34% and 28% more registers than 
flow 1 respectively. Flow 3, which has permuted the functional 
unit binding, results in a smaller register usage than flow 2. 
In Table 2, we list the control step numbers (CS), clock periods 
(CP) reported by QuartusII, and total latencies (Lat, the product of 
CS and CP) produced by the three flows. Considering the 
interconnect delay, flows 2 and 3 introduce more cycles for the 
communication between registers. Compared with flow 1, flows 2 
and 3 produce 14% more cycles. However, since flows 2 and 3 
separate the communications from the computations and even 
apply multi-cycle path constraints for communications, the 
individual paths in the final layout are reduced, resulting in much 
smaller clock periods (more than a 40% reduction).  
We also illustrate the total latencies in Figure 11, where the three 
bars in every group represent the results from flows 1, 2 and 3 
respectively. Compared to the traditional flow, our architectural 
synthesis based on RDR approaches (flows 2 and 3) reduces the 
final latencies of the designs by 35% and 37% respectively. It can 
also be seen that flow 3 has better latency than flow 2. It proves 
our conviction that scheduling-driven placement can reduce 
schedule latency and simultaneous rescheduling and rebinding 
can further improve design performance.  
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Figure 11. Total latency comparison for the three flows 

Table 3 lists the resources used by different design flows in terms 
of LUT and register. It can be seen that flows 2 and 3 introduce 
less than 20% LUT overhead, but more than 100% registers as 
overhead. Since our RDR architecture uses more registers than the 
traditional approach, the register usage is increased. The increased 
register number also increases the complexity of the steering logic 
structure, such as multiplexors, which then contributes an 
observable portion of the area in the final layout, especially for an 
FPGA design.  

Table 2. Cycle number, clock period, and overall latency comparison for the three flows 
Flow 1 Flow 2 Flow 3  

CS CP (ns) Lat (ns) CS CP (ns) Lat (ns) CS CP (ns) Lat (ns) 
PR 27 5.79 156.33 29 3.53 102.37 29 3.66 106.14 

WANG 14 7.54 105.56 20 4.14 82.80 20 3.81 76.20 
LEE 20 6.25 125.00 27 3.36 90.72 26 3.38 87.88 

MCM 34 7.64 259.76 39 4.81 187.59 38 4.57 173.66 
HONDA 23 7.58 174.34 24 3.78 90.72 24 4.18 100.32 

DIR 50 7.03 351.50 51 4.41 224.91 51 4.33 220.  
CHEM 50 8.27 413.50 53 4.64 245.92 52 4.49 233.  

U5ML12 68 9.30 632.40 70 5.34 373.80 70 4.30 301.
Ave Ratio 1.00 1.00 1.00 1.14 0.57 0.65 1.13 0.56 0.6
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Table 3. LUT and register usage comparison  
LUT Register 

F 1 F 2 F 3 F 1 F 2 F 3
PR 787 867 891 436 870 804

WANG 945 1089 931 272 769 793
LEE 709 738 793 223 700 653

MCM 1959 2055 1983 735 1167 1095
HONDA 1076 1292 1460 554 1010 1034

DIR 1913 2351 2018 956 1536 1433
CHEM 3597 4720 4901 933 2155 2107

U5ML12 5676 7953 7786 1358 3278 2750
Ave Ratio 1.00 1.19 1.17 1.00 2.21 2.10

5. CONCLUSIONS & FUTURE WORK 
We have proposed a novel RDR architecture to support multi-
cycle on-chip communication in multi-gigahertz designs. 
Compared with several existing methodologies, the regularity of 
RDR architecture facilitates the predictability of interconnect 
delays at the higher design levels. An architectural synthesis 
system using the RDR architecture has been developed. The 
experimental results on Altera’s Startix™ device have 
demonstrated the effectiveness of our proposed architecture, 
design methodology, and synthesis algorithms. 
In the future, we will extend our architectural synthesis system to 
support control-intensive applications. Many problems, such as 
variable renaming and allocation, distributed controller 
generation, etc., will be further studied. In addition, we have 
observed that the steering logic has a great impact on the 
performance and area of the final layout, and we will consider 
optimizing them in the future synthesis flow. 
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