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Abstract
Loop pipelining is a widely-accepted technique in high-level syn-
thesis to enable pipelined execution of successive loop iterations to
achieve high performance. Existing loop pipelining methods pro-
vide inadequate support for pipeline flushing. In this paper, we
study the problem of enabling flushing in pipeline synthesis and
examine its implications in scheduling and binding. We propose
novel techniques for synthesizing a conflict-aware flushing-enabled
pipeline that is robust against potential resource collisions. Exper-
iments with real-life benchmarks show that our methods signif-
icantly reduce the possibility of resource collisions compared to
conventional approaches while conserving hardware resources and
achieving near-optimal performance.

1. Introduction
As the complexity of designs continues to grow, high-level synthe-
sis (HLS) plays an increasingly important role in improving de-
sign productivity and reducing the overall verification effort for
integrated circuits. HLS is especially useful for computationally-
intensive applications, such as those in image processing and wire-
less communication, where loops are prevalent in the behavioral
description. As a result, loop pipelining is often implemented to
accelerate design performance by allowing different loop iterations
to be executed in parallel, and is one of the most important opti-
mizations in HLS.

Traditional loop pipelining approaches [16, 2] rely heavily on
software pipelining techniques [11, 7], and are not completely
amenable to many hardware specifications. Because of this draw-
back, more recent work in loop pipelining [10, 18] have started to
model a richer set of hardware-specific constraints for effectively
optimizing designs in the hardware synthesis context. However, ex-
isting loop pipelining approaches require strict alignment among
operations and lack support for data flushing. As a result, the entire
pipeline must often be stalled in the presence of delay caused by
unavailable data or variable-latency operations, severely hindering
performance in many situations.

Stalling consists of freezing execution on the entire pipeline un-
til all hazards have been resolved to prevent any unwanted behav-
iors. In the conventional loop pipelining context, stalling blocks
execution for all in-flight iterations if any of those iterations expe-
riences a delay. Therefore, previous in-flight iterations cannot fin-
ish unless the current iteration is no longer stalled. On the contrary,
flushing-enabled loop pipelining allows unobstructed execution of
previous iterations even when the current iteration is stalled. Re-
sulting data get “flushed” out of the previous iterations even though
subsequent iterations are essentially frozen. As an immediate ben-
efit, flushing helps remove the unnecessary dependency among in-
flight iterations caused by stalling.
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In this paper, we study the problem of flushing-enabled loop
pipelining in HLS and explore the available options and limitations
of different approaches. Our major contributions are threefold:

1. To our knowledge, we are the first to (i) systematically study
the problem of flushing-enabled loop pipelining in HLS and
(ii) propose three promising approaches to support pipeline
flushing, including the dynamic approach, realigned approach,
and unaligned approach.

2. We present an analytical comparison on the performance of the
proposed pipelining approaches, and discuss their advantages
and disadvantages.

3. We propose an exact formulation and a novel heuristic algo-
rithm for unaligned loop pipelining to minimize the potential
resource conflicts due to flushing. Experimental results show
that our heuristic algorithm achieves near-optimal results.

The rest of the paper will be organized as followed: Section
2 provides background on loop pipelining and the difference be-
tween pipeline flushing and stalling; Section 3 describes our three
proposed approaches to enable flushing in loop pipelining; Section
4 presents theoretical analysis of our proposed approaches; Section
5 reports experimental results; Section 6 reviews the previous work
on loop pipelining, followed by conclusions in Section 7.

2. Preliminaries
One of the most popular methods to enable loop pipelining is mod-
ulo scheduling [14, 9, 12], which constructs a static schedule for a
single loop iteration so that the same schedule can be repeated at a
constant interval. Termed the initiation interval (II), this constant
interval between the start of successive iterations encapsulates both
resource and data dependency constraints, and dictates the upper
bound on the pipeline rate and thus the overall throughput of the
pipelined loop. If any iteration is delayed, such II would be vio-
lated, and the throughput would be negatively affected.

2.1 Definition of Throughput
Given a pipelined loop with an initiation interval of II , let T (i) be
the start time of the ith iteration, where 0 ≤ i ≤ N .

Definition 1. Throughput (TP) is the average number of iterations
processed per clock cycle:

TP =
N

T (N)
(1)

Based on the definition above, throughput is decided by T (N), the
start time of the last iteration of the loop. In the case of normal loop
execution without delay on any iteration, iteration i starts executing
at time step i · II , so T (i) = i · II . Because T (N) = N · II , the
throughput is inversely proportional to II as expected. In the case
of infinity loops (N →∞), the throughput becomes the reciprocal
of the average latency between the start of successive iterations.

2.2 Pipeline Stalling
Throughput may be degraded when the pipeline is stalled. For
example, if the input data interval is less than II , then it is not
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Figure 1. Multi-block design with deadlock

possible to periodically process a new iteration every II cycles.
The attainable throughput would be determined by the rate of the
slower-arriving data rather than the II .

There are many possible sources of pipeline stall in hardware
synthesis. In general, pipeline stalls can be categorized under the
following classes: (1) Input stalls: Pipeline may be stalled when
the input data rate is less than expected. In addition, the loop may
contain variable-latency memory reads depending on the cache-
memory hierarchy, so pipeline may also be stalled if such memory
reads incur unexpected latency (e.g. cache miss). (2) Output stalls:
Pipeline may be stalled because it is attempting to write to a full
FIFO or performing a variable-latency memory write. (3) Internal
stalls: Pipeline may be stalled because of data-dependent variable-
latency operations, such as function calls and iterative divisions.

2.3 Pipeline Flushing
Although pipeline stall is usually enabled by default in conven-
tional synthesis flow because it is least costly in area, it carries
many undesirable and even unacceptable side effects that can be
addressed by enabling flushing. For designs without continuously-
running data, “flushing” out the end-of-stream under pipeline stall
sometimes requires feeding additional “garbage” data depending
on the depth of the pipeline. Otherwise, useful data may get stuck
inside the pipeline. For a flushing-enabled pipeline, resulting data
can continue to exit the pipe even if there is no new input. A promi-
nent example involves video, where horizontal and vertical blank-
ing introduce gaps in pixels [5].

Among other pitfalls of pipeline stall, artificial deadlock is an
important one in multi-block designs with insufficient buffers to
balance the latency between different data flow paths. Figure 1
shows an example design with three pipelined blocks connected by
FIFOs. The design contains a direct data path between block A and
C as well as an indirect data path that passes through block B. If
the length of the FIFO on the direct path is insufficient in balancing
the extra delay of the indirect path, block A’s output data would
be ready for block C through the direct path a number of clock
cycles before block B’s output data is ready for block C through
the indirect path. Because both data inputs must be available for
block C to execute, block C is stalled, and block A’s data remain
in the FIFO of the direct path. As block A is stalled because it
is unable to output to a full FIFO, as shown in Figure 1, block
A also stops outputting data to block B. Consequently, block B
is also stalled, leaving data stuck in the pipeline. As a result, the
design cannot be fully executed. Without the support for flushing,
when one pipelined block is stalled due to insufficient buffering,
the entire subsystem is deadlocked.

Issues seen with stalling render flushing not only desirable
but necessary in implementing functionally correct, performance-
driven designs. From resolving artificial deadlock to minimizing
unnecessary inter-iteration dependency, enabling flushing in loop
pipelining helps create a design that is more predictable in latency
and more robust to potential hazards.

3. Flushing-Enabled Loop Pipelining
Enabling flushing in loop pipelining introduces the problem of
resource collision because multiple operations may attempt to use
the same resource at the same time. Figure 2 shows a conventional
pipelined schedule for the loop body of a simple finite impulse
response (FIR) filter with an II of 2. Time steps within an II are
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called time slots. In Figure 2(b), LD1 and LD2 are scheduled in
slot 1, and ST is scheduled in slot 2. Operations scheduled in the
same slot execute in parallel in the pipelined loop. Therefore, the
availability of resources limits the operations that can be scheduled
in the same slot. The schedule in Figure 2(b) is valid as long as
operations always execute in their respective slots within the II-
interval to maintain the required alignment as shown in Figure 3(a).

As we can see, the alignment required by the pipelined schedule
is violated in Figure 3(b), where a subsequent iteration is delayed
due to delayed data availability. In a traditional pipeline without
flushing, ST of the first iteration would have been stalled along
with the second iteration. However, in a flushing-enabled pipeline,
ST of the first iteration is executed in the original time step and
flushed out the pipe even though the second iteration is delayed.
In Figure 3(b), we see that flushing the first iteration leads to re-
source collision because there are three memory operations com-
peting for only two memory ports at the fourth time step. There-
fore, the problem on hand is to enable flushing in loop pipelining
while avoiding such resource collisions. Possible solutions include
increasing II , dynamic realignment, dynamic collision resolution,
and unaligned conflict-aware scheduling. By exploring both hard-
ware and software-centric approaches, we offer solutions that en-
compass scheduling, binding, and RTL generation.

3.1 Baseline Approach
One way to avoid resource collision is to reschedule the loop
pipeline with a larger II , which decreases the degree of parallelism
of the pipeline and effectively reduces the chance that parallel
operations from different iterations compete for the same resource.
For the example in Figure 2, increasing the II from 2 to 4, as
in Figure 4(a), would completely resolve the resource collision
presented in Figure 3(b). To determine the II that is collision-free
for the current schedule, operations using the same resource must
be scheduled within one II-interval. The worst case is to increase
the II to the length of the loop body, which degenerates to a non-
pipelined approach.

Simplicity is the key benefit of this approach. There is almost
no need to modify the existing HLS infrastructure if we are just
increasing II . However, following the baseline approach, II of-
ten needs to be increased significantly to completely avoid re-
source collision, resulting in detrimental degradation in throughput
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Figure 4. Flushing-enabled loop pipelining approaches

in many cases. It would be wise to find ways to enable flushing
without having such a negative impact on II .

3.2 Realigned Approach
Instead of changing the II of the original pipelined schedule as
for the baseline approach in Section 3.1, the realigned approach
conserves the original schedule along with the original pipelined
II . Instead of using a conservative measure and pessimistically
increasing II to prevent resource collision, the realigned method
takes a reactive approach by detecting collisions on-the-fly. To
resolve these possible collisions, however, the realigned approach
adapts a lazy policy by simply waiting until the first available
realigned slot based on the original pipelined schedule. As a result,
the original slot assignments are always followed.

As shown in Figure 4(b), the collisions in Figure 3(b) is resolved
by delaying the second iteration by one time step so the operations
would execute in the correct time slot as specified by the original
pipelined schedule in Figure 2(b). Unlike with simple pipeline
stalling, ST of the first iteration is executed in its original time
step and flushed out the pipe. As long as the delayed iterations
are properly realigned, the pipeline would function correctly in the
presence of hazards.

The realigned approach provides significant saving in the ef-
fective II compared to the baseline approach, although dynamic
realignment might be costly in hardware. As discussed before, the
saving in II translates to gain in throughput.

3.3 Dynamic Approach
Similar to the realigned approach in Section 3.2, the dynamic ap-
proach is reactive because it detects collisions on-the-fly. However,
instead of waiting for the proper alignment, the dynamic approach
eagerly resolves resource collision. Competing operations are arbi-
trated based on a priority that favors operations from earlier itera-
tions, allowing earlier iterations to flush to its fullest extent in the
presence of hazards.

For the resource collision scenario in Figure 3(b), ST and LD1

are colliding in time step 4 and need to be arbitrated. Because
the goal is to flush earlier iterations, ST would have priority over
LD1. The effective schedule after dynamic resource arbitration is
shown in Figure 4(c). As we can see, we resolve collisions based on
priority after collisions are detected, and operations are executed as
early as possible, as soon as collisions are resolved.

As with the realigned approach in Section 3.2, the dynamic ap-
proach proposes modifications to the RTL generation of loop con-
trol logic as opposed to changing the scheduling algorithm. There-
fore, it is not necessary to change the existing HLS scheduling
technique for loop pipelining. Synthesized hardware for both the
dynamic and realigned approaches must be able to detect resource
collisions in real time. However, while we are adding realignment
logic under the realigned approach, we are requiring arbitration
logic under the dynamic approach. Compared to the baseline ap-
proach in Section 3.1, the dynamic approach also introduces sig-
nificant saving in II and results in throughput gain. We will study
throughput in more detail in Section 4.

3.4 Unaligned Approach
At the end, we develop a proactive approach for resolving poten-
tial resource collision while maintaining a desirable II for perfor-
mance consideration. Termed the unaligned approach, this tech-
nique is proactive because it minimizes resource collision dur-
ing HLS scheduling instead of simply relying on hardware to de-
tect collisions dynamically during execution as for the realigned
and dynamic approach. For this purpose, we are proposing a new
scheduling algorithm for flushing-enabled loop pipelining that is
robust against potential resource collisions. Instead of increasing
II and degrading performance, we can instead attempt to schedule
around collisions.

Given: (1) A loop represented by a cyclic control data flow
graph (CDFG) with dependences. (2) A target II . (3) A set of
constraints including resource constraints, latency constraints, and
relative timing constraints.

Goal: Generate a legal pipelined schedule with the target II
while simultaneously determines binding to minimize the number
of resources with potential resource collision.

The scheduling algorithm specifies the time step in which each
operation should execute as well as the resource that the operation
should use. For the example given previously (Figure 2), instead
of scheduling the loop as in Figure 2(b) and resolving conflicts as
in Figure 4(a), 4(b), and 4(c), our new algorithm would perform a
collision-aware scheduling of the operations as in Figure 4(d), so
that any delay in subsequent iterations would not cause resource
collision with previous iterations. With the new scheduling algo-
rithm, there is no longer any time step in our example that requires
more than the number of available resources. As a result, there is
no more resource collision.

Observation: Scheduling operations more than one II apart
under the same resource leads to potential resource collisions.

The intuition behind the idea of one-II window can be de-
rived from Figure 3(b). Without considering the delay of loop it-
erations, traditional modulo scheduling simply dictates that opera-
tions scheduled in the same time slot are not allowed to share the
same resource. Now by also considering the possibility of delay of
subsequent iterations, we must also make certain that operations
scheduled more than one II apart in the pipelined schedule do not
share the same resource. In Figure 3(b), because LD1 and ST are
both bound to the first read-write port and are scheduled more than
one II apart, the delay of the second iteration causes a collision
between LD1 and ST at time step 4. If ST is instead scheduled
within one II of LD1, say in time step 2, then LD1 of the sec-
ond iteration cannot possibly collide with ST of the first iteration
because the second iteration starts later than time step 2. Because
iterations are spaced II time steps apart, and their delay would only
push them further down in time, resource collisions occur only be-
tween operations scheduled greater than or equal to one II apart.

To its best effort, the unaligned approach avoids such collisions
by scheduling all operations under a particular resource within
a one-II window as much as possible. In case a zero-collision
schedule is not achievable, we will leverage the dynamic approach
to resolve the unavoidable resource collisions.



3.4.1 Exact Formulation
We model the constraints set forth by this new scheduling algorithm
with an integer linear programming (ILP) formulation in Equation
(2). Let xilk be a binary variable that denotes whether operation
i is scheduled at absolute time step l and executed by resource k.
For a given II and available resources, this formulation computes
a collision-aware schedule of at most L time steps that minimizes
the number of resources with potential resource collision using the
objective function in Equation (2a). ck is a binary penalty variable
used to indicate whether there is potential resource collision for re-
source k, and K represents the total number of available resources.
Among other constraints related to dependency, timing, and binary
assignment based on [18] and [7], Equation (2b) checks whether
operations are scheduled within a one-II window on resource k,
where tkf and tkl represent the time step in which resource k is first
used and last used, respectively. A non-zero ck indicates violation
of the one-II window, meaning potential collision for resource k.
Equation (2c) and (2d) denote the fact that any operations using
resource k cannot be scheduled earlier than tkf or later than tkl .

minimize
K∑

k=1

ck subject to (2a)

tkl − tkf − L · ck < II ∀k (2b)

tkf −
L∑

l=1

l · xilk − L

(
1−

L∑
l=1

xilk

)
≤ 0 ∀i, k (2c)

L∑
l=1

l · xilk − tkl ≤ 0 ∀i, k (2d)

[Resource Constraints] (2e)
[Dependency and Timing Constraints] (2f)

This optimization provides a scheduling and binding that mini-
mizes the number of resources with potential resource collision.

3.4.2 Heuristic Algorithm
Because ILP is in general not scalable for large designs, we pro-
pose and implement a heuristic scheduling algorithm for the un-
aligned approach. Similar to the ILP formulation, the heuristic con-
siders scheduling and binding simultaneously. Its algorithm prior-
itizes the scheduling of operations based on their heights and the
concept of collision-aware mobility. Heights are calculated based
on the height-based priority function used in [14], which gives a
good chance of scheduling operations in one pass. As mentioned
previously, scheduling operations under the same resource within a
one-II window insures that there will be no collision involving this
resource. Therefore, to minimize the number of resources with po-
tential resource collision while conserving resources, this algorithm
attempts to schedule as many operations as possible within the one-
II window of an already utilized resource before scheduling and
occupying such window of a never utilized resource. Algorithm 1
outlines the scheduling heuristic for the unaligned approach.

Algorithm 1 Scheduling heuristic for unaligned approach
while more operations need to be scheduled do

Find operation i with maximum height and minimum mobility
if i can be scheduled on an already utilized resource then

Schedule i as close as possible to the earliest already sched-
uled operations on this existing resource

else if i must be scheduled on a never utilized resource then
Schedule i as close as possible to the centroid of subse-
quently scheduled operations on this new resource

end if
end while

When scheduling on an utilized resource, the algorithm tries to
schedule the operation as close as possible to the earliest already
scheduled operations on that resource, so operations are packed as
closely and as tightly as possible into the same II window. When
scheduling on a never utilized resource, the algorithm would sched-
ule the operation as close as possible to the centroid of the subse-
quently scheduled operations on that resource. We have a mecha-
nism in place to predict, based on the priority function, the oper-
ations that are most likely to be scheduled subsequently on a par-
ticular resource. Scheduling as close as possible to the centroid of
subsequently scheduled operations again helps insure that opera-
tions under the same resource are as tightly packed as possible into
the same II window. Without considering the centroid of subse-
quently scheduled operations, an operation may be scheduled on a
resource at a time step far from the those of the norm, thereby im-
mediately breaking the one-II window and rendering that resource
useless for subsequent operations.

In this algorithm, collision-aware mobility is defined as the
number of time steps for which an operation can be scheduled
on a resource based on the current usage of the resource, the
most updated earliest and latest possible scheduled times of the
operations, and the one-II window based on the already scheduled
operations. Formally, let L be the length of the loop in number
of time steps, Uk be the set of time steps at which resource k is
currently utilized, and ASAP (i) and ALAP (i) be the earliest and
latest possible scheduled times, respectively, of operation i given
the operations that are already scheduled. Then we define

Mk
i = {x : 1 ≤ x ≤ L, x 6∈ Uk,

maxUk − II < x < minUk + II,

ASAP (i) ≤ x ≤ ALAP (i)}
(3)

where Mk
i is the set of time steps for which an operation i can be

scheduled on resource k. Thus mobility mk
i is defined as the size

of the set: mk
i = |Mk

i |.

4. Throughput Comparison of Flushing-Enabled
Pipelining Approaches

In this section, we will analyze and compare the throughput of
our proposed flushing-enabled loop pipelining approaches in the
case of pipeline stalling. We mainly restrict our discussion to two
representative scenarios of input delay. Nevertheless, our analysis
can be generalized to other scenarios of delay. Results show that
all of our proposed approaches can achieve high throughput in
the case of slow-arriving input, while the unaligned approach may
outperform the others in the case of variable-latency memory reads.

4.1 Throughput for Slow-Arriving Input
In order to achieve the best throughput, each iteration should start
executing as soon as all its input data are available, and there is
no resource collision. Let E(i) be the earliest start time, the time at
which input data become available to iteration i. E(i) and the actual
start time of iteration i, T (i), should always satisfy the following
conditions:{

T (i) ≥ E(i),
T (i+ 1)− T (i) ≥ II,

∀i : 0 ≤ i ≤ N (4)

To avoid potential resource collision, the realigned approach forces
all iterations to start executing at aligned time steps, such that

T (i) mod II = 0, ∀i : 0 ≤ i ≤ N (5)

Lemma 1. For any iteration i, the latency between its actual start
time T (i) and its earliest start time E(i) is less than II:

T (i)− E(i) < II, ∀i : 0 ≤ i ≤ N (6)



We can prove Equation 6 by induction based on Equations (4)
and (5). The detailed proof is omitted due to space constraint. The
intuition behind this relation is that iterations can periodically catch
up after the least common multiple of II and R cycles when the
data interval R is larger than II .

Theorem 1. In the case of slow-arriving inputs with a constant
data interval, the realigned approach can achieve high throughput
equal to the inverse of the data interval when the number of itera-
tions is sufficiently large .

Proof : Suppose that data inputs to successive iterations are arriving
slowly with a data interval of R time steps per iteration for R > II .
The earliest start time of the last iteration would be E(N) = N ·R,
and the actual start time would be T (N) < E(N) + II .

TPR
realigned =

N

T (N)
>

N

E(N) + II
=

1

R+ II
N

(7)

lim
N→+∞

TPR
realigned =

1

R
(8)

Since the data interval is R, there is no way to process more
than one iteration every R time steps. Therefore, the attainable
throughput would be 1/R under this scenario. As we can see, the
realigned approach has achieved the attainable throughput.

Unlike the realigned approach, both dynamic and unaligned ap-
proaches try to start executing each iteration as soon as its depen-
dent data is available. In the worst case, they have the same per-
formance as that of the realigned approach. Because the realigned
approach achieves the attainable throughput when N is sufficiently
large, the other two approaches should also attain the same through-
put when N is sufficiently large.

4.2 Throughput for Variable-Latency Memory Reads
When the pipeline is stalled because of variable-latency memory
reads, all subsequent iterations would be delayed due to the pipeline
stall. Assuming that the memory read can be either a cache hit or
miss, let p (p > 0) be the cache miss penalty and r (0 ≤ r ≤ 1)
be the miss rate, then the expected pipeline stall would be r · p.

The realigned approach enforces that each iteration only start
executing at aligned time steps to avoid resource collision. When
there are p time steps of stalling because of cache miss in the
current iteration, the next iteration may be delayed by more than
p time steps to enforce the proper alignment with the II bound-
ary. Suppose that the next iteration starts executing at the earliest
subsequent aligned time step, the extra latency incurred would be
Lrealigned =

⌈
p
II

⌉
· II , and the expected throughput would be:

TPrealigned =
r

II + Lrealigned
+

1− r

II
, Lrealigned =

⌈ p

II

⌉
· II (9)

The dynamic approach relies on the hardware to dynamically
detect resource collision. When a memory read in the current it-
eration is stalled by p time steps, it always tries to start execut-
ing the next iteration as early as possible instead of waiting for
the next realignment. In the best case, the next iteration would be
stalled by exactly p time steps. However, if resource collision is
detected at that time step, the iteration would be further stalled. In
the worst case, the next iteration may be delayed until the earli-
est subsequent realigned slot, which results in the same scenario
as the realigned approach. Based on this analysis, the extra latency
incurred would be Ldynamic where p ≤ Ldynamic ≤ Lrealigned, and the
expected throughput would be:

TPdynamic =
r

II + Ldynamic
+

1− r

II
, p ≤ Ldynamic ≤ Lrealigned

(10)

The unaligned approach relies on a static scheduling algorithm
to minimize resource collisions when iterations start executing at
unaligned time steps. If the scheduling algorithm can guarantee no

Table 2. Throughput comparison between different approaches

Design II p
Throughput

(×106 iterations / sec)
Realigned Dynamic Unaligned

D1 7 1 17.3 20.0 28.4
D2 6 1 12.0 17.6 20.1
D3 8 2 16.9 25.7 32.3
D4 4 1 32.9 29.1 50.0
D5 4 2 35.7 32.9 56.7

resource collision, then the extra latency would be Lunaligned where
Lunaligned = p, and the expected throughput would be:

TPunaligned =
r

II + Lunaligned
+

1− r

II
, Lunaligned = p (11)

Based on Equations (9), (10) and (11), the expected throughput
depends on the miss rate and miss penalty. In case of low miss rate
and high miss penalty, all three approaches yield similar through-
put. On the contrary, if miss rate is high and miss penalty is low,
then the unaligned approach outperforms the other two approaches.
The above analysis can be generalized to pipeline stalls caused by
other kinds of variable-latency operations.

5. Experimental Results
To demonstrate the practicability and scalability of our approach,
we have prototyped the different loop pipelining techniques within
a commercial HLS tool, and experimented on real industry designs
from multiple application domains, such as digital signal process-
ing, image processing, and wireless communication. All designs
shown in Table 1 and 2 target Xilinx Kintex 7 FPGA.

Table 1 compares the quality of results (QoR) between the re-
aligned, dynamic, and unaligned approach, where each design is
able to achieve the same pipelined II across all three approaches.
The realigned approach usually has the least LUT and FF usage.
The dynamic approach has the same schedule as the realigned ap-
proach; but the HLS tool needs to generate extra collision detec-
tion logic to avoid the collision at runtime. Such collision detec-
tion logic can be costly if there are many potential conflicts in the
design. For example, the LUT count has increased about 34% in
D1 and the timing has decreased about 10%. In general, the un-
aligned approach achieves a QoR between that of the realigned and
dynamic approach. However, the unaligned approach may have a
slightly longer latency when increasing latency is the only option to
guarantee a collision-free design. Table 1 shows that the unaligned
approach can get better timing than the dynamic approach, and can
even be better than the realigned approach as for D3 and D5.

Table 2 shows the throughput comparison when there are in-
put misses. Here the definition of throughput differs slightly from
Equation 1. Instead of using iterations per cycle, we have also con-
sidered the frequency of the synthesized design and used iterations
per second as the unit for throughput. As we have discussed in Sec-
tion 4, the realigned approach has the worst throughput while the
unaligned approach has the best one. For example, when p is 2
in D3, the throughput of the unaligned approach is 192% of the
throughput of the realigned approach and 131% of that of the dy-
namic approach. Although the dynamic approach achieves higher
number of iterations per cycle, the realigned approach is usually
able to attain a better throughput because the realigned approach
can achieve, in general, a higher clock frequency.

We further evaluated our algorithm in the unaligned approach
for different IIs and resource availability. Benchmark designs used
include implementations of discrete cosine transform, a chemical
plant controller, as well as digital signal processing algorithms, all
commonly used to evaluate HLS tools. For ILP-based scheduling,
the implementation generates the objective and constraints in a
compatible format. Using a state-of-the-arts linear programming
solver [4], we solve for an optimized schedule with the objective
of minimizing the number of resources with potential resource



Table 1. QoR comparison between realigned, dynamic, and unaligned approaches
Design II

#LUTs #FFs Latency (cycles) Clock Period (ns)
Realigned Dynamic Unaligned Realigned Dynamic Unaligned Realigned Dynamic Unaligned Realigned Dynamic Unaligned

D1 7 957 1284 1035 5270 5937 5905 102 102 105 4.1 4.5 4.4
D2 6 744 798 779 5898 6004 6301 25 25 28 6.9 7.1 7.1
D3 8 1266 1278 1305 1921 1981 1965 27 27 27 3.7 3.5 3.1
D4 4 948 1067 1038 1308 1343 1325 43 43 44 3.8 4.3 4.0
D5 4 589 635 648 786 826 986 22 22 23 3.5 3.8 3.0

Table 3. Comparing resource collisions between ILP and heuristic

Design
Number of Resources with Collisions
ILP Heuristic

II=2 II=4 II=8 II=12 II=2 II=4 II=8 II=12
fir 0 1 0 0 0 1 0 0

arai 0 0 0 0 0 0 0 0
pr 0 0 0 0 0 1 0 0

wang 0 0 0 0 0 0 0 0
lee 0 0 0 0 0 0 0 0

mcm 0 0 0 0 0 0 0 0
honda TO 0 0 0 0 0 0 0
chem TO TO TO TO 0 0 0 0

TO: ILP Solver Timeout

collisions. For heuristic scheduling, our implementation calculates
the heights and mobility of operations and follows Algorithm 1 to
determine the schedule in one pass. Schedules are then validated,
and resources with unresolved collisions are reported in Table 3.

We can evaluate the quality of the heuristic using Table 3 by
comparing its results with the optimized results from the exact ILP
formulation. In terms of the ability to resolve resource collisions,
Table 3 shows that around 95% of the heuristic test cases report a
number of resources with collision equal to or lower than that of
the corresponding ILP test cases. The remaining report a slightly
higher number of 1 resource with collision. In many cases for which
the ILP solver times out not able to find a collision-free schedule,
the heuristic performs better by providing a zero-collision schedule.
In most cases, our heuristic finishes scheduling in a few seconds,
while ILP runs for hours without finding a collision-minimized
solution. The heuristic is able to mimic the optimized results of
the exact formulation with a more reasonable runtime.

6. Related Work
Various forms of loop pipelining have been proposed for HLS in the
past, such as loop winding [6] and binding-aware pipelining [10].
Loop pipelining is also known as software pipelining [11] in the
compiler domain and has been widely used in modern compilers
(e.g. GCC [8]) to aggressively exploit instruction level parallelism
across loop iterations. Modulo scheduling [15] is one of the most
popular methods to enable software pipelining. Based on modulo
scheduling techniques, several recent HLS systems have enabled
loop pipelining to achieve better performance. For example, PICO-
NPA [17] employs iterative modulo scheduling [14] for synthe-
sizing non-programmable loop accelerators; C-to-Verilog [1] per-
forms modulo scheduling to reduce memory port usage under a
fixed II constraint. Recently, Zhang and Liu [18] extends SDC
scheduling technique [3] to minimize register pressure for loop
pipelining; Morvan et al. [13] proposes a polyhedral-based pipelin-
ing technique for nested loops. The central idea of all these tech-
niques is to periodically start executing a new iteration every II
time steps. As a result, misalignment and flushing are not allowed.
To our knowledge, this paper serves as the first systematic study of
flushing-enabled loop pipelining in HLS.

7. Conclusions
We study the problem of flushing-enabled loop pipelining in HLS
and propose three promising approaches to support pipeline flush-
ing in loop pipelining. By experimenting with the different ap-
proaches on common benchmarks, we compare the approaches in
terms of throughput, latency, and area. Furthermore, we devise a
heuristic to perform scheduling for flushing-enabled unaligned loop

pipelining that minimizes the number of resources with potential
collision. By exploring the available options and limitations, this
paper serves as an important foundation for ongoing research in
flushing-enabled techniques, loop pipelining, and HLS in general.
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