
A Parallelized Iterative Improvement Approach to Area
Optimization for LUT-Based Technology Mapping

Gai Liu and Zhiru Zhang
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{gl387, zhiruz}@cornell.edu

Abstract
Modern FPGA synthesis tools typically apply a predeter-
mined sequence of logic optimizations on the input logic
network before carrying out technology mapping. While the
“known recipes” of logic transformations often lead to im-
proved mapping results, there remains a nontrivial gap be-
tween the quality metrics driving the pre-mapping logic op-
timizations and those targeted by the actual technology map-
ping. Needless to mention, such miscorrelations would even-
tually result in suboptimal quality of results.

In this paper we propose PIMap, which couples logic
transformations and technology mapping under an iterative
improvement framework to minimize the circuit area for
LUT-based FPGAs. In each iteration, PIMap randomly pro-
poses a transformation on the given logic network from an
ensemble of candidate optimizations; it then invokes tech-
nology mapping and makes use of the mapping result to de-
termine the likelihood of accepting the proposed transfor-
mation. To mitigate the runtime overhead, we further intro-
duce parallelization techniques to decompose a large design
into multiple smaller sub-netlists that can be optimized si-
multaneously. Experimental results show that our approach
achieves promising area improvement over a set of com-
monly used benchmarks. Notably, PIMap reduces the LUT
usage by up to 14% and 7% on average over the best-known
records for the EPFL arithmetic benchmark suite.

1. Introduction
Modern FPGA designs rely on sophisticated CAD algo-
rithms and tools to achieve high-quality solutions [4]. A very
important step in this toolflow is called technology mapping,
which transforms a gate-level Boolean logic network1 into a
functionally equivalent netlist composed of look-up tables
(LUTs). Minimizing the depth and the total LUT count of

1 In the rest of paper, we use the term logic network to denote a pre-mapping
gate-level Boolean logic network.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
FPGA ’17, February 22-24, 2017, Monterey, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4354-1/17/02...$15.00

DOI: http://dx.doi.org/10.1145/3020078.3021735

the mapped netlist are two of the typical optimization goals
for an FPGA-targeted technology mapper.

A key challenge to technology mapping is that the qual-
ity of the mapping solution depends heavily on the structure
of the input logic network. It is well known that the prob-
lem of restructuring the network for depth- or area-optimal
technology mapping is NP-hard [5]. Modern FPGA synthe-
sis tools usually apply a series of structural optimizations
to transform the input logic network to be more amicable
for technology mapping and other downstream optimiza-
tions [8, 11]. Examples of the commonly used logic op-
timizations include balancing the levels of different paths
in a logic network (i.e., balancing), and replacing a sub-
network with a smaller one that realizes the same function
(i.e., rewriting). In practice, such logic optimizations are
usually interleaved with each other and repeatedly applied
to better optimize the logic network. While such transforma-
tions can effectively reduce the complexity of the logic net-
work in terms of the gate count and/or the number of logic
levels, we argue that there still exists considerable room in
improving the FPGA mapping quality based on two impor-
tant observations:

• The mainstream FPGA synthesis frameworks use a
fixed predetermined sequence of pre-mapping logic
transformations that may not always generate high-
quality logic structures. For example, the popular aca-
demic tool ABC provides synthesis scripts with more
than 20 different optimization sequences [3]. Since the
efficacy of these sequences varies across different de-
signs, it is very challenging for a user to quickly iden-
tify the best sequence to employ given a new design.
• Miscorrelations exist between the quality metrics driv-

ing the pre-mapping logic optimizations and those tar-
geted by the actual technology mapping. Specifically,
minimizing the gate count or the number of logic lev-
els may not necessarily translate to reduced LUT count
or depth in the final mapped netlist, thereby creating a
gap between the optimality at the logic stage and the
technology mapping stage.

We use Figure 1 to concretely illustrate the drawbacks of
existing techniques. Consider the problem of using 3-input
LUTs to map the logic network shown in Figure 1(a), which
has four inputs (a-d) and four outputs (o1-o4). The original
circuit can be implemented using four 3-input LUTs high-

balance

a b

o1

a c

o4

b c

a

b ca d

o2 o3

rewrite

b ca d

o2

a ca b

o3o1 o4

b c

a

d

a b

o1

o2 o3

a c

o4

4 LUTs
DepthLUT(o1) = 1, DepthLUT(o2) = 2
DepthLUT(o3) = 1, DepthLUT(o4) = 1

5 LUTs
DepthLUT(o1) = 1, DepthLUT(o2) = 2
DepthLUT(o3) = 1, DepthLUT(o4) = 1

5 LUTs
DepthLUT(o1) = 1, DepthLUT(o2) = 2
DepthLUT(o3) = 2, DepthLUT(o4) = 1

(a) (b) (c)

Figure 1. Logic optimizations and mapping on a simple example assuming 3-input LUTs — (a) The original circuit.
(b) The circuit after applying balance. (c) The circuit after applying rewrite to the circuit from (b). Mapping results are
indicated with dashed regions.
lighted in Figure 1(a). Suppose we apply two transforma-
tions step by step to the network. The first step performs bal-
ancing which manages to decrease the depth of the logic net-
work by one as shown in Figure 1(b). The second step uses
rewriting to reduce the gate count by one while maintain-
ing the same depth as illustrated in Figure 1(c). While these
transformations can successfully simplify the original net-
work, the eventual mapping results are unfortunately wors-
ened in terms of both LUT count and depth if we compare
the mapped netlists shown in Figure 1(a) and Figure 1(c).
Specifically, the netlist after balancing and rewriting requires
one more LUT to map, and the depth of output o3 also in-
creases by one in the mapped netlist.

Clearly, reducing the depth and area of logic network
does not necessarily translate to performance improvements
or area savings after mapping. To address this challenge, we
propose PIMap — a parallelized iterative improvement ap-
proach to area-driven LUT mapping. Unlike existing meth-
ods that decouple the logic transformations from technol-
ogy mapping, PIMap makes use of the actual mapping re-
sults to guide a series of randomly proposed structural opti-
mizations. Proposing logic transformations in a probabilistic
way allows PIMap to explore a larger design space that can-
not be uncovered by fixed optimization sequences. Accord-
ing to our experimental results, PIMap consistently outper-
forms the state-of-the-art LUT mapping solutions for uncon-
strained area optimization as well as delay-constrained area
minimization.

Since iterative improvement usually comes with nontriv-
ial runtime overhead, we further propose techniques to de-
compose a large netlist into multiple smaller sub-netlists,
and optimize these sub-netlists in parallel across multiple
machines. This parallelization framework enables PIMap to
handle large circuits with more than 40 thousand LUTs, with
a synthesis time in the range of tens to hundreds of seconds.
In addition, PIMap also allows the users to easily explore the
trade-offs between the design quality and the synthesis effort
in runtime.

Our primary technical contributions are as follows:
• We provide a quantitative study on the (mis)correlation

between the gate count reduction in the pre-mapping

logic network and the LUT count savings after technol-
ogy mapping.
• We propose a stochastic iterative improvement algo-

rithm and associated parallelization techniques to en-
able efficient mapping-in-the-loop area optimization
for LUT-based FPGAs.
• We demonstrate promising improvements in area re-

duction for a set of common benchmarks, including
breaking many best-known records for the EPFL arith-
metic benchmark suite.
The rest of the paper is organized as follows: Section 2

provides an overview of technology mapping and common
logic transformations; Section 3 studies the correlation be-
tween the gate count in the logic network and the LUT
count after mapping; Section 4 describes the key techniques
in PIMap; Section 5 presents the experimental results; Sec-
tion 6 reviews the related work, followed by conclusions in
Section 7.

2. Preliminaries
In this section, we discuss the basics of technology mapping
and common logic transformations used in PIMap.

2.1 Overview of Technology Mapping
Generally speaking, technology mappers are divided into
structural mappers and functional mappers [12]. Structural
mappers consider the input logic network as fixed, and at-
tempt to cover the circuit with K-input LUTs. Functional
mappers are allowed to modify the structure of the logic net-
work before mapping to LUTs. In this work we focus on
functional mappers for generating higher-quality mapping
solutions.

Before covering the logic network with LUTs, functional
mappers usually apply a sequence of logic transformations
to the network, which we call moves. The goal of these
moves is to prepare the network for technology mapping so
that the subsequent LUT covering step can generate high-
quality results in terms of LUT depth or LUT count. We
defer the discussion on the details of logic transformation
to Section 2.2, and first describe the mechanism of covering
a logic network with LUTs.

During the LUT covering step in technology mapping, we
view the logic network as a directed acyclic graph, where
the nodes represent logic gates and the edges capture the
connections between the gates. We define a cone Cv at node
v as the sub-netlist of v and some of its predecessors so that
any path from a node in Cv to v is entirely contained in Cv .
A cone is said to be K-feasible if there are no more than K
nodes outside Cv that have edges pointing to the nodes in
Cv . A cut of Cv is defined to be the set of input nodes of Cv .

In LUT-based FPGAs, we can implement any K-feasible
cones using a K-input LUT. Consequently, the mapping
problem reduces to the problem of optimally covering the
input graph with K-feasible cones [13]. A LUT covering
framework generally consists of cut enumeration, cut rank-
ing, cut selection, and final mapping generation. Cut enu-
meration explores allK-feasible cuts at each node, while cut
ranking evaluates the quality of the cuts based on the opti-
mization objective. Cut selection determines the optimal cut
for each node based on the ranking information to generate
the final covering solution.

2.2 Common Logic Transformations

a
b

c

d e

b

d e ca

balance

(a)

a ca b b c

a

rewrite

(b)

Figure 2. Illustration of two common logic transforma-
tions — (a) balance: balance the depth of the netlist using
associative transform a(bc) = (ab)c = (ac)b. (b) rewrite:
replace a sub-netlist with an equivalent but smaller one.

A logic transformation (or a move) applies optimization
on the logic network in order to reduce the size or the number
of levels of the network. Figure 2 shows two common logic
transformations. The balancing transformation [10] tries to
balance the depth of different paths in the netlist using as-
sociative transformations in the form as a(bc) = (ab)c =
(ac)b. An associative transform at a given node is accepted
if it reduces the depth of the corresponding node. In Fig-
ure 2(a), the balancing move swaps the left child of the out-
put node with the branch that generates node b. As a result,
the network is more balanced and the level of the output node
is reduced by one.

A rewriting transformation [11] visits each node in the
network in a topological order, and enumerates all K-
feasible cuts of the subject node. The Boolean function
of each cut is then computed and matched against all the
equivalence classes of K-variable functions. After trying all
the available circuit representations for the given node, the
rewriting move picks the one with the largest improvement.
Figure 2(b) provides an example of the rewriting transform,
where a 3-input function is rewritten to a smaller structure

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

N
o

rm
al

iz
ed

 N
o

d
e

C
o

u
n

t

Iteration

div

LUT Count

Gate Count

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

Iteration

sqrt

LUT Count
Gate Count

Figure 3. Correlation between gate count in the logic
network and post-mapping LUT count — For the first 200
iterations, we perturb the logic network with the objective
of reducing gate count. After 200 iterations, we change the
objective to reducing LUT count.
shown on the right side. Refactoring is a variation of the
rewriting move [10]. It uses a heuristic algorithm to com-
pute a large cut for each node, and then tries to replace the
cut with a factored form of the cut function. The transform
is accepted if the replacement does not increase the size of
the network.

3. Quantitative Study of Correlation between
LUT Count and Gate Count

In this section we study the impact of commonly used logic
transformations on the gate count in the logic network as
well as the corresponding LUT count after technology map-
ping. Our experimental methodology is to iteratively per-
turb a given logic network (or a sub-network) to generate
a sequence of equivalent design points with varying sizes in
terms of gate count and LUT count. More specifically, we
use two different strategies to perturb the logic network. The
gate-centric perturbation enumerates a set of logic transfor-
mations to the input network, then greedily accepts the re-
sulting logic networks that reduce the gate count. This way
we iteratively generate a sequence of design points with de-
creasing number of gates, at the same time, the LUT count
of each design point is also recorded. With the second strat-
egy called LUT-centric perturbation, we also iteratively ap-
ply a set of candidate transformations to the logic network
and measure the LUT count after each transformation. How-
ever, we only accept the transformations that reduce the LUT
count of the resulting mapped netlist. We record both gate
count and LUT count upon the acceptance of each transfor-
mation.

Here we evaluate two representative designs from the
EPFL arithmetic benchmark suite [1], and use and-inverter
graph (AIG) as the gate-level representation of the logic
network. We use the aforementioned method to apply three
transformations in the ABC logic synthesis framework [3]
(balance, refactor, rewrite) to generate 400 intermediate de-
sign points for each benchmark. Notably, we employ the
gate-centric perturbation for the first 200 iterations, and

switch to LUT-centric perturbation mode afterwards. Fig-
ure 3 shows the normalized LUT count and gate count during
the 400 iterations of perturbations. During the initial phase
of gate-centric perturbation, the decrease of LUT count co-
incides with the gate count reduction. Eventually, both de-
scending curves level off, which seems to suggest that little
room is left for improving area. Interestingly, when switch-
ing to LUT-centric perturbation after 200 iterations, we ob-
serve further reduction in LUT count with an increasing gate
count. While we are only presenting two benchmarks here
due to space limitation, we observe from our experiments
very similar trends (to Figure 3) across a broad range of
designs, which motivates us to propose PIMap that will be
detailed in the next section.

4. PIMap Techniques
PIMap decomposes a large circuit netlist into smaller sub-
netlists, and uses an iterative routine to minimize the area of
these sub-netlists in parallel. The area minimization routine
integrates commonly used logic transformations and tech-
nology mappers to progressively improve the design quality.
In this section, we describe the PIMap techniques in detail
and mainly focus on the unconstrained area optimization.
We also show that PIMap can easily be extended to handle
depth-constrained area minimization.

4.1 Iterative Area Minimization
The very core of PIMap is an iterative area minimization
framework that repeats three major steps: (1) proposing logic
transformation moves, (2) evaluating the quality of the move
through technology mapping, and (3) determining whether
to accept the proposed move. Figure 4 sketches the high-
level design flow of this iterative procedure.

Evaluate quality of
proposed move

Accept
current move?

N

Update netlist
with current move

Y

Initial
logic network

Propose logic
transformation move

End of
loop?

N

Optimized,
mapped netlist

Y

Figure 4. High-level flow chart of the iterative area min-
imization routine.

Proposing a Transformation Move PIMap makes use of
a collection of logic transformation moves, denoted as set
T . Each move in T is capable of optimizing a given logic

network for a certain target, such as reducing the number of
nodes in the circuit and balancing the node levels of differ-
ent paths. We further associate T with a discrete probability
distribution named P , where the probability of selecting the
ith at any iteration is denoted as pi. At the beginning of each
iteration, PIMap randomly chooses one logic transformation
from T based on P . The transformed network is then eval-
uated by invoking an existing area-minimizing technology
mapping algorithm.

Evaluating a Move In this step, the transformed netlist
is first mapped to K-input LUTs using an existing area-
oriented technology mapper. With unconstrained area opti-
mization, we directly tie the quality metric Q of a proposed
move to the number of LUTs in the mapped circuit netlist
(denoted as NLUT). We note that Q can be extended to
include other user-specified factors such as the number of
gates in the pre-mapping logic network.

Accepting a Move After obtaining the quality metric of
the currently proposed move Qcurr and that of the previ-
ous iteration, denoted as Qprev , we use the Markov Chain
Monte Carlo (MCMC) method to probabilistically deter-
mine whether to accept the proposed move [6]. In particular,
we employ the Metropolis-Hastings algorithm [7] for calcu-
lating the acceptance probability.

This process is detailed in Algorithm 1, which dictates
that if the quality of the current move is better than the pre-
vious one, we accept the current move unconditionally. Oth-
erwise, we accept the move with a small probability that de-
creases exponentially as Qcurr increases. Probabilistically
accepting a move with inferior quality helps PIMap avoid
quickly getting stuck in local minima during the search pro-
cess.2 Once a move is accepted, we update Qprev to be
Qcurr, save the updated network, and continue with a new
proposal. On the other hand, if the current move is rejected,
we do not update Qprev and directly proceed to the next it-
eration. During the search procedure, we also keep track of
the best mapping result and the corresponding circuit netlist.
We return the best result at the end of the iterative area min-
imization routine.

In contrast to the previous methods that apply a fixed se-
quence of logic transformations, our randomized approach
can effectively explore and search a large design space.
Moreover, this search is guided by the actual mapping results
instead of logic-level design metrics. This combination of a
large number (tens or hundreds of iterations) of randomly
proposed moves and the mapping-guided search is the key
to achieving the superior mapping quality with PIMap.

2 It is worth noting that MCMC and simulated annealing are closely re-
lated [9]. Compared to MCMC sampling, simulated annealing has one addi-
tional temperature term that decreases over time to control the likelihood of
accepting an inferior move. In our experiments, we observe that the temper-
ature term has almost no impact on the convergence rate, thus we decide to
directly use the Metropolis-Hastings algorithm to compute the acceptance
probability.

Algorithm 1 Calculating acceptance probability
if Qcurr < Qprev then

Accept the current move
else

// rand(): random number between 0 and 1

if rand() < e−γ(Qcurr/Qprev) then
Accept the current move

else
Reject the current move

4.2 Netlist Extraction and Parallel Optimization
To enable parallel optimization of multiple sub-netlists,
PIMap automatically extracts a user-configurable number
of non-overlapping sub-netlists from a mapped netlist, and
optimize them in parallel through multithreading.

Initial

logic

network

Map to

LUT

Sub-netlist

extraction

Parallel sub-netlist

optimization

Recombine

sub-netlistsNext trial…

(a) (b) (c)

(d)(e)

Figure 5. Illustration of netlist decomposition and par-
allel optimization — (a) Original logic network. (b) Netlist
after LUT mapping, where each triangle represents a LUT,
the connections between LUTs are omitted. (c) The four sub-
netlists after sub-netlist extraction. (d) The four sub-netlists
after optimization. (e) The netlist after recombining the four
optimized sub-netlists.

Figure 5 conceptually illustrates the netlist extraction and
parallel optimization steps. Given an input logic network, we
first map it into a circuit netlist composed of LUTs shown as
the triangles in Figure 5. We then partition the netlist into
multiple sub-netlists, and apply the area minimization tech-
nique in Section 4.1 to optimize the sub-netlists in parallel.
After optimizing the sub-netlists, we recombine them into a
single netlist, and start the next trial of the sub-netlist extrac-
tion and optimization. We discuss these two steps in detail
below.

Partitioning Mapped Netlists Algorithm 2 describes the
steps required to partition a mapped netlist to enable effec-
tive parallelization. More specifically, the inputs to our par-
titioning algorithm include (1) a netlist that has already been
mapped to LUTs, (2) a parallelization factor n, and (3) a
size constraint M for each sub-netlist, the goal is to extract
n non-overlapping sub-netlists with each of which contain-
ing no more than M LUTs. It is worth noting that partition-
ing the mapped netlist allows us to easily merge the opti-

mized sub-netlists to regenerate the complete LUT netlist.
More importantly, any improvement to a sub-netlist will di-
rectly contribute to the overall LUT savings in the recom-
bined netlist.
Algorithm 2 Extracting sub-netlists
Input: A mapped netlist G0, a parallelization factor n, and

a sub-netlist size constraint M .
Output: n sub-netlists {G1, G2, ..., Gn}, each of which

contains M LUTs.
// Gres is the residual graph of G0

Initialize Gres = G0, and G1 = G2 = ... = Gn = ∅
// extract the ith sub-netlist

for i from 1 to n do
Randomly pick a node j in Gres
Start from j, visit Gres in breadth-first order:
for each node k during traversal do

Add node k to Gi
Remove node k from Gres
if size of Gi reaches M then

break

// Determine primary inputs (PI) and

primary outputs (PO) of Gi
for each node k in Gi do

for each fan-in l of k do
if l is not assigned inside Gi then

Add l to the PI set of Gi

if (k is a PO of Gres) or (k is used in Gres) then
Add k to the PO set of Gi

return {G1, G2, ..., Gn}

When generating a sub-netlist, our algorithm first ran-
domly picks a seed, and expands the sub-netlist using
breadth-first search (BFS) from the seed until the number
of LUTs in the sub-netlist reaches M . When constructing
the sub-netlists, we also maintain a residual graph that con-
tains the nodes not yet added to any sub-netlists. The residual
graph is initialized to be the same as the original netlist, and
will gradually decrease in size as more sub-netlists are ex-
tracted. After generating the first sub-netlist, the algorithm
will pick another random seed, and extract the next sub-
netlist from the residual graph until all the n sub-netlists
have been generated. In case BFS cannot find a cluster of
size M , the algorithm extracts another cluster and append
it to the sub-netlist until the sub-netlist reaches a size of M
LUTs. After the partitioning step, our algorithm assigns the
primary inputs (PI) and primary outputs (PO) of each sub-
netlist by identifying the nodes that have external fan-ins as
well as those that fanout to external nodes.

Optimizing Sub-Netlists After obtaining the sub-netlists
from the previous step, PIMap distributes them to available
computing resources for independent optimization. We cre-
ate one thread for each sub-netlist, and assign threads to ma-
chines to balance the load. Optionally, PIMap allows the user

to use multiple threads to optimize different copies of the
same sub-netlist in parallel to increase the likelihood of gen-
erating a high-quality solution. After all threads finish exe-
cution, a master thread collects the optimized sub-netlists,
and combine them to reform the entire design. This combin-
ing process involves concatenating all the sub-netlists into a
single netlist, and remove the PIs and POs of each individual
sub-netlists. Since all sub-netlists are of equal or very simi-
lar size, the runtime of different threads are similar to each
other. Consequently, the workloads of different threads are
highly balanced.

4.3 Overall Flow
We summarize the overall flow of PIMap using the tech-
niques in Sections 4.1 and 4.2. Figure 6 shows the overall
flow of PIMap.

Initial logic
network

Mapped netlist

Sub-netlists
Sub-netlistsMapped sub-

netlists

Sub-netlists
Sub-netlistslogic sub-

networks

Optimized,
mapped netlist

Final mapped
netlist

Sub-netlists
Sub-netlists

Optimized,
mapped

sub-netlists

Structural
hashing

Iterative area
minimization

Recombine
sub-netlists

Area-oriented
technology mapper

Sub-netlist
extraction

Sub-netlist
extraction

Reached max
number of trials

One trial

Figure 6. Overall synthesis flow of PIMap.

PIMap takes the initial logic network as the input, and
first uses an area-oriented technology mapper to transform
the logic network into a mapped netlist. PIMap then uses
the sub-netlist extraction technique detailed in Section 4.2
to extract a number of sub-netlists. Since the iterative area
minimization requires a gate-level logic network, we apply a
netlist decomposition technique, such as structural hashing,
to convert the mapped sub-netlist back to the correspond-
ing logic sub-networks. These logic sub-networks are subse-
quently optimized using the iterative area minimization tech-
nique detailed in Section 4.1, which generates the optimized
version of the mapped sub-netlists. PIMap then recombines
these optimized netlists into a single netlist that is equivalent
to the original design.

We define a trial as the four steps including sub-netlist ex-
traction, converting a mapped netlist back to logic network,
iterative area minimization, and sub-netlists recombination.
At each trial, PIMap repartitions the mapped netlist into a
different set of sub-netlists using the technique in Section 4.2
with randomly-selected seed node for each partition. In the
rare case where the repartitioned sub-netlists are identical to

the ones from the previous trial, we discard the current parti-
tion and repartition the netlist again. This repartition scheme
is more effective than a static pre-partitioning, as it allows
global cross-boundary optimization that uncovers more area
saving opportunities.

In PIMap, the overall optimization flow contains a user-
specified number of trials, and the overall flow terminates
when it reaches the maximum number of trials or the runtime
limit. A highly-optimized and mapped netlist is generated as
the final result.

4.4 Extension to Depth-Constrained Area
Minimization

PIMap can be extended to support depth-constrained area
minimization with only a few modifications to the optimiza-
tion flow. In depth-constrained area minimization, we as-
sume that the input logic networks are already optimized
for depth, and PIMap will try to reduce the area of such
networks given that the depth does not increase. To handle
depth-constrained area minimization, we modify the PIMap
flow in the following aspects:

• We replace the area-oriented technology mapper with
a depth-oriented technology mapper so that the depth
constraint is likely to be met.

• During each trial, after recombining the optimized sub-
netlists, we add a global depth-optimization step that re-
maps the logic network using the depth-oriented technol-
ogy mapper.

• After the global depth-optimization step, we reject the
result of the current trial if the design exceeds the depth
constraint or the area of the design increases compared to
the previous trial. If a current trial is rejected, we reuse
the netlist from the previous trial.

The above extensions ensure that the depth constraint is
satisfied throughout the optimization flow, while the PIMap
techniques are able to minimize the design area under the
depth constraint.

5. Experimental Results
We implement the PIMap techniques in C, including the
iterative search procedure, the netlist decomposition algo-
rithm, and the routine to manage the parallel optimization
across different machines. We integrate the logic optimiza-
tion moves and the technology mapper in ABC [3] as a
static library into PIMap. Throughout the experiment, we
use ABC’s native AIG as the gate-level representation. In
our experiment, we use PIMap to refine designs that are al-
ready optimized by existing technology mappers (e.g., opti-
mization scripts from ABC, or the best known results from
the EPFL benchmark suite [1]). PIMap can also handle un-
optimized designs, and generate final designs without any
quality loss, but at the cost of slightly longer runtime.

Table 1. Area reduction using PIMap on the 10 largest MCNC combinational benchmarks — Base = the baseline designs
synthesized using ABC’s compress2rs script followed by an area-oriented technology mapper (command if -a -K 6); n
Trials = result after n number of trials using PIMap; Size = size of the design in terms of number of 6-input LUTs; Dpt
= depth of the design defined as the highest LUT level; Time = runtime in seconds; Improv = improvement in size between
PIMap and the baseline designs.

Base 5 Trials 10 Trials 40 Trials
Designs Size Dpt Size Dpt Time Improv Size Dpt Time Improv Size Dpt Time Improv
alu4 455 9 425 13 22.3 6.6% 405 15 42.9 11.0% 393 13 168.8 13.6%
apex2 526 12 493 15 22.2 6.3% 488 15 43.1 7.2% 439 17 177.4 16.5%
apex4 568 9 555 13 18.1 2.3% 541 13 38.3 4.8% 526 13 162.4 7.4%
des 631 9 544 8 31.9 13.8% 509 8 62.2 19.3% 477 8 253.0 24.4%
ex1010 606 9 589 11 18.8 2.8% 584 13 39.4 3.6% 556 15 158.5 8.3%
ex5p 332 10 324 11 16.3 2.4% 319 12 34.0 3.9% 304 12 136.9 8.4%
misex3 382 9 352 9 18.6 7.9% 333 10 36.3 12.8% 298 9 153.0 22.0%
pdc 1251 14 1219 19 31.8 2.6% 1200 22 66.6 4.1% 1150 19 266.5 8.1%
seq 627 10 606 12 22.1 3.3% 596 11 43.2 4.9% 567 12 177.0 9.6%
spla 1251 14 1222 18 32.5 2.3% 1191 18 63.8 4.8% 1133 25 250.8 9.4%

geomean 4.8% 7.4% 12.4%

Table 2. Area reduction using PIMap on the EPFL arithmetic benchmarks — Base = the best known results on EPFL
benchmarks [1]; n Trials = result after n number of trials using PIMap; Size = size of the design in terms of number of
6-input LUTs; Dpt = depth of the design defined as the highest LUT level; Time = runtime in seconds; Improv = improvement
in size between PIMap and the baseline designs.

Base 5 Trials 10 Trials 40 Trials
Designs Size Dpt Size Dpt Time Improv Size Dpt Time Improv Size Dpt Time Improv
adder 201 73 196 68 19.2 2.5% 196 68 37.7 2.5% 194 66 150.5 3.5%
shifter 512 4 512 4 21.1 0.0% 512 4 41.1 0.0% 512 4 164.5 0.0%
divisor 3813 1542 3636 1490 53.1 4.6% 3527 1431 104.3 7.5% 3331 1277 418.1 12.6%
hyp 44635 4194 44095 4341 195.5 1.2% 43677 4431 394.9 2.1% 42164 4542 1604.3 5.5%
log2 7344 142 7036 133 60.9 4.2% 6904 129 119.8 6.0% 6749 119 491.5 8.1%
max 532 192 525 190 28.1 1.3% 525 190 57.6 1.3% 522 190 222.3 1.9%
mult 5681 120 5184 97 64.6 8.7% 5069 90 133.7 10.8% 4986 86 544.9 12.2%
sine 1347 62 1273 57 40.3 5.5% 1261 57 81.2 6.4% 1235 56 332.7 8.3%
sqrt 3286 1180 3246 1198 52.1 1.2% 3200 1188 103.8 2.6% 3127 1154 412.1 4.8%
square 3800 116 3380 77 94.1 11.1% 3346 77 184.8 11.9% 3281 74 730.3 13.7%

geomean 4.1% 5.2% 7.2%

In our experiment, the set of logic transformation tech-
niques T consists of three elements: balance, rewrite,
and refactor, with a uniform probability distribution P =
{1/3, 1/3, 1/3}. We set γ = 1 in Algorithm 1. Through-
out the experiment, we target mapping to 6-input LUTs. Of
course, PIMap also supports other LUT architectures. For
each design, we execute 40 trials, and each trial contains 100
iterations of mapping-guided logic optimization. For paral-
lelization, we partition the original design to up to 16 sub-
netlists, where each sub-netlist contains up to 100 LUTs. We
run PIMap on up to eight machines, and each machine has a
quad-core Xeon CPU operating at 2.66GHz.

We use two well-known benchmark suites to evaluate
the effectiveness of PIMap: the 10 largest combinational
benchmarks in the MCNC benchmark suite [15], as well
as the entire EPFL arithmetic benchmark suite [1]. This
collection of benchmarks contains a diverse set of designs
ranging from common arithmetic units to realistic industrial
designs. These designs also greatly differ in size.

5.1 Unconstrained Area Minimization
Table 1 shows the results of unconstrained area minimization
for the 10 largest MCNC combinational benchmarks. For

this set of benchmarks, we first apply ABC’s compress2rs
logic optimization script targeting area reduction. Based on
our experiments with the available ABC synthesis scripts,
compress2rs achieves the best area results for the majority
of the designs. The optimized logic network is then mapped
into 6-input LUTs using ABC’s area-optimized mapper with
command if -a -K 6. For PIMap, we record the size,
depth, and runtime after 5, 10 and 40 trials. We also report
the improvement of LUT counts in the PIMap-optimized
designs over the baseline designs.

PIMap is able to reduce the LUT count by 4.8% on aver-
age after five trials, and 12.4% after 40 trials. For des and
misex3, PIMap is able to reduce the size by more than 20%,
showing the effectiveness of PIMap compared to ABC. The
runtime of the 10 benchmarks are similar due to the sim-
ilar sizes of the designs, averaging around 20 seconds for
five trials, and 160 seconds for 40 trials. Although the run-
time of PIMap is noticeably higher than existing mappers,
which usually take less than a second for designs of similar
sizes, we argue that PIMap is still valuable and viable in a
high-effort FPGA implementation mode where technology
mapping is unlikely the performance bottleneck.

Table 3. Area reduction under depth constraint using PIMap on the 10 largest MCNC combinational benchmarks —
We use the depth of the baseline designs as the depth constraint. Base = the baseline designs synthesized using ABC’s resyn2
script followed by a depth-oriented technology mapper (command if -K 6); n Trials = result after n number of trials using
PIMap; Size = size of the design in terms of number of 6-input LUTs; Dpt = depth of the design defined as the highest LUT
level; Time = runtime in seconds; Improv = improvement in size between PIMap and the baseline designs.

Base 5 Trials 10 Trials 40 Trials
Designs Size Dpt Size Dpt Time Improv Size Dpt Time Improv Size Dpt Time Improv
alu4 511 5 438 5 32.4 14.3% 438 5 68.0 14.3% 437 5 254.3 14.5%
apex2 674 6 511 6 31.3 24.2% 489 6 60.9 27.4% 469 6 250.2 30.4%
apex4 588 5 588 5 33.4 0.0% 588 5 63.9 0.0% 588 5 251.8 0.0%
des 818 5 651 5 50.3 20.4% 632 5 97.9 22.7% 584 5 395.4 28.6%
ex1010 655 5 654 5 30.5 0.2% 654 5 63.9 0.2% 652 5 258.2 0.5%
ex5p 351 5 351 5 25.4 0.0% 351 5 51.0 0.0% 351 5 202.7 0.0%
misex3 443 5 318 5 32.8 28.2% 314 5 65.0 29.1% 306 5 239.4 30.9%
pdc 1431 7 1430 7 55.0 0.1% 1430 7 107.4 0.1% 1427 7 441.0 0.3%
seq 693 5 590 5 33.3 14.9% 588 5 66.9 15.2% 588 5 282.9 15.2%
spla 1392 7 1387 7 61.9 0.4% 1361 7 128.0 2.2% 1361 7 479.7 2.2%

geomean 8.7% 9.4% 10.7%

We further apply PIMap to the EPFL arithmetic bench-
mark suite, and compare our results with the best known
mapping records from the EPFL database that are pub-
licly available [1]. Table 2 shows the comparison between
PIMap and the existing best known results (used as base-
line). PIMap is able to improve nine out of the 10 best known
mapping results, with an average improvement of 7.2%. No-
tably, PIMap reduces the LUT count for divisor, mult, and
square by more than 12%. In addition, PIMap improves the
depth in eight out of the 10 designs even though it is not in-
tended for depth optimization in this particular use case. We
conjecture that existing area-oriented mappers that generate
the best known min-area solutions have to make an unnec-
essary compromise in depth to gain additional area savings.
We also note that even for the largest design hyp that has
more than 44 thousand LUTs, the PIMap runtime remains
reasonable, owing to the fact that we optimize multiple small
sub-netlists in parallel instead of directly optimizing the en-
tire design.

5.2 Depth-Constrained Area Minimization
Table 3 shows the result of depth-constrained area mini-
mization on MCNC benchmarks. For the baseline designs,
we first apply ABC’s depth-minimizing resyn2 script, then
map the optimized logic network into 6-input LUTs using
ABC’s depth-oriented mapper with command if -K 6. We
use the depth of the mapped baseline designs as the depth
constraint for PIMap, and invoke PIMap to reduce the area
of the baseline designs. PIMap is able to reduce the area for
eight out of the 10 designs, with an average improvement of
10.7%, while preserving the depth from the baseline designs.
It is noteworthy that PIMap achieves 30% area reduction for
apex2, des, and misex3, showing that PIMap is still highly
effective under a hard constraint on depth.

5.3 Scalability of Parallel Optimization
Figure 7 shows the scalability of PIMap. In our experiment,
we partition an input netlist to up to 16 sub-netlists, each

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

Sp
ee

d
u

p

Number of Sub-Netlists

div log2 multiplier square

Figure 7. Scalability of the parallel optimization tech-
nique — We use PIMap for area reduction to test the scala-
bility of parallelization. We measure the runtime to achieve
a specific area target and plot the speedup in runtime versus
number of sub-netlist partitions.
of which contains up to 100 LUTs. We select four large
benchmarks in the EPFL benchmark suite, and study the
runtime required to achieve a fixed area target. The area
target of each benchmark is set to be the area of the PIMap-
optimized design using one sub-netlist and 100 trials. In this
experiment, we use four parallel threads to optimize one sub-
netlist, which requires up to 64 threads in total for the 16
sub-netlists.

As shown Figure 7, PIMap scales reasonably well up
to 16 sub-netlist partitions across multiple designs. In par-
ticular, PIMap scales near-linearly up to eight sub-netlists.
With more sub-netlists, the overhead of netlist decomposi-
tion and reassembly becomes nontrivial and prevents PIMap
from achieving the ideal speedup.

5.4 Runtime Breakdown of PIMap
Figure 8 shows the relative runtime of the four main steps in
PIMap. Sub-netlist generation refers to the step of decom-
posing the original netlist into sub-netlists. The logic trans-
formation step first proposes a transformation move, then ap-
plies the selected move to the network. The LUT mapping

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
R

u
n

ti
m

e
Sub-Netlist Generation Logic Transformation

LUT Mapping Quality Evaluation

Figure 8. Runtime breakdown of PIMap.
step converts the logic networks into LUTs using ABC’s
built-in technology mapper named if. The quality evalua-
tion step calculates the quality of the proposed transforma-
tion and decides whether to accept the proposed move.

Not surprisingly, the LUT mapping consumes the largest
portion of the runtime, followed by quality evaluation and
logic transformation. These three steps together dominate
the runtime since they need to be iteratively invoked for
many times in each trial (100 in our experiment). The run-
time of the sub-netlist generation step is negligible for most
of the benchmarks since the BFS-based extraction algorithm
scales linearly as the size of the netlist. For hyp, the run-
time of sub-netlist generation is noticeably higher than the
other designs since it is significantly larger than other de-
signs. Nevertheless, the runtime of sub-netlist generation for
hyp is still on the same order of the other steps.

5.5 Impact of Sub-Netlist Size on PIMap Runtime

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

Sub-Netlist Size
div log2 multiplier square

Figure 9. Impact of sub-netlist size on PIMap runtime.
Figure 9 shows the impact of the sub-netlist size on the

PIMap runtime to achieve a fixed area target, defined as the
area after 100 trials using a sub-netlist size of 20 LUTs.
We partition the designs up to 16 sub-netlists. For smaller
designs that do not admit 16 sub-netlists, we partition them
into as many sub-netlists as feasible. The runtime in Figure 9

is normalized to the longest runtime of the corresponding
design.

We observe that across the four benchmarks, the runtime
inflection point is around the size of 100 LUTs. With smaller
sub-netlists, each PIMap optimization thread runs faster, but
overall progress may be slow since each sub-netlist only
covers a small fraction of the entire design.

5.6 Area Reduction under a Tight Runtime Limit
Table 4. Area reduction using PIMap with 10 second
runtime limit — Base = the best known results on EPFL
benchmarks [1]; PIMap = solution of PIMap after 10 sec-
onds. We highlight the designs that are improved by PIMap.

Base PIMap
Designs Size Dpt Size Dpt
adder 201 73 197 69
shifter 512 4 512 4
divisor 3813 1542 3787 1536
hyp 44635 4194 44635 4194
log2 7344 142 7305 144
max 532 192 526 190
mult 5681 120 5594 118
sine 1347 62 1309 62
sqrt 3286 1180 3279 1181
square 3800 116 3675 102

Table 4 shows the performance of PIMap under a tight
runtime limit, which is set to be 10 seconds. In this case,
PIMap achieves less area savings but still manages to im-
prove the best-known mapping results in eight out of the 10
EPFL benchmarks.

5.7 LUT Count vs. Gate Count Reduction

0.88

0.92

0.96
1

1.04

1.08

1.12

1.16

0 10 20 30 40

multiplier

0.9

0.94

0.98

1.02

1.06

1.1

0 10 20 30 40

square

LUT Count

Gate Count

Number of Trial

0.88

0.92

0.96

1

1.04

0 10 20 30 40

div

0.92

0.96

1

1.04

1.08

1.12

1.16

0 10 20 30 40

log2

N
o

rm
al

iz
ed

 N
o

d
e

C
o

u
n

t

Figure 10. Relation between LUT count and AIG gate
count at various design points of the same design.

Figure 10 shows the LUT count and the corresponding
gate count in the AIG of the same design during the opti-

mization process in PIMap, normalized to their initial values.
For the four benchmarks, the LUT count decreases as the
number of trials increases. However, we observe an opposite
trend in gate count during the optimization, which agrees
with our correlation study in Section 3.

6. Related Work
Mishchenko, et al. [11] describe a number of efficient
rewriting techniques on AIGs, which serve as the basis for
the logic transformations used in this work. The majority-
inverter graph (MIG) proposed by Amarú, et al. [2] provides
an alternative logic representation using three-input major-
ity nodes and regular/complemented edges. MIG is shown to
be beneficial for improving mapping quality in a number of
cases. This is complementary to PIMap, since our iterative
improvement framework is agnostic to logic representations.

Yang, et al. [16] propose a new way of logic synthesis
by maintaining a precomputed library of optimal or near-
optimal circuits for small practical functions. Their logic
synthesis flow matches and replaces small circuit compo-
nents in a new design to the elements in the precomputed li-
brary. However, this approach can only find optimal or near-
optimal solution for small functions with no more than 12
inputs, and become sub-optimal for functions with more in-
puts. PIMap is orthogonal to [16] and it is not limited by the
input size of the sub-netlist. It is also possible to incorporate
Boolean matching techniques as new transformation moves
in our iterative improvement framework.

STOKE [14] uses stochastic search to optimize x86 pro-
grams by randomly rewriting the x86 assembly instructions.
Both STOKE and our approach randomly propose transfor-
mations using MCMC sampling to explore a large design
space. Besides the different application domains, our work
differs from STOKE in two major aspects: (1) STOKE fo-
cuses on using local moves that modify a single instruction
at a time, while we make use of the logic rewriting tech-
niques applied to multiple nodes in the network; (2) STOKE
can only handle small programs with around one hundred
instructions. In contrast, PIMap makes use of parallel opti-
mization to effectively handle much larger circuits with tens
of thousands LUTs.

7. Conclusions
We propose PIMap, a parallelized iterative improvement
framework for area-oriented FPGA technology mapping.
PIMap iteratively proposes logic transformation moves to
optimize an input logic network for LUT mapping, and uses
the actual mapping result to evaluate the quality of a pro-
posed move. To improve the runtime, PIMap decomposes
a large circuit netlist into multiple smaller sub-netlists, and
optimizes them in parallel across different machines. Ex-
perimental results demonstrate significantly improvement in
mapping quality for both unconstrained area optimization
and depth-constrained area optimization compared to the
state-of-the-art technology mappers. As a future direction,

we plan to investigate global restructuring techniques on the
logic network to further improve the quality of PIMap.

8. Acknowledgements
This work was supported in part by NSF Awards #1337240,
#1453378, #1512937, a DARPA Young Faculty Award
D15AP00096, and a research gift from Xilinx, Inc.
References

[1] L. Amarú, P.-E. Gaillardon, and G. De Micheli. The EPFL
Combinational Benchmark Suite. International Workshop on
Logic & Synthesis (IWLS), 2015.

[2] L. Amarú, P.-E. Gaillardon, and G. De Micheli. Majority-
Inverter Graph: A New Paradigm for Logic Optimization.
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 35(5):806–819, 2016.

[3] Berkeley Logic Synthesis and Verification Group, ABC: A
System for Sequential Synthesis and Verification, Release
60413. http://www.eecs.berkeley.edu/~alanmi/

abc/.
[4] D. Chen, J. Cong, and P. Pan. FPGA Design Automation:

A Survey. Foundations and Trends in Electronic Design
Automation, 1(3):139–169, 2006.

[5] A. H. Farrahi and M. Sarrafzadeh. Complexity of the
Lookup-Table Minimization Problem for FPGA Technology
Mapping. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 13(11), 1994.

[6] C. J. Geyer. Practical Markov Chain Monte Carlo. Statistical
Science, pages 473–483, 1992.

[7] W. K. Hastings. Monte Carlo Sampling Methods us-
ing Markov Chains and Their Applications. Biometrika,
57(1):97–109, 1970.

[8] Y. Hu, V. Shih, R. Majumdar, and L. He. FPGA Area
Reduction by Multi-Output Function Based Sequential
Resynthesis. Design Automation Conf. (DAC), 2008.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by Simmulated Annealing. Science, 220:671–680, 1983.

[10] A. Mishchenko and R. Brayton. Scalable Logic Synthesis
using a Simple Circuit Structure. International Workshop on
Logic & Synthesis (IWLS), pages 15–22, 2006.

[11] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-
Aware AIG Rewriting a Fresh Look at Combinational Logic
Synthesis. Design Automation Conf. (DAC), 2006.

[12] A. Mishchenko, S. Chatterjee, and R. K. Brayton. Improve-
ments to Technology Mapping for LUT-Based FPGAs. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 26(2):240–253, 2007.

[13] P. Pan, A. K. Karandikar, and C. Liu. Optimal Clock Period
Clustering for Sequential Circuits with Retiming. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 17(6):489–498, 1998.

[14] E. Schkufza, R. Sharma, and A. Aiken. Stochastic Super-
optimization. Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
2013.

[15] S. Yang. Logic Synthesis and Optimization Benchmarks.
Microelectronics Center of North Carolina (MCNC), 1991.

[16] W. Yang, L. Wang, and A. Mishchenko. Lazy Man’s Logic
Synthesis. Int’l Conf. on Computer-Aided Design (ICCAD),
2012.

