
Multithreaded Pipeline Synthesis for Data-Parallel Kernels

Mingxing Tan1, Bin Liu2, Steve Dai1, Zhiru Zhang1
1School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

2Facebook, Inc., Menlo Park, CA
mingxing.tan@cornell.edu, binliu@fb.com, stevedai@csl.cornell.edu, zhiruz@cornell.edu

Abstract
Pipelining is an important technique in high-level synthesis, which
overlaps the execution of successive loop iterations or threads to
achieve high throughput for loop/function kernels. Since existing
pipelining techniques typically enforce in-order thread execution, a
variable-latency operation in one thread would block all subsequent
threads, resulting in considerable performance degradation. In this
paper, we propose a multithreaded pipelining approach that enables
context switching to allow out-of-order thread execution for data-
parallel kernels. To ensure that the synthesized pipeline is complex-
ity effective, we further propose efficient scheduling algorithms for
minimizing the hardware overhead associated with context man-
agement. Experimental results show that our proposed techniques
can significantly improve the effective pipeline throughput over
conventional approaches while conserving hardware resources.

1. Introduction
As modern computation becomes increasingly limited by power,
many systems rely on hardware accelerators for computation-
intensive applications, such as matrix computation and multimedia
processing. Typically, most of the time and energy in such applica-
tions are spent on inner loops, or kernels. A kernel can often spawn
a large number of threads to operate on different data segments. Ex-
ploiting such data-level parallelism is the key to high performance
and energy efficiency. For example, general-purpose GPUs, like
those offered by NVIDIA, contain multiprocessors designed to ex-
ecute a large number of identical threads [21]. While GPUs tend to
perform well in dense floating-point matrix computation, they are
less ideal for some integer or fixed-point applications where over-
head incurred to support general-purpose processing is relatively
large. Hardware accelerators specialized for a particular kernel has
the potential for superior performance and energy efficiency by
exploiting parallelism and reducing overhead at every aspect. In
this paper, we are interested in creating efficient architectures from
kernel code automatically using high-level synthesis (HLS) [8, 10].

While it is relatively straightforward to map data-parallel
threads onto multiple copies of an accelerator, and to reuse an ac-
celerator for another thread when the previous thread has finished,
a kernel-specific accelerator can be designed to support pipelined
thread execution, i.e., it allows a thread to start before the previ-
ous one finishes. This pipelined architecture often leads to high
performance and low overhead for a number of reasons. First, by
using a specialized datapath topology, application-level data pro-
cessing, storage and movement are directly supported in hardware,
overhead in instruction fetch/decode is eliminated, and instruction-
level parallelism can be fully exploited by adding functional units
as needed. Second, multiple threads can execute in parallel on
a single piece of hardware. Different from CPU/GPU in which
threads share functional units in a time-multiplexed manner, the
customized architecture can have sufficient amount of functional
units to allow a large number of threads to execute in a truly con-
current fashion. Third, reusing the entire accelerator across threads

is much easier than reusing functional units among instructions in
the same thread, because instruction-level resource sharing often
incurs additional wires, multiplexers and control logic, which in
turn results in inferior frequency, area and power.

Unfortunately, conventional pipeline synthesis techniques effec-
tively enforce a total order of the threads. In other words, threads
cannot be reordered once they start execution in the pipeline, even
when there are no dependencies between them. In case a thread
is waiting for a variable-latency operation (such as reading from
an external memory) to complete, the thread needs to be stalled,
and thus all subsequent threads are blocked until the operation
completes. In some cases, it is possible to avoid the problem of
external memory access by prefetching remote data into a local
scratchpad memory before starting the thread. However, this is not
always possible, because sometimes memory addresses can only
be determined at runtime after some operations in the thread are
executed. A classic example is accessing a sparse matrix in com-
pressed sparse row format as in the sparse matrix vector multiplica-
tion (SpMV) example in Figure 1, where the addresses for access-
ing the sparse matrix are decided by the content of an index array.
Therefore, it is important for the pipelined architecture to tolerate
unpredictable operation latencies effectively.

for (r = 0; r < length; ++r) {!
 tmp = 0;!
 for (c = row[r]; c < row[r+1]; ++c) {!
 addr = col[c];!
 tmp += val[c] * vec[addr];!
 }!
 out[r] = tmp;!
}! Variable-latency !

external memory access!

kernel!

(a) C code

R!

VR!

R!

*!

+!

R: Fixed-latency read
VR: Variable-latency read

(b) Data flow graph

Figure 1. Sparse matrix vector multiplication (SpMV) kernel.

In this work, we investigate the problem of synthesizing effi-
cient application-specific pipelines for data-parallel kernels, with a
primary goal of obtaining high throughput in the presence of unpre-
dictable operation latencies. Our major contributions are threefold:

1. We systematically study the problem of pipeline synthesis for
data-parallel kernels that contain variable-latency operations,
and motivate the needs for out-of-order thread execution.

2. We propose a novel context-switching-enabled pipelining ap-
proach to allow efficient out-of-order execution of data-parallel
threads. We show that the proposed method achieves significant
improvement in throughput compared to conventional pipelin-
ing techniques.

3. We formulate a scheduling problem for minimizing the context
switching cost of the multithreaded pipeline; we then devise
an exact formulation as well as an efficient heuristic algorithm

to solve the optimization problem. Experimental results show
that our techniques can dramatically reduce the total context
bitwidth, leading to substantial savings of on-chip memories.

The rest of the paper is structured as follows: Section 2 provides
the preliminaries for pipelining with variable-latency operations;
Section 3 describes our approach to multithreaded pipelining that
allows out-of-order thread execution through context switching;
Section 4 describes our optimization algorithms for reducing the
context bitwidth; Section 5 reports experimental results; Section 6
reviews the previous work, followed by conclusions in Section 7.

2. Preliminaries
We define a thread as an instance of a kernel, which is a self-
contained sequence of operations often taking the form of a func-
tion or loop body. Modern CPUs and GPUs maintain more exe-
cution contexts on chip than they can simultaneously execute to
achieve hardware multithreading for tolerating memory access la-
tency [20]. Our proposed approach for context-switching-enabled
multithreading is partly inspired by these architectures; but we
seek greater specialization by synthesizing custom pipelines that al-
low multiple threads to run in parallel on different pipeline stages.
In contemporary HLS tools, modulo scheduling [22] is a widely
employed technique for generating the custom pipelined architec-
ture [5, 12, 26]. A modulo scheduling algorithm constructs a static
schedule for a single iteration/thread so that the same schedule can
be repeated at a constant interval, termed initiation interval (II),
without violating any dependence and resource constraints. The ini-
tiation interval imposes an upper bound on the throughput of the
pipeline. The latency of a single iteration/thread is called the depth
of the pipeline.

When threads execute on an accelerator, the accelerator often
needs to access data from an external shared memory. Such an oper-
ation typically incurs a difficult-to-predict latency due to (1) access
to the memory system hierarchy, (2) non-deterministic character-
istics of certain memory types (e.g., DRAMs have data-dependent
refreshing), and (3) contentions on the system-level interconnects
and other shared on-chip resources. We further note that modern
system-on-chips (SoCs) typically employ a packet-switched on-
chip network, which improves the system scalability but also in-
troduces additional uncertainties to the data access latencies. For
conventional pipelining approaches that assume the threads are ex-
ecuted in-order and the schedule is carried out in lockstep, it is in-
evitable to stall the entire pipeline to account for the unpredictable
completion time of a variable-latency operation, such as an exter-
nal memory access. Depending on the technique used to tolerate
the variable latency, the pipeline may experience different degree
of stalling.

2.1 Pipeline Stalling
A basic approach to deal with variable-latency operations is to op-
timistically schedule each operation based on its minimum latency
to obtain a compact schedule. If an operation does not complete
within the minimum latency, the current thread and all its subse-
quent threads would be stalled by this blocking operation. This ap-
proach is commonly used in modern HLS tools; but unfortunately it
often incurs excessive pipeline stalls and degrades the overall per-
formance.

Figure 2 demonstrates the baseline approach with the SpMV
kernel. Based on the data flow graph in Figure 1(b), we can pipeline
the threads with II = 1 as shown in Figure 2(a). Under an ideal
condition where all data can be obtained from a local cache or
scratchpad memory with a fixed latency, the threads are executed
in exact accordance to the schedule without any stalls. However,
as illustrated in Figure 2(b), when a cache miss occurs due to a

variable-latency read access (VR) to the external memory, the cur-
rent thread has to be stalled to wait for the memory data. More-
over, all subsequent threads must be stalled as well to ensure in-
order thread execution, resulting in in extra latency and decreased
throughput.

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

thread1!
II=1! thread2!

thread3!
thread4!

(a) Normal pipeline execution

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

R!

R!

VR!

*!
+!

stall!

thread1!
II=1! thread2!

thread3!

thread4!

cache!
miss!

(b) Pipeline stall

Figure 2. Pipeline stall due to the external memory access.

2.2 Deep Pipelining
We can enhance the baseline pipeline stalling approach by reserv-
ing a few additional pipeline stages for each variable-latency oper-
ation instead of simply using the minimum latency. With such deep
pipelining approach, the extra pipeline stages allow the pipeline to
proceed for a few extra cycles even while an operation is experi-
encing an unexpected delay.

Figure 3 illustrates the deep pipelining approach with the SpMV
kernel. Considering that the operation VR may access the external
memory with a variable latency, the scheduler reserves two addi-
tional pipeline stages VR-1 and VR-2 to tolerate part of the un-
expected latency for VR. Therefore, when VR does not complete
within the minimum latency (assumed to be one cycle in this exam-
ple), the pipeline can still proceed for two more clock cycles, and
thus allow two additional threads to enter the pipeline. However, if
the actual access latency is longer than the allotted pipeline stages,
the pipeline must be stalled until the requested data arrive. In this
example, if VR has an actual latency of four cycles, the pipeline
would only proceed two cycles and then stall for one cycle. Ob-
viously, allocating even more pipeline stages for variable-latency
operations can potentially better tolerate the memory latency and
reduce pipeline stalls, although a deeper pipeline would come with
additional hardware overhead in area, power, and timing. In ad-
dition, the deep pipelining approach still enforces in-order thread
execution, which would result in a sub-optimal pipeline throughput
in many cases, as discussed in Section 3.3.

3. Multithreaded Pipelining
In this section, we present a novel multithreaded pipelining tech-
nique that allows out-of-order thread execution to improve per-
formance for data-parallel kernels. We note that a conventional
in-order pipelining scheme also supports multithreading since it
executes multiple threads concurrently on different stages of the
pipeline. However, when a thread is blocked due to unexpected la-
tency, the entire pipeline has to stall to enforce the thread ordering
even if no data dependences exist between threads. In contrast, our
proposed out-of-order multithreaded pipelining scheme allows the
subsequent threads to proceed, thus leading to a higher throughput.
More specifically, the suspended thread will release its occupied
resources by saving all live values at the time of the suspension, so
that the subsequent threads can march ahead without unnecessary
stalling. Later the suspended thread will be swapped back to the
pipeline once the variable-latency operation is completed.

R!

R!

VR!

VR-1!
VR-2!

*!
+!

R!

R!

VR!

VR-1!

VR-2!
*!
+!

R!

R!

VR!

VR-1!
VR-2!

*!
+!

R!

R!

VR!

VR-1!
VR-2!

*!
+!

stall!
R!

R!

VR!

VR-1!
VR-2!

*!
+!

R!

R!

VR!

VR-1!
VR-2!

*!
+!

extra
stages!

II=1! thread2!

thread3!
thread4!

thread5!

thread6!

cache miss!

thread1!

Figure 3. Deep pipelining approach.

R!

VR!

R!

*!

+!

ThreadID! Context!

ThreadID! Context!

…! …!

ThreadID! Context!

Pipelined datapath Context buffer

Thread suspended

Thread resumed

Thread scheduler!!
 !
 !

!
 !
 !

!
!
 !
 !

switch!
point!

!
 !
 !

Figure 4. Basic mechanisms of a multithreaded pipeline: The
pipelined datapath is extended with context switching support;
Each context buffer saves the thread context when a thread is sus-
pended; The thread scheduler decides which thread will be resumed
if there are multiple ready threads in the context buffer.

3.1 Context Switching
In this paper, we use the term context switching to denote the
pipeline behaviors involved for suspending and/or resuming a
thread. Here the context denotes the collection of all live values
at a specific cycle when the context switching occurs, which we
term as the switch-point. To achieve context switching for out-of-
order thread execution, a context buffer is designated to store all
the contexts of the suspended threads.

Figure 4 illustrates the basic mechanisms of a multithreaded
pipeline with the context switching support. Compared to the con-
ventional pipelining schemes, we mainly extend the pipelined dat-
apath with a context buffer to support out-of-order thread execu-
tion. The context buffer is a dedicated hardware storage equipped
with a lightweight thread scheduler. Each entry of the buffer con-
tains the context of a suspended thread and its thread ID. When a
thread is switched out due to a blocking operation with unexpected
latency, the context of the thread is saved into the context buffer.
Afterwards, when the blocking operation is completed, the context
of the thread is restored into the pipeline. Note that at the switch-
point where a thread needs to be suspended, the pipeline examines
the context buffer to determine if there exist any threads that are
previously switched out at the same switch-point and are ready to
continue execution. If so, one of the ready threads will be selected
and its context will be restored into the pipeline before it resumes
execution. In case there is no ready thread and no free entry in the
context buffer, the pipeline will stall until at least one thread be-
comes ready.

R!

miss!

*!
+!

R!

hit!

*!
+!

R!

miss!

*!
+!

R!

hit!

*!
+!

R!

miss!

*!
+!

t1!

t2!

t3!

t4!

t5!

clock
cycle!

0!

1!

2!

3!

4!

5!

6!

7!

8!

9!

(a) Pipelined execution

t1!

t4!
t3!

t5!
t3!

t5!

cycle = 1!
initial state!

cycle = 2!
t1 suspended!

cycle = 5!
t1 resumed!

t4 suspended

cycle = 6!
t4 resumed!

t5 suspended

cycle = 7!
t3 resumed!

cycle = 8!
t5 resumed!

t1! t1!
t3!

cycle = 3! cycle = 4!
t3 suspended

(b) Context buffer snapshots

Figure 5. Multithreaded pipelined execution of the SpMV kernel:
(a) Pipelined execution of five threads (t1-t5) within ten cycles;
(b) Snapshots of the context buffer for cycles 1-8.

Figure 5 demonstrates the execution of the SpMV kernel in
the multithreaded pipeline, where Figure 5(a) shows the execution
of five threads (t1-t5) within ten clock cycles and Figure 5(b)
sketches how the context buffer is updated each cycle. Initially,
there is no thread executing in the datapath before cycle 1, and the
context buffer is empty. The first thread t1 starts executing in the
first cycle. In cycle 2, t1 incurs a cache miss and results in a context
switching; thus the context of t1 is saved into the context buffer in
the next cycle. In contrast to the conventional pipelining approach,
our multithreaded pipelining architecture allows the pipeline to
proceed even though t1 is blocked. In cycle 4, t3 is suspended
due to another cache miss, and the context of t3 is saved into the
context buffer. The context buffer now contains t1 and t3. In cycle
5, t1 has completed its memory access and becomes ready. Hence
it is resumed and its context is restored into the pipeline. At the
same time, t4 gets suspended and joins t3 in the context buffer;
but since t4 is swapped out to make room for t1, it is flagged as
ready immediately. In cycle 6, t5 incurs a cache miss and triggers
the context switching; thus t5 is suspended and t4 is swapped back
into the pipeline. In cycle 7, t3 becomes ready and its context is
restored, leaving only t5 in the context buffer. Eventually, t5 will
be resumed after it becomes ready.

As evident in Figure 5, our multithreaded pipeline allows
threads to execute out of order. For instance, while thread t2 enters
the pipeline later than t1, it actually completes sooner since t1 is
suspended for three cycles. Thread t4 also finishes ahead of t3 in
the same example. In Section 3.3, we will provide quantitative anal-
ysis to justify that this added flexibility in thread scheduling leads
to a much higher pipeline throughput for data-parallel kernels.

3.2 Context Buffer Microarchitecture
Context buffer plays a critical role in supporting out-of-order ex-
ecution for multithreaded pipelining. As opposed to the fixed-size
context register files commonly used in multithreaded CPU/GPU
architectures, our context buffer is application specific. Neverthe-
less, our synthesis engine instantiates context buffers with different
capacities based on a common microarchitecture template, which
is illustrated in Figure 6. The microachitecture template comprises
of four major components: ContextMem is the memory block
that stores the context data of the suspended threads, ReadyReg
and FreeReg indicate the status of each entry in ContextMem,
and MemReqBuf keeps track of the pending memory requests.
The bitwidth and depth (i.e., number of entries) of these mem-

maddr

cin

ContextMem
r_en

w_data

r_addr
r_data

w_addr

w_en

cout

switch?

mdata

full?

m_addr m_data

blocked?

m_data

CLZ

nonempty?

FreeReg

CLZ

find a
ready thread

nonempty?

find a
free entry

ReadyReg

w_bitset

w_bitreset

MemReqBuf

1
0

Memory Interface

dout

dout

w_bitset

w_bitreset

Figure 6. Microarchitecture template for the context buffer.

ory/register units are determined at compile time based on the ap-
plication characteristics, the throughput requirement, as well as the
pipeline synthesis algorithms that will be discussed in Section 4.

In each cycle, the context buffer accepts memory requests from
the pipelined datapath and check if the requested memory data
are immediately available from the local cache. If not, the context
buffer forwards the memory request to the shared memory con-
trollers and initiates the context switching process. At the first step
of the context switching, FreeReg and ReadyReg in the context
buffer are scanned to locate a free entry where the new context
can be stored. If there is not a free entry and a ready thread, the
pipeline is stalled. If there are multiple ready threads, the thread
scheduler determines which thread will be resumed. To implement
a very lightweight thread scheduler, we use a count leading zero
(CLZ) component to realize a basic round-robin scheduling pol-
icy. The microarchitecture can be extended to support other thread
scheduling policies.

Since the threads are executed out of order, it is important to
avoid starvation. To this end, we currently enforce the pipeline
to switch context at the earliest switch-point to restore the ready
thread with the highest priority. If the thread being swapped out is
not blocked by any variable-latency operations, the context buffer
will immediately mark it as ready. An alternative, more energy-
efficient method is to intentionally inject a bubble to the pipeline
for delaying the processing of the incoming thread so that the ready
thread in the context buffer can be swapped back when the bubble
arrives at the anticipated switch-point.

3.3 Throughput Analysis
In this section, we compare the throughput between context switch-
ing and deep pipelining. Considering a pipeline with a single
variable-latency memory access, the intuition is that with the
same amount of additional storage capable of holding N blocking
threads (i.e., N extra pipeline stages or N context buffer entries),
the context switching approach always achieves a throughput (in
number of threads processed per cycle) at least as high as that by
deep pipelining. This can be shown by the fact that the serial buffer
in the deep pipelining architecture can be emulated by the parallel
context buffer with a modification to the thread scheduler. Instead
of checking all threads in the context buffer to find a ready thread
to resume, the scheduler could only check if the thread with small-
est ID (oldest thread) and wait if it is not ready. In this way, the

in-order thread execution is guaranteed, and the context switching
architecture behaves exactly as the deep pipeline. With a more ag-
gressive scheduling policy, a ready thread can execute even if it is
not the oldest, and this clearly leads to better performance.

It is possible to model the system using queuing theory and ana-
lyze the throughput under certain distributions [19]. For example, if
the cache miss penalty is constant, and different accesses have inde-
pendent miss rate, the context buffer is equivalent to the Geo/D/N
queue, i.e., a queue with Bernoulli arrivals, deterministic service
time, and N servers. However, simple analytical solutions are usu-
ally available only when the distribution is memoryless.

In this work, we experimentally measure the throughput with
different parameters using Monte Carlo simulation. Figure 7 shows
the throughput comparison with different parameters R and N ,
where R is the number of variable-latency operations, and N is the
total extra storage space (not used in the baseline approach) that is
evenly allocated to all variable-latency operations. For simplicity,
we assume each variable-latency operation corresponds to a unique
switch-point. The variable-latency operation can be a cache hit
or miss with a cache miss rate of 5%. We assume the cache hit
latency is one cycle, while cache miss latency is a random variable
following binomial distribution with a maximum value of 100, a
mean value of 90 and a variance of 9. As shown in Figure 7, a larger
N can achieve a higher throughput in both deep pipelining and
context switching approaches by tolerating more cache misses, and
the context switching approach can quickly approach the optimal
throughput with a smaller N . In addition, as the number of variable-
latency operations increases, the deep pipelining approach would
have a lower throughput due to more frequent pipeline stalls, while
our context switching approach still maintains a high throughput
by better tolerating the difficult-to-predict memory latencies with
out-of-order thread execution.

4. Optimization of Context Switching Cost
While context switching effectively leads to a higher throughput
in presence of unpredictable operation latency, it also potentially
incurs nontrivial hardware overhead, because the contexts of the
pending threads must be saved. Thus, minimizing the size of the
context becomes crucial to the overall hardware resource usage.

We use context bitwidth to denote the total bitwidth of all live
values when a thread is suspended. Figure 8 shows how different
schedules affect the context bitwidth for the SpMV kernel. Since VR
is a variable-latency operation, a switch-point is needed between
VR and its successors. With a suboptimal schedule (e.g. ASAP
or ALAP schedule) shown in Figure 8(a), the context contains a
32-bit value, resulting in a context bitwidth of 32. In contrast, an
optimal schedule can achieve a context bitwidth of 8 as shown in
Figure 8(b). Clearly, a good schedule can significantly reduce the
context bitwidth and thus the overall resource usage. In this section,
we present both the exact mathematic formulation and an efficient
heuristic algorithm to solve the context minimization problem.

4.1 Exact Formulation
We first formulate the scheduling problem for minimizing the con-
text switching cost as an integer linear program (ILP). The problem
we seek to solve is formally stated as follows:

Given: (1) A data-parallel kernel represented by a control data
flow graph; (2) A set of variable-latency operations O; (3) A set of
scheduling constraints C, such as dependence constraints, timing
constraints, resource constraints, etc.

Goal: Find a pipelined schedule and a set of switch-points for
operations in O without violating any given constraint in C. Let Ut

denote the context bitwidth for the switch-point at time step t, the

0 20 40 60 80
Number of extra buffer entries (N)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr
ou
gh
pu
t(
th
re
ad
s/
cy
cl
e)

stall

dpipe

context

(a) R = 1

0 20 40 60 80
Number of extra buffer entries (N)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr
ou
gh
pu
t(
th
re
ad
s/
cy
cl
e)

stall

dpipe

context

(b) R = 2

0 20 40 60 80
Number of extra buffer entries (N)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr
ou
gh
pu
t(
th
re
ad
s/
cy
cl
e)

stall

dpipe

context

(c) R = 4

Figure 7. Throughput study for different parameters: N = total number of extra pipeline stages or context buffer entries for all variable-
latency operations; R = number of variable-latency operations. stall = baseline pipelining approach; dpipe = deep pipelining approach;
context = context switching approach.

R!

VR!

R!

*!

+!

switch-point!

32b!

8b!

(a) ASAP schedule

R!

VR!

R!

*!

+!

32b!

8b!

switch-point!

(b) Optimal schedule

Figure 8. Context bitwidth for different schedules: (a) An as-soon-
as-possible (ASAP) schedule resulting in a 32-bit context; (b) An
optimal schedule achieving an 8-bit context.

objective is to minimize the total context bitwidth.

Objective: minimize
∑
t

Ut (1)

Let the binary variable xij denote whether operation i is sched-
uled at time step j. We use Equation (2) to restrict that each opera-
tion be scheduled at exactly one time step.

L∑
j=1

xij = 1, ∀i (2)

We define binary variable wkj to indicate if a switch-point for
operation k occurs at time step j. With Equation (3), we specify
that each variable-latency operation has exactly one switch-point.
We also note that multiple variable-latency operations can share the
same switch-point.

L∑
j=1

wkj = 1, ∀k ∈ O (3)

In the following, we will make use of xij’s and wkj’s to cap-
ture various other scheduling constraints, including the dependence
constraints, resource constraints, and context switching constraints.

Dependence constraints A dependence constraint between oper-
ations u and v, where u needs to finish before v starts, is captured
by the following equation:

L∑
j=1

j · xuj + lu −
L∑

j=1

j · xvj ≤ 0, ∀(u, v) ∈ E (4)

Here E denotes the set of dependencies in the kernel and lu denotes
the latency of operation u.

Resource constraints Let type(i) be the resource type of opera-
tion i, Resr be the upper bound of the number of resources of type
r, and II be the initiation interval. The resource constraints can be
formulated as follows:

b(L−p)/IIc∑
s=0

∑
type(i)=r

xij(p,s) ≤ Resr,

where j(p,s) = p+ II × s, ∀r, ∀p : 1 ≤ p ≤ II

(5)

Essentially, the constraint sums up the resource usage of all over-
lapping threads and ensure that the resource constraints are satisfied
based on the current modulo schedule.

Context switching constraints To ensure a thread can be safely
suspended when an operation u incurs an unpredictable latency,
the context switch needs to happen before executing any operations
that depend on the result of u. In fact, when u is blocked, we do
not necessarily need to stall the thread right away; instead, we can
allow it to continue until one of u’s successors is encountered. In
other words, the switch-point should be scheduled after operation
u and before any successors of u. These constraints are captured by
Equations (6) and (7) as follows.

L∑
j=1

j · xuj + lu −
L∑

j=1

j · wuj ≤ 0, ∀u ∈ O (6)

L∑
j=1

j · wuj −
L∑

j=1

j · xvj ≤ −1, ∀u ∈ O and (u, v) ∈ E (7)

In order to compute the context bitwidth for each switch-point,
we use binary variable Pj to indicate whether time step j is a
switch-point. Pj = 1 if there is at least one variable-latency
operation k that has wkj = 1; otherwise Pj = 0. We use Equations
(8) and (9) to ensure this constraint:

wkj − Pj ≤ 0, ∀k ∈ O,∀j (8)

Pj −
∑
k

wkj ≤ 0, ∀j (9)

Let Wu denote the bitwidth of operation u, we have constraint
(10) for the context bitwidth of each time step t (0 ≤ t ≤ L).

Bit =
∑
j≤t

xij , Ait =
∑
j>t

xij∑
(u,v)∈E

Wu (But −Bvt +Avt −Aut)−H · (1− Pt) ≤ 2 · Ut

(10)

Here Bit denotes whether operation i is scheduled at or before time
step t, Ait denotes whether operation i is scheduled after time step
t, and H is a large constant that is used to relax this constraint
when time step t is not a switch-point (i.e., Pt = 0). Equation (10)
bounds the total bitwidths on all edges that span across the time
step (i.e., live values) if it is a switch-point.

4.2 Heuristic Algorithm
As ILP is in general not scalable, we further design a heuristic
scheduling algorithm to minimize the context bitwidth. The key
idea is to coordinate scheduling and context switching based on the
graph min-cut theory [9]. Intuitively, given the control data flow
graph, each context contains a set of nodes that divide the graph
into two disjoint subgraphs: one containing operations scheduled
before the switch-point, and the other containing all succeeding
operations. Thus, the operations in a context actually form a node
cut in the data flow graph. Finding a min-cost context (i.e., with
minimum total bitwidth) for a variable-latency operation can be
reduced to the problem of finding a min-cut for the control data
flow graph with some additional constraints for context switching.

However, it is intrinsically hard to obtain an optimal schedule
when we need to account for a variety of scheduling constraints.
It is even more difficult to further minimize the context bitwidths
for multiple variable-latency operations. In this work, we propose
a coordinated scheduling and context switching heuristic, which
iteratively applies the min-cut algorithm to guide the scheduling
process for optimizing the context switching cost associated with
each variable-latency operation.

Algorithm 1: Heuristic scheduling algorithm for context
switching.

LastSwitchPoint← 0
while more variable-latency operations to schedule do

pick a variable-latency operation o with max ASAP
G′ ← construct auxiliary graph(CDFG, o)
C ← find min cut(G′)
NewSwitchPoint← max ASAP for all nodes in C
foreach n in C do

schedule n as late as possible before
NewSwitchPoint

end
insert a switch-point at NewSwitchPoint
foreach predecessor node p of C do

if (in degree cost(p) > out degree cost(p) then
schedule p as early as possible after
LastSwitchPoint

else
schedule p as late as possible before
NewSwitchPoint

end
end
schedule o as late as possible
LastSwitchPoint← NewSwitchPoint

end
schedule remaining operations as close as possible to
previously scheduled nodes

Algorithm 1 shows the pseudo code for our heuristic. It itera-
tively schedules variable-latency operations in a topological order.
For each variable-latency operation o, we first construct a auxil-
iary graph as follows. Given a directed control data flow graph
CDFG = (V,E) with a node set V and an edge set E, and a
given node o ∈ V with predecessors Preds(o) and successors

Succs(o), the corresponding auxiliary graph G′ = (V ′, E′) is de-
fined as follows:

• V ′ = V − Preds(o)− Succs(o) + {s, t}
• e = (u, v) ∈ E′, ∀e : e ∈ E if u ∈ V ′ and v ∈ V ′

• (s, x) ∈ E′, ∀x : ∃(u, x) ∈ E and u ∈ Preds(o)

• (y, t) ∈ E′, ∀y : ∃(y, v) ∈ E and v ∈ Succs(o)

Based on the auxiliary graph, we apply a max-flow min-cut
algorithm to find the min-cost node cut C. These nodes com-
pose a context and we tend to schedule them together and as
late as possible before the switch-point. A switch-point is inserted
right after the node in C with the largest ASAP schedule. Af-
ter all nodes in the min-cut set are scheduled, their predecessors
are scheduled according to their in degree cost (sum of all in-
coming edge costs) and out degree cost (sum of all outgoing
edge costs). If in degree cost is greater than out degree cost,
then the node would be scheduled as early as possible to minimize
pipeline registers for its incoming edges; otherwise, it is scheduled
as late as possible to minimize pipeline registers for its outgoing
edges. Scheduling constraints are checked and updated each time
a node is scheduled. It is important to note that our algorithm al-
ways attempts to schedule operations between LastSwitchPoint
and NewSwitchPoint to avoid that a value is unnecessarily live
across multiple switch-points.

After all variable-latency operations are scheduled and all re-
quired switch-points are inserted, the remaining operations are
scheduled as close as possible to previously scheduled ones in
order to minimize register usage, in a way similar to the swing
modulo scheduling [16, 17].

5. Experimental Results
The proposed context management scheme and pipeline scheduling
algorithms are implemented within the framework of a commercial
HLS tool, which is based on LLVM compiler infrastructure [14].
We implement our scheduling algorithms as a separate LLVM
pass, and push the scheduling results through the default RTL
code generator backend. We use CPLEX [3] to solve the ILP
problem for minimizing the context cost. The generated RTL code
is synthesized by Xilinx ISE 14.7 targeting the Virtex-7 FPGA
device.

Experiments are performed on a number of data-parallel kernels
extracted from a variety of irregular applications. spmv is a classic
sparse matrix vector multiplication kernel with matrix stored in the
compressed sparse row format. bfs is a parallel breath-first search
kernel extracted from the Graph 500 benchmark suite [2]. Other
designs are extracted from a widely used sparse matrix package
SuiteSparse [1]: decompress translates a sparse matrix into a regu-
lar matrix; tranpose transposes a sparse matrix while still keeping
the same format; utsolve solves a sparse upper-triangular matrix
system; mmadd performs a specialized matrix addition between two
sparse matrices; maxtrans finds an augmenting path starting at a
given column and extends the match if found. All sparse matrices
are stored in the compressed sparse row format.

5.1 Throughput Comparison
Table 1 compares the throughput results between different ap-
proaches: stall is the baseline pipelining approach, dpipe is the
deep pipelining approach, and context is the proposed context-
switching-enabled pipelining approach. Each evaluated design con-
tains a number of indirect array reads and writes, which may access
either a local memory (cache hit) in two cycles or an external mem-
ory (cache miss with a 5% miss rate) with a variable latency. For
each external memory access, we insert N extra pipeline stages for

Table 2. QoR comparison for different approaches: CP = achieved
clock period in ns with an 8ns target; LAT = pipeline latency/depth
in clock cycles; SLICE = # of slices; LUT = # of lookup tables; FF
= # of flip-flops; BRAM = # of block RAMs.

Design Approach CP LAT SLICE LUT FF BRAM

spmv
stall 4.43 4 120 191 280 3

dpipe 4.67 60 634 803 1320 3
context 4.67 10 189 233 546 6

bfs
stall 5.76 5 141 264 269 3

dpipe 5.68 82 1366 1339 2593 4
context 4.67 9 226 281 589 8

decompress
stall 4.43 3 265 455 764 1

dpipe 6.57 88 1798 2212 2998 2
context 4.67 13 337 457 1169 6

transpose
stall 4.43 4 188 269 444 3

dpipe 6.33 83 1491 1752 3059 3
context 6.04 8 255 298 756 8

utsolve
stall 4.67 7 197 308 343 7

dpipe 5.05 87 1428 1504 3043 7
context 4.67 10 245 328 514 10

mmadd
stall 4.43 5 419 738 1089 4

dpipe 6.67 90 3140 3022 5951 3
context 5.47 11 475 645 1404 13

maxtrans
stall 4.67 6 226 406 594 5

dpipe 6.07 104 2445 2216 4148 7
context 4.67 13 332 464 887 12

the deep pipelining approach and employ an N -entry context buffer
for the context switching approach. Based on a target clock period
of 8ns, we measure the number of threads that can be processed
per second for each approach. With the number of extra buffer en-
tries varying from 4, 8, 16, and 32, the deep pipelining approach
can achieve an average speedup of 1.5x, 2.5x, 3.9x, and 4.7x re-
spectively over the baseline approach, while the context switching
approach can achieve an average speedup of 7.2x, 14.1x, 17.5x, and
19.3x respectively. Unlike the deep pipelining approach, which is
still limited by the thread ordering, our context switching approach
can significantly improve the overall performance and achieve a
near-optimal throughput by allowing out-of-order thread execution.

5.2 Timing and Resource Usage Comparison
Table 2 lists the timing and resource usage of the synthesized de-
signs under three different pipelining approaches. In this experi-
ment, all designs are meeting the 8ns clock period (CP) constraints.
Not surprisingly, the baseline approach has the shortest latency
and demands the least resource usage, but at the expense of low
throughput; the deep pipelining approach incurs a much longer la-
tency and results in more lookup tables (LUTs, especially in the
form of shift register lookup tables) and flip-flops (FFs) due to the
additional pipeline stages; the context switching approach requires
more block RAMs (BRAM) to store the thread contexts.

We note that the scheduling optimization algorithms described
in Section 4 are able to significantly reduce the size of the context
buffers. Figure 9 compares the size of the contexts (in total num-
ber of bits) under different scheduling strategies. On average, the
heuristic and exact approach can reduce the context size by 84%
and 88%, respectively. Although the ILP formulation can achieve
optimal resource reduction, it is not as scalable as the heuristic al-
gorithm for larger designs such as mmadd and maxtrans.

0!
200!
400!
600!
800!
1000!
1200!
1400!
1600!
1800!

sp
mv
!

bfs
!

de
co
mp
res
s!

tra
ns
po
se
!

uts
olv
e!

mm
ad
d!

ma
xtr
an
s!

C
on

te
xt

 b
itw

id
th
!

baseline!
heuristic!
exact!

Figure 9. Context bitwidth comparison with different scheduling
algorithms: baseline, heuristic, and exact. With the exact approach,
the ILP solver times out in mmadd and maxtrans.

6. Related Work
Pipelining is an important optimization in HLS for improving de-
sign throughput because it allows multiple loop iterations or func-
tion invocations to overlap and execute in parallel on different
stages of a pipelined datapath. Many HLS systems, such as LegUp
[6], PICO-NPA [24], and Vivado HLS [8], have enabled pipelining
based on modulo scheduling [23]. Additional optimizations, such
as memory port reduction [4], register pressure minimization [26],
pipeline flushing [12], and polyhedral analysis [18, 27], continue
to extend the state of the art of pipelining techniques. A pipelined
architecture naturally enables efficient hardware multithreading
for data-parallel applications. For instance, Altera’s OpenCL com-
piler [11] constructs kernel-specific pipelines to implement high-
performance hardware on FPGAs for applications described in
OpenCL [25]. However, it appears that the synthesized pipeline en-
forces an in-order execution between threads, which is potentially
less effective in tolerating the memory latency with an irregular
address stream.

There has been a growing interest in optimizing HLS techniques
for irregular applications with non-deterministic workload and un-
predictable memory access latency. For example, Halstead and Na-
jjar [13] proposed the CHAT compiler, which can accelerate sparse
matrix multiplication (SPMV) through a multithreaded datapath on
FPGAs. While CHAT uses deep FIFOs to realize multithreading
for SPMV, our approach explores context switching as a more gen-
eral approach for enabling out-of-order thread execution to achieve
even higher speed-up for a wider range of applications. Liu et al.
[15] recently proposed coarse-grained pipeline accelerators (CG-
PAs) to exploit coarse-grained parallelism by decomposing irreg-
ular loops into serial/parallel stages, where the serial stages per-
form the difficult-to-parallelize data structure manipulations and
the replicated datapaths are used to speed up the main computation
in the loop. In [7], Choi et al. proposed to generate multithreaded
parallel hardware architectures using Pthreads and OpenMP, and
map software threads to multiple copies of the same accelerator in-
stead of using the pipelined architectures. We currently focus on
exploiting the data-level parallelism that allows multiple threads to
execute on the same pipelined datapath. Nevertheless, our approach
can also be extended to incorporate coarse-grained parallelization
techniques to provide additional throughput improvement, which
will be investigated as part of our future work.

7. Conclusions
In this paper, we study the problem of multithreaded pipeline syn-
thesis for data-parallel kernels and propose a context-switching-

Table 1. Throughput comparison for different approaches: N is the number of extra pipeline stages or context buffer entries (not used in
stall) for each variable-latency operation; factors in parenthesis are the speedup over the baseline approach (stall).

N=4 N=8 N=16 N=32
Design stall dpipe context dpipe context dpipe context dpipe context

spmv 0.9 1.3 (1x) 5.3 (6x) 1.9 (2x) 9.8 (11x) 2.9 (3x) 11.6 (13x) 4.9 (6x) 12.5 (14x)
bfs 0.8 1.1 (1x) 4.9 (6x) 1.6 (2x) 9.3 (12x) 2.7 (3x) 11.1 (14x) 4.8 (6x) 12.5 (16x)

decompress 0.6 1.1 (1x) 4.8 (8x) 1.6 (3x) 9.3 (15x) 2.6 (4x) 11.3 (18x) 4.7 (8x) 12.5 (20x)
transpose 0.6 1.1 (2x) 4.8 (7x) 1.7 (3x) 9.3 (14x) 2.6 (4x) 11.4 (18x) 4.7 (7x) 12.5 (20x)

utsolve 0.7 1.1 (2x) 4.8 (7x) 1.6 (2x) 9.2 (14x) 2.6 (4x) 11.3 (17x) 4.7 (7x) 12.5 (18x)
mmadd 0.5 1.0 (2x) 4.5 (8x) 1.5 (3x) 8.7 (16x) 2.6 (5x) 11.2 (21x) 4.6 (9x) 12.5 (23x)

maxtrans 0.5 1.0 (2x) 4.3 (9x) 1.4 (3x) 8.5 (18x) 2.5 (5x) 11.1 (24x) 4.6 (10x) 12.5 (27x)

enabled pipelining approach which allows out-of-order thread ex-
ecution. We further devise an exact formulation and a heuristic
scheduling algorithm to minimize the hardware resources for sup-
porting context switching. Experimental results demonstrate that
our approach can achieve much higher throughput compared to
conventional pipeline synthesis approaches. In addition, our ex-
act and heuristic scheduling algorithms can significantly reduce the
amount of storage needed for context management.

Acknowledgments
This work was supported in part by NSF Award CCF-1337240 and
a research gift from Xilinx, Inc.

References
[1] SuiteSparse: A Suite of Sparse Matrix Packages. https://www.

cise.ufl.edu/research/sparse/SuiteSparse/.

[2] The Green Graph 500. http://www.graph500.org.

[3] CPLEX: High-Performance Software for Mathematical Programming
and Optimization, 2005.

[4] Y. Ben-Asher, D. Meisler, and N. Rotem. Reducing Memory
Constraints in Modulo Scheduling Synthesis for FPGAs. ACM
Trans. on Reconfigurable Technology and Systems, 3(3):1–19, 2010.

[5] A. Canis, J. H. Anderson, and S. D. Brown. Modulo SDC Scheduling
with Recurrence Minimization in High-Level Synthesis. Int’l Conf.
on Field Programmable Logic and Applications (FPL), 2014.

[6] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski. LegUp: High-Level
Synthesis for FPGA-Based Processor/Accelerator Systems. Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), pages 33–36,
Mar 2011.

[7] J. Choi, S. Brown, and J. Anderson. From Software Threads to
Parallel Hardware in High-Level Synthesis for FPGAs. Int’l Conf. on
Field Programmable Technology (FPT), pages 270–277, Dec 2013.

[8] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and
Z. Zhang. High-Level Synthesis for FPGAs: from Prototyping to
Deployment. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 30(4):473–491, 2011.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, et al.
Introduction to Algorithms, volume 2. MIT press Cambridge, 2001.

[10] P. Coussy and A. Morawiec. High-Level Synthesis: from Algorithm
to Digital Circuit. Springer, 2008.

[11] T. S. Czajkowski, D. Neto, M. Kinsner, U. Aydonat, J. Wong,
D. Denisenko, P. Yiannacouras, J. Freeman, D. P. Singh, and S. D.
Brown. OpenCL for FPGAs: Prototyping a Compiler. Int’l Conf.
on Engineering of Reconfigurable Systems and Algorithms (ERSA),
pages 3–12, Jul 2012.

[12] S. Dai, M. Tan, K. Hao, and Z. Zhang. Flushing-Enabled Loop
Pipelining for High-Level Synthesis. Design Automation Conf.
(DAC), Jun 2014.

[13] R. J. Halstead and W. Najjar. Compiled Multithreaded Data Paths
on FPGAs for Dynamic Workloads. Intl’l Conf. on Compilers,
Architectures and Synthesis of Embedded Systems (CASES), Oct
2013.

[14] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. Int’l Symp. on Code
Generation and Optimization (CGO), pages 75–86, Mar 2004.

[15] F. Liu, S. Ghosh, N. P. Johnson, and D. I. August. CGPA: Coarse-
Grained Pipelined Accelerators. Design Automation Conf. (DAC),
Jun 2014.

[16] J. Llosa, E. Ayguadé, A. Gonzalez, M. Valero, and J. Eckhardt.
Lifetime-Sensitive Modulo Scheduling in a Production Environment.
IEEE Trans. on Computers (TC), 50(3):234–249, Mar 2001.

[17] J. Llosa, A. González, E. Ayguadé, and M. Valero. Swing Module
Scheduling: A Lifetime-Sensitive Approach. Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), pages 80–86, Oct
1996.

[18] A. Morvan, S. Derrien, and P. Quinton. Polyhedral Bubble Insertion:
A Method to Improve Nested Loop Pipelining for High-Level
Synthesis. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 32(3):339–352, 2013.

[19] R. Nelson. Probability, Stochastic Processes, and Queueing Theory:
The Mathematics of Computer Performance Modeling. Springer,
1995.

[20] M. Nemirovsky and D. M. Tullsen. Multithreading Architecture.
Synthesis Lectures on Computer Architecture, 8(1):1–109, 2013.

[21] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–899,
2008.

[22] B. R. Rau. Iterative Modulo Scheduling: An Algorithm for Software
Pipelining Loops. Int’l Symp. on Microarchitecture (MICRO), pages
63–74, Nov 1994.

[23] B. R. Rau and C. D. Glaeser. Some Scheduling Techniques and an
Easily Schedulable Horizontal Architecture for High Performance
Scientific Computing. ACM SIGMICRO Newsletter, 12(4):183–198,
1981.

[24] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. Rau, D. Cronquist,
and M. Sivaraman. PICO-NPA: High-level Synthesis of Nonpro-
grammable Hardware Accelerators. Journal of VLSI Signal Process-
ing, 31(2):127–142, 2002.

[25] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. IEEE Design &
Test, 12(3):66–73, 2010.

[26] Z. Zhang and B. Liu. SDC-Based Modulo Scheduling for Pipeline
Synthesis. Int’l Conf. on Computer-Aided Design (ICCAD), pages
211–218, Nov 2013.

[27] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong. Improving
High Level Synthesis Optimization Opportunity through Polyhedral
Transformations. In Int’l Symp. on Field-Programmable Gate Arrays
(FPGA), pages 9–18. ACM, 2013.

