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ABSTRACT 
Many commercially available embedded processors are capable 
of extending their base instruction set for a specific domain of 
applications. While steady progress has been made in the tools 
and methodologies of automatic instruction set extension for 
configurable processors, recent study has shown that the limited 
data bandwidth available in the core processor (e.g., the number 
of simultaneous accesses to the register file) becomes a serious 
performance bottleneck.  
In this paper we propose a new low-cost architectural extension 
and associated compilation techniques to address the data 
bandwidth problem. Specifically, we embed a single control bit in 
the instruction op-codes to selectively copy the execution results 
to a set of hash-mapped shadow registers in the write-back stage. 
This can efficiently reduce the communication overhead due to 
data transfers between the core processor and the custom logic. 
We also present a novel simultaneous global shadow register 
binding with a hash function generation algorithm to take full 
advantage of the extension. The application of our approach leads 
to a nearly-optimal performance speedup (within 2% of the ideal 
speedup).  

1. INTRODUCTION 
Application-specific instruction-set processors (ASIPs) are a 
promising approach to combining the flexibility offered by a 
general-purpose processor and the speedup (and power savings) 
offered by an application-specific hardware accelerator. Generally, 
an ASIP has the capability to extend the instruction set of the base 
architecture with a set of application-specific instructions 
implemented by custom hardware resources. These hardware 
resources can be either runtime reconfigurable functional units, or 
pre-synthesized circuits. The recent emergence of many 
commercially available embedded processors with both 
configurability and extensibility (e.g., Altera Nios/NiosII [17], 
Tensilica Xtensa V/LX [18], Xilinx MicroBlaze [19], etc.) 
testifies to the benefit of this approach.  
A crucial step to achieving high performance in an ASIP design is 
to select an optimal custom instruction set. However, for large 
programs, this is a difficult task to manage by manual designs, 
and is further complicated by various micro-architectural 
constraints. This has motivated a large body of recent research to 
address the automatic instruction set extension problem.  
Most of the existing approaches attempt to discover the candidate 
extended instructions by identifying common patterns in the data 
flow graph of the given application, and then to select an 
appropriate subset of the candidate instructions to maximize 
performance under certain architectural constraints (e.g., the 
number of input and output operands, area constraints, etc.). 
Kastner et al. [12] proposes a simultaneous template generation 

and matching method that constructs the candidate instruction set 
by clustering the nodes based on edge-type frequencies. Sun et al. 
[16] enumerates the possible extended instructions by repeatedly 
combining the smaller templates to form the larger templates. A 
comprehensive priority function is computed to rank and prune 
the candidate instructions. The method was recently extended by 
[6] to speed up the exploration process. Atasu et al. [4] imposes 
further constraints on the instruction topology and performs a 
branch-and-bound algorithm on a binary tree to determine 
whether or not to include a node into the candidate instruction. 
Although the existing techniques are efficient in identifying the 
promising candidate instructions, [11] points out that most of the 
speedup (about 60%) comes from the cluster with more than two 
input operands. This exceeds the number of read ports available 
on the register file of a typical embedded RISC processor core. 
Strictly following the two-input single-output constraint generally 
leads to small clusters with limited speedup.  
Generation of larger clusters with extra inputs is allowed in [16] 
by using the custom-defined state registers to store the additional 
operands. Unfortunately, at least one extra cycle is needed for 
each additional input to be loaded into a custom-defined state 
register. The communication overhead incurred because of these 
data transfers between the core processor and the custom logic 
can significantly offset the gain from forming a large cluster.  
A quantitative analysis of the data bandwidth limitation is given 
in [8], and the problem is directly addressed by augmenting the 
processor’s register file with an extra set of registers that are 
written transparently by the processor and used by the custom 
instructions. This avoids explicit move instructions from the core 
register file to the custom logic. Experiments show that a small 
number of shadow registers is sufficient to compensate a major 
portion of the performance degradation caused by the port number 
limitation. However, additional bits (two to three bits) need to be 
added in the instruction format, which is difficult to be encoded 
without increasing the instruction word length. A shadow register 
binding algorithm is also proposed as the associated compilation 
technique in [8]. This algorithm limits its scope within the basic 
block boundary.  
Our contributions in this paper are twofold. First, we propose a 
new low-cost architectural extension called hash-mapped shadow 
registers, which enables and significantly enhances the shadow-
register-based scheme using a single control bit. Second, we 
present a simultaneous global shadow register binding with a hash 
function generation algorithm which fully exploits the benefits of 
shadow registers across the basic block boundaries. 
The remainder of the paper is structured as follows. We first 
present our architectural extension in Section 2. The algorithmic 
details for solving the global shadow register binding problem 
together with the hash function construction problem are 



described in Section 3. Experimental results are shown in Section 
4, followed by conclusions in Section 5. 

2. ARCHITECTURE EXTENSION 
2.1 Motivation 
The architectural model targeted in this paper is a classical single-
issue pipelined RISC core processor, with a two-read-port and 
one-write-port register file. Under this processor model, a custom 
instruction follows the same instruction format and execution 
rules, which include: (1) The number of operands and results of a 
custom instruction are pre-determined by the base architecture; (2) 
The custom instruction cannot execute until the input operands 
are all ready; (3) The custom instruction can read the core register 
file only during the decode/execute stage, and can commit the 
result only during the write-back stage. This extensible 
architecture simplifies the implementation since the base 
instruction set architecture can be retained. 
However, such a scheme would restrict the custom instruction to 
having only two input operands, thus limiting the complexity of 
the computations. Generally, when the input number constraint is 
relaxed, higher performance speedup can be achieved by 
clustering more operations in one custom instruction to exploit 
more parallelism. Unfortunately, if a custom instruction needs 
extra operands, the processor core has to explicitly transfer the 
data from the register file to the local storage of the custom logic 
through the data bus, which may take multiple CPU cycles. This 
communication overhead will significantly offset the performance 
gain experienced by using the custom instruction.  

2.2 Existing Solutions 
Several architectural approaches can be adopted to tackle the 
speedup degradation caused by the port number limitation. We 
shall discuss three existing approaches below.  

Multiport Register File: A straightforward method to increase 
data bandwidth for an instruction is the use of a multiport register 
file to introduce extra read ports. This allows the custom 
instruction to increase simultaneous accesses to the core register 
file. However, adding ports to the register file will have a 
dramatic impact on the energy and die area of the processor. As 
pointed out in [15], the area and power consumption of a register 
file grows cubically with its port number.  

Register File Replication: Register file replication is another 
technique used to increase data bandwidth. By creating a 
complete physical copy (or partial copy) of the core register file, 
the custom instructions can fetch the encoded operands from the 
original register file and the extra operands from the replicated 
register file. By using this approach, Chimaera [10] is capable of 
performing computations that use up to nine input registers. The 
reconfigurable logic is given direct read access to a subset of the 
registers in the processor by creating an extra register file which 
contains copies of those registers values, thus allowing 
complicated computations to be performed. 
Since the basic instructions cannot use the replicated register file, 
the complete register duplication approach will introduce 
considerable resource waste in terms of area and power. For the 
partial duplication approach, it enforces a one-to-one 
correspondence between a subset of registers in the core register 
file and those in the replicated register file, and the computation 
results are always copied to the replicated registers. This leaves 

very limited opportunities for compiler optimization to further 
improve performance. 

Shadow Registers with Multiple Control Bits: Shadow registers 
have been recently proposed [8] as an architectural extension to 
overcome the aforementioned limitations and difficulties. Figure 1 
shows the block diagram of this architecture, in which the core 
register file is augmented by an extra set of shadow registers that 
are conditionally written by the processor in the write-back stage 
and used only by the custom logic.  
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Figure 1. Shadow registers with multiple control bits. 

Any instruction (basic or extended) can either skip or copy the 
computation result into one of the shadow registers in the write-
back stage. The copy/skip option and the address of the target 
shadow register need to be encoded as additional control bits in 
the instruction format. Table 1 shows one possible encoding for 
the extension with three shadow registers, in which two bits are 
needed. 

Table 1. An instruction encoding for three shadow registers.  

Operation Copy to shadow register Skip
Instruction subword 00 01 10 11

Target shadow 0 1 2 -
Since the data is copied to the shadow registers transparently 
during the write-back stage, the communication overhead between 
the processor core and the custom logic can be greatly reduced. 
Moreover, under the above encoding scheme, each shadow 
register can be the physical copy of any register in the core 
register file, which creates a great amount of freedom and 
opportunities for the compiler optimization. Experiments in [8] 
have shown that a small number (typically less than four) of 
shadow registers is sufficient to compensate a major portion of the 
performance degradation caused by the port number limitation. 

However, additional bits (log2K+1 bits for K shadow registers) 
are required in the instruction format. Since the unused opcodes 
are usually limited in the common instruction format, it is not 
trivial to encode two or three extra bits without increasing the 
word length. In fact, we need to represent four distinct versions of 
one instruction to accommodate two extra control bits and eight 
versions for three bits, which is not practical in general.  

2.3 Proposed Approach  Shadow Registers 
with Single Control Bit 
Note that the shadow registers essentially act as a tiny cache 
located in the customer logic to temporarily store the recent 
computation results from the core processor. In this sense, the 
multiple-bit controlled shadow register set resembles a fully 
associative cache since each core register can be mapped to any 
entry of shadow register set. This full associativity requires the 
presence of multiple control bits in the instruction word to 



identify the target shadow register. In this subsection, we propose 
to use a hash-mapped shadow register scheme to significantly 
reduce control bit overhead. 

Processor core 
Core 

register  
file 

Ex
ec

ut
io

n 
un

its
 

D
at

a 
bu

s 
co

nt
ro

lle
r 

      
C

us
to

m
  

lo
gi

c Shadow 
registers 

H
as

hi
ng

 
U

ni
t 

 
Figure 2. Shadow registers with single control bit. 

2.3.1 Hash-Mapped Shadow Registers Scheme 
Figure 2 shows the block diagram of our proposed enhancement. 
In this scheme, every instruction can also choose to either skip or 
copy the result into the shadow registers during the write-back 
stage. The key difference is that only the copy/skip option needs 
to be encoded as an additional control bit in the instruction format.  
The actual shadow register that will be written is determined by a 
pre-specified many-to-one hash function. Namely, the execution 
result to register R[i] in the core register file will be conditionally 
copied to register SR[j] in the shadow register set where j = 
hash(i). For example, one simple hashing scheme can be directed 
mapping where j = i mod K, assuming that we have K shadow 
registers. In general, the particular hash function can be 
performed by the hashing unit which resides in the custom logic 
using a fast and cheap lookup table, and reconfigured for different 
applications or different domains of applications. 

2.3.2 Advantages and Limitations  
Since the shadow registers will be mainly used for storing the 
source operands of the custom instructions, the required number 
of shadow registers is generally much less than that of the core 
register file. Except for a small amount of extra interconnect and 
control logic introduced by the conditional copy path, the base 
datapath will remain the same. Therefore, the implementation 
tends to be very cost-efficient when compared to the prior 
approaches of using the multiport register file and register file 
replication. 
Note that the target shadow register address is determined by the 
hashing unit instead of being explicitly encoded in the instruction 
word. This allows more shadow registers (greater than three) 
without the penalty of increasing the number of control bits. More 
importantly, we believe that it is much easier to add (or encode) 
one single additional control bit without increasing the length of 
the instruction word. For example, in NiosII [17] R-type 
instructions there are several reserved bits that can be potentially 
used for advanced features. For the I-type and J-type instructions, 
there are 42 encodings specified for the 6-bit OP code field. This 
leaves more than 20 encodings unused, which are sufficient to 
accommodate the second versions of those particular instructions 
(e.g., arithmetic and load instructions) that can forward their 
results to the shadow registers. Clearly, our proposed single-bit 
controlled shadow register approach provides a much more viable 
solution compared to the original multi-control-bit shadow 
registers approach reviewed in Section 2.2. 

One potential limitation of the hash-mapped shadow registers 
approach is that a predetermined many-to-one correspondence is 
enforced between the core registers and the shadow registers, 
which may restrict the opportunities for compiler optimization to 
further improve performance. However, we believe this limitation 
is minor because more shadow registers can be allocated to 
mitigate the problem. Essentially, we can trade off the 
associativity of the shadow register set for the number of entries. 

3. SIMULTANEOUS GLOBAL SHADOW 
REGISTER BINDING WITH HASH 
FUNCTION GENERATION 
Shadow registers should be also considered during the 
compilation process to fully exploit the benefits of our proposed 
architectural extension. First of all, the compiler has to guarantee 
the integrity and the correctness of the program, e.g., it has to 
ensure that an active shadow register would not be overwritten 
during the execution of a custom instruction. Moreover, 
optimization techniques are needed to intelligently assign or bind 
the variables to the appropriate shadow registers. In [8], a shadow 
register binding problem was introduced as a special case of 
register allocation problem to maximize the usage of the shadow 
registers. Unfortunately, the proposed algorithm limits itself to a 
data flow graph only (i.e., within the basic block boundary).  
In this section we first present a global solution that performs 
shadow register binding across the whole control data flow graph 
using the predetermined hash function described below in 
subsection 3.1. We then show that the hash function generation 
can be carried out simultaneously with the shadow register 
binding in subsection 3.2. 

3.1 Global Shadow Register Binding Under 
Prescribed Hash Function 
3.1.1 Preliminaries 
Compiler optimization algorithms are usually performed on the 
control data flow graph (CDFG) derived from a program. On the 
top level of a CDFG, the control flow graph consists of a set of 
basic block nodes and control edges. Each basic block is a data 
flow graph (DFG) in which nodes represent basic computations 
(or instruction instances) and edges represent data dependencies. 
Throughout this section, we assume that given the profiling 
information, the ASIP compiler has generated extended 
instructions and mapped the application so that every node in the 
mapped CDFG corresponds to an instruction in the extended 
instruction set (including basic instructions and custom 
instructions). We also assume that each instruction produces at 
most one result, and the instruction scheduling and register 
allocation for the core registers have already been performed. 
Thus we know the shadow register to which an operand can be 
mapped with the given hash function.  
Our task is to appropriately assign the source operands of the 
custom instructions to the available shadow registers so that the 
potential communication overhead (in terms of the number of 
move operations) can be minimized. Specifically, the problem is 
solved in three steps: (i) We first perform a depth-first search to 
produce a linear order of all the instructions; (ii) Then we derive 
the live intervals for each shadow register candidate (i.e., data 
use); (iii) Based on the live intervals, we construct a compatibility 
graph and bind each shadow register independently. 



3.1.2 Linear Ordering 
We adapt a linear scan register allocation technique to compute a 
global linear order of the instructions and derive the live intervals 
for the shadow register candidates in the CDFG. Linear scan 
register allocation was proposed by Poletto and Sarkar in [14]. It 
is a very simple and efficient algorithm that runs up to seven 
times faster than a fast graph coloring allocator and produces 
relatively high-quality code. 
We employ the depth-first method introduced in [1] to order the 
basic blocks. The final linear ordering is the reverse of the order 
in which we last visit the nodes in the preorder traversal of the 
graph. Figure 3 shows an example CDFG annotated with the 
linear numbering for each basic block. The complete sequence of 
basic blocks visited as we traverse the CDFG is 1, 2, 3, 4, 6, 7, 6, 
4, 5, 4, 3, 2, 1. In this list, we mark the last occurrence of each 
number to get 1, 2, 3, 4, 6, 7, 6, 4, 5, 4, 3, 2, 1, which is the final 
ordering of the basic blocks. Additionally, the instructions inside 
one basic block are ordered according to the instruction 
scheduling. By combining these two numberings, we obtain a 
global sequence number (SN) for each instruction in the CDFG. In 
fact, the correctness of the algorithm does not depend on the 
ordering method. However, it may influence the quality of 
register binding. 
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51: r1 = …; 

52: r2 = ext1 (…, r1, …); 

53: r3 = ...v; 

54: r4 = ext2 (…, r1, …); 

55: r5 = ext3 (…, r3, …); 

56: r6 = ext4 (…, r3, …); 

 
Figure 3. A CDFG example with linear order. 

3.1.3 Live Interval Generation 
Motivation 
As mentioned earlier, if the input number of a custom instructions 
exceeds the available read port count, extra data transfer (or move, 
for short) operations are needed to copy operands from the 
register file to the local storage in the custom logic. In our 
proposed architecture, if an operand is already in the shadow 
register, one move operation can be saved.  

(b) 

i1: r1 = …; 

i2: r2 = ext1 (…, r1, …); 

i3: r3 = …v; 

i4: r4= ext2 (…, r1, …); 

i5: r5 = ext3 (…, r3, …); 

i6: r6 = ext4 (…, r3, …); 
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Figure 4. An instruction sequence and its data flow graph. 

In addition, it is not necessarily optimal to keep a variable in the 
shadow register for its every use as pointed out in [8]. Figure 4 

shows the data flow graph of the basic block 5 in Figure 3. 
Suppose the register file has only two read ports, and all the 
extended instructions have three input operands, then four move 
operations will be required without the shadow register. 
Assuming that there is one shadow register available, only two 
moves can be saved through the shadow register if we keep the 
variables in the shadow register for their entire lifetime. 
Interestingly, one more move can be saved if instruction i3 
commits to the shadow register and overwrites the result of i1. 
Therefore, to achieve the maximum number of move operation 
saves, we should allow a value to be replaced in the middle of its 
lifetime. This motivates us to define the life intervals with respect 
to each data use of a variable instead of the variable itself.  

Definition of Live Intervals 
To derive the live interval of a data use r, we need to consider the 
following three cases: (1) If variable r is defined (or assigned) 
within the same basic block of the subject use, and the definition 
is before the use, then the live interval is [s, t] where the SN of the 
definition instruction is s and the SN of the use instruction is t; (2) 
If all the definitions of variable r locate in the preceding basic 
blocks (precedence relationship is defined in terms of the linear 
order), then the live interval is [min(si), t] where min(si) denotes 
the SN of the definition instruction with the smallest numbering in 
the linear order; (3) If variable r has one definition after the 
subject use, it implies that r is assigned and used in a loop. In this 
case, we need to traverse the loop once, extending the live 
interval to [i*, j*] where i* and j* denote the smallest and largest 
SNs of any instructions in this loop. 
For the example in Figure 3, the use v at basic block 7 has two 
definitions in basic blocks 3 and 6, respectively. The live interval 
for use v is [31, 78]. We should notice that the life interval is a 
conservative approximation. Some subranges within [i, j] where 
variables are not live may also be included and are underutilized. 
However, the correctness of the program is not affected. 

3.1.4 Binding for One Shadow Register 
The binding problem for one shadow register can be formulated 
as follows: 

One-shadow-register binding problem: Given a shadow register 
sr, a hash function h, and an interval set S in which each interval 
will be hash-mapped to sr, select a subset of non-overlapping live 
intervals in S and bind them to sr so that the maximum number of 
move operations can be saved. 
To accurately calculate the move reduction, a weighted 
compatibility graph G(V’, E’) can be built in the following way. 
Different from the conventional compatibility graph, each vertex 
v corresponds to an interval in S. We create an edge from v (with 
interval [i, j]) to v’ (with interval [i’, j’]) if and only if j<i’. Each 
vertex is assigned a weight which denotes the number of move 
saves if the corresponding variable is held in the shadow register 
until the end time.  

FACT 1: The live intervals of the output edges from the same 
instruction are not compatible with each other. 
This is straightforward because their live intervals must overlap at 
this instruction. 

FACT 2: If a data use at instruction i can retrieve the value from 
the shadow register, the value is also available for other uses 
along all the reverse paths from the instruction i to the definitions. 



Based on this fact, the weight of an interval can be calculated as 
the sum of move reductions for each use along the reverse paths. 
In particular, we call these uses are covered by the interval. In 
Figure 3, suppose instruction 53 and 78 execute 10 and 20 times 
respectively based on the profiling, then the weight of interval [31, 
78] for use v is 30.  

LEMMA 1: The weighted compatibility graph is acyclic. 

LEMMA 2: The one shadow register binding problem is equivalent 
to finding a maximum weighted chain in the compatibility graph. 
The basic idea of the proof is as follows. The nodes on the chain 
are compatible with each other, so their corresponding variables 
can be allocated to the same shadow register. The weight on a 
node indicates the number of saves for storing the value in the 
shadow register until the end time. Fact 1 implies that a variable, 
at most, could only be bound to the shadow register once. So the 
maximum weighted chain corresponds to a register binding with 
maximum move saves.  
Since the interval graphs can be constructed in O(|V’|2), the 
maximum weighted chain can be solved in O(|V’| + |E’|), we can 
directly derive the following theorem. 

THEOREM: One shadow register binding problem can be solved 
optimally in time O(|V’|2). 

3.1.5 Extension to K Shadow Registers 
Recall that the hashing unit determines the shadow register to 
which a variable can be mapped. Since the hash function is a 
many-to-one function, each variable can only be mapped to one 
shadow register. This implies an interesting property wherein 
each shadow register can be allocated independently. Specifically, 
for each individual shadow register we can group the 
corresponding variables (or live intervals) together and perform 
the one-shadow-register binding algorithm on this group without 
being interfered with the binding of other hash-mapped shadow 
registers. Therefore, the algorithm can be easily extended to 
handle K shadow registers by iteratively solving the one shadow 
register binding problem.  

3.2 Hash Function Generation with Shadow 
Register Binding 
The choice of the hash function implemented in the hashing unit 
also affects the solution quality. If we revisit the example shown 
in Figure 4 under the assumption that two shadow registers are 
available, only two moves can be saved when the hash function 
accidentally maps core registers r1 and r3 to the same shadow 
register. On the other hand, four moves will be saved if r1 and r3 
are mapped to different slots. This clearly suggests that hash 
function generation and shadow register binding are 
interdependent, and both should be considered together at the 
same time. In this subsection we present an effective algorithm 
that constructs the hash function simultaneously with the shadow 
register binding.  

3.2.1 Multi-Way Set Partitioning Formulation 
We formalize our hash function generation problem as follows. 

Hash function generation (HSG) problem: Given a set of core 
registers R = {r0, …, rN-1}, a set of shadow registers SR = {sr0, …, 
srK-1}, and an objective function f, find a many-to-one function h: 
R → SR so that f(h) is maximized. 

In particular, our goal is to generate a best possible hash function 
h to facilitate the global shadow register binding algorithm so that 
the maximum number of moves can be saved. Therefore, we 
evaluate the objective function f by solving the K-shadow-register 
binding problem described in the preceding section. To be more 
concrete, for each available shadow register sri, we first find all 
the live intervals whose core register indices are hash-mapped to 
sri. After the live interval set Ii is found, we construct the interval 
graph Gi for Ii and solve the one-shadow-register binding problem 
on Gi. We record the result with w(Ii) which denotes the total 
weight on the maximum weighed chain in Gi (i.e., the number of 
moves that can be saved for Ii). Once we independently bind all 
the K shadow registers, the final objective function can be 
computed by )(1

0∑ −

=

K

i iIw . 

Since we are searching for a many-to-one function, any register in 
R can be mapped to one and only one shadow register in SR. 
Therefore, the desired hash function essentially partitions the 
given set of core registers into K subsets and labels each subset 
with a shadow register index. The goal is to maximize the 
performance gain by saving as many moves as possible. With the 
above observation, we notice that the hash function generation 
problem can be polynomially reduced to the well-known multi-
way set partitioning problem as described as follows. 
Multi-way set partitioning (MSP) problem: Given a set of 
modules M = {m0, …, mN-1}, an integer value 2 ≤ K ≤ |M|, and an 
objective function g, partition V into K disjoint clusters PK = {C0, 
C1, …, CK-1} so that every mi ∈ M belongs to exactly one cluster 
in PK and g(PK) is maximized. Specifically, we define our 
partitioning objective function to be )(1

0∑ −

=

K

i iCw  where w(Ci) 

denotes a weighting function on cluster Ci. 
A polynomial reduction from HSG to MSP can be obtained by 
constructing the module set M in the MSP problem from the set R 
in the HSG problem and setting the function f to be the 
partitioning objectives in MSP. Then we can show that an optimal 
partition uniquely determines an optimal hash function. For 
example, if P2 = {C0, C1} is an optimal 2-way MSP solution on M 
= {m0, m1, m2, m3 } where C0 = {m0, m3} and C1 = {m1, m2}, then 
it is straightforward to identify that the corresponding hash 
function h of HSG (with four core registers and two shadow 
registers) is defined by h(0) = h(3) = 0 and h(1) = h(2) = 1.  
Although the problem of computing an optimal multi-way 
partitioning is NP-hard in general, because it is so critical to many 
application areas (especially in VLSI CAD domain), a number of 
efficient heuristics have been proposed. A comprehensive survey 
can be found in [3] which provides detailed descriptions and 
comparisons of various partitioning algorithms. However, most of 
the existing techniques focus on the min-cut graph (or hypergraph) 
partitioning problem, which are not directly applicable to our 
multi-way set partitioning problem with specialized objectives. In 
this paper, we adapt a two-phase approach proposed in [2] to the 
HSG problem. First, we apply an efficient heuristic to generate a 
linear permutation sequence on the core registers set R. Second, 
we optimally solve a one-dimensional K-way partitioning 
problem through dynamic programming on the given linear 
sequence. Once the partitioning problem is resolved, the hash 
function can be directly constructed together with the global 
shadow register binding solution. 



3.2.2 Core Register Ordering 
In the core register ordering phase, our goal is to find a linear 
permutation on R using a fast heuristic which consists of the 
following three major steps:  
(1) We first compute the total weight of those live intervals 
associated with each individual core register.  
(2) Then we sort the registers in non-decreasing order according 
to those weights.  
(3) Given the sorted list R* = {r*

0, r*
1, …, r*

N-1}, we begin with 
first K highest weighted registers, i.e., r*

0, r*
1, … r*K-1 and evenly 

distribute them into the open positions 0, N/K, …, (K-1)⋅N/K. 
Then we distribute the second K highest weighted registers to the 
open positions 1, N/K+1, …, (K-1)⋅N/K+1, and repeat until all 
core registers are positioned. To be more precise, we construct a 
linear permutation Π of R so that the register in R* with index i is 
moved to position (i mod K)⋅K + i/K where 0 ≤ i ≤ N-1. Figure 5 
illustrates the permutation generation process. Suppose we have 
six registers in a sorted order R*  (i.e., N = 6) and K = 2, then we 
will map registers r*

0, r*
1, r*

2, r*
3, r*

4, r*
5 to positions 0, 3, 1, 4, 2, 

5, respectively. 

r*
0 r*

1 r*
2 r*

3 r*
4 r*

5

rπ0 rπ1 rπ2 rπ3 rπ4 rπ5

Sorted sequence R* 

Final permutation Rπ 
 

Figure 5. Permutation generation. 
We believe the above heuristic suits our purposes because it 
encapsulates the following intuitions: (i) If two core registers both 
have large weight (i.e., they are both associated with a large set of 
live intervals), then there is high possibility that their live 
intervals frequently overlap and incur many hash conflict (or 
shadow register contentions) due to the potential shadow register 
contentions. Hence, these two registers would intuitively repulse 
each other during the partitioning and they should be spaced out 
as much as possible in the permutation sequence; (ii) Otherwise, 
two core registers would attract each other and they should be 
closed by in the permutation sequence. 
Since we space out every two registers with similar high weights 
by N/K distance, it is unlikely that they would be placed in the 
same cluster in a one-dimensional K-way partitioning which will 
be described in the next subsection. 

3.2.3 Optimal One-dimensional K-way Partitioning 
Given a linear core register permutation, we solve a one-
dimensional K-way partitioning problem to determine the 
appropriate cluster for each core register.  
One-dimensional K-way partitioning (1D-KP) problem: Given 
a permutation Π: R → R, find a K-way set partitioning K

NP ]1..0[ −
 = 

{C0, C1, …, CK-1} in which each cluster can be uniquely denoted 
by C[i, j] = {rπi, rπi+1, …, rπj} where rπi represents the ith register in 
the permuted linear sequence π of R. 
Note that we require each cluster of the partitioning to be a 
contiguous slice of the permutation sequence. Hence, each cluster 

can be written as C[i, j] which denotes that the cluster begins with 
ith register and ends with jth register according to the given 
permuted order.  

For such an objective )()( 1

0]1..0[ ∑ −

=− =
K

i i
K

N CwPg , the principle of 

optimality holds for the 1D-KP problem, i.e., an optimal solution 
to any instance is made up of optimal solutions to its sub-
instances. Therefore the 1D-KP problem can be optimally solved 
by dynamic programming. The recurrence function can be 

expressed as )}()({max)( 1'
],1[],[

'
]..[

−
+

=
+= k

tiis
t

si
k

ts PgCwPg  where 

2 ≤ k’≤ K and 0 ≤ s ≤ t ≤ N-1. The 1D-KP problem has O(N2T(w) 
+ KN3) complexity, where T(w) is the time complexity of 
computing the cluster weighting. As discussed earlier in Section 
3.1.4, T(w) is O(|V’|2) where |V’| represents the size of the interval 
graph. In fact, both N (usually no greater than 32) and K 
(typically no greater than 8) are relatively small constants. This 
helps to significantly reduce the time complexity and makes the 
algorithm much more scalable. 
Since the shadow register binding problems are implicitly solved 
during the cluster weighting evaluations, we can directly retrieve 
the global shadow register binding solution when the final 
partition (or hash function) is determined. Therefore, we solve the 
hash function generation problem simultaneously with the shadow 
register binding problem. 

4. EXPERIMENTAL RESULTS  
In our experiment the cycle accurate simulation tool, 
SimpleScalar [5], is used to estimate the performance of the 
processor and the impact of communication cost. To obtain a 
quick evaluation of data bandwidth limitation, the ASIP 
compilation is applied on the compiled binary code of the 
benchmarks. 
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Figure 6. Ideal speedup under different input constraints. 

Based on the execution trace generated by SimpleScalar, the 
CDFG generator constructs the control data flow graph. Under the 
given micro-architectural constraints (e.g., the number of inputs 
and outputs), the ASIP compilation problem is solved in three 
steps based on [7]. The first step, called pattern generation, 
enumerates all candidate patterns from a given control data flow 
graph through the cut enumeration technique. These patterns (i.e., 
candidate custom instructions) are generated within the basic 
block boundary. Memory operations are not allowed in any 
extended instruction. Pattern selection is then performed in the 
second step. A cost function that considers the occurrence, 
speedup, and area is calculated to guide the selection. In the third 
step, called application mapping, we map the data flow graph into 



the selected patterns to minimize the total latency. The application 
mapping problem is shown to be equivalent to the minimum area 
cell-library-based technology mapping problem in the logic 
synthesis domain, which can be solved exactly through binate 
covering. Another step, called global shadow register binding, is 
performed after application mapping in our compilation flow. The 
mapped applications with shadow register binding are fed into 
SimpleScalar to measure the performance improvement. 
In this work we modeled a single issue, in-order RISC 
configurable processor which is similar to the Altera Nios/NiosII. 
We assume the latencies of ALU and multiplier are one and three 
cycles respectively. The core register file has two read ports and 
one write port. The detailed machine configuration can be found 
in [8]. We use the C programs from Mediabench [13] and 
Mibench [9] suites.  
Figure 6 shows the ideal speedup for each benchmark under 
different input size constraints. We assume that there is no limit 
on the number of read ports in the register file so that no move 
operations are needed. The results indicate that we can achieve 
10%, 15%, and 18% speedup on average with the 2-input, 3-input 
and 4-input constraints, respectively. However, the processor can 
only provide two simultaneous accesses from the register file. 
Move operations have to be inserted before the execution of 3-
input or 4-input extended instructions. In our experiment, we 
optimistically assume that the move operation needs only one 
clock cycle. Figure 7 shows the speedup drop due to the move 
instructions, which is defined as 

_ ideal reg

ideal

Speedup Speedup
Speedup drop

Speedup
−

=
 

where Speedupideal denotes the ideal speedup without 
consideration of move operations overhead, and Speedupreg 
represents the real speedup if the communication cost is included. 
On average, this speedup will drop 41% and 32% under the 3-
input and 4-input constraints respectively. Obviously, data 
bandwidth problem seriously degrades the performance 
improvement for configurable processors. 
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Figure 7. Speedup drop with different input constraints. 

By introducing the shadow registers, the number of move 
operations will be effectively reduced. In our experiment, we 
apply the simultaneous shadow register binding with hash 
function generation to allocate the shadow registers. As 
mentioned earlier, the predetermined many-to-one 
correspondence enforced by the hash function may cause more 
conflicts and restrict the opportunities for compiler optimization. 
The limitation can be compensated by introducing more hash-
mapped shadow registers. Figure 8 shows the speedup with 

different shadow register architectures. For the shadow registers 
with multiple control bits (Sreg) as proposed in [8], three registers 
are used due to the control bit cost. With three hash-mapped 
shadow registers (Hsreg) using one control bit, only one case, the 
blowfishd with 3-input constraint, degrades its performance. Other 
benchmarks achieve comparable performance thanks to our global 
shadow register allocation algorithm. By providing more hash-
mapped shadow registers yet still use one control bit, we can 
further improve the performance. The results shown in Figure 8 
indicate that we can almost reach ideal speedup (98% of the 
performance gap is closed) by providing five and eight hash-
mapped shadow registers for the 3-input and 4-input constraints 
respectively. However, three shadow registers with multiple 
control bits [8] still leaves 30% performance gap on average for 
the two constraints.  
We further compare our proposed shadow registers with partial 
register replication (Rreg) method used in [10]. Figure 9 shows 
the speedup under different input constraints and different number 
of registers. With the same number of registers, shadow register 
architecture consistently outperforms partial register replication, 
which leaves a 49% and 46% performance gap open for 3-input 
and 4-input constraints even with eight replicated registers.  
To examine the impact of the hash function, we also compare our 
generated hash function with a simple mod function (i.e., i mod 
K). In our experiment, we find that it can achieve comparable 
results for most cases. However, it will demand more shadow 
registers to achieve the same speedup. For instance, it needs four 
and three more shadow registers to achieve the same speedup for 
the adpcmc and blowfishe with 3-input constraint. 

5. CONCLUSIONS 
The data bandwidth problem is seriously limiting the performance 
of application-specific instruction set processors. In this paper we 
propose a new low-cost architectural extension, which employs 
the hash-mapped shadow registers to directly address the data 
bandwidth limitation. We also present a simultaneous global 
register binding with a hash function generation algorithm to fully 
exploit the benefits of hash-mapped shadow registers across the 
basic block boundaries. The application of our approach results in 
a very promising performance improvement.  
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Figure 8. Speedup under different shadow register architectures. 
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Figure 9. Speedup under different number of shadow registers and duplication registers. 


