
Behavioral Synthesis with Activating Unused Flip-Flops

for Reducing Glitch Power in FPGA

Cheng-Tao Hsieh
+
, Jason Cong

++
, Zhiru Zhang

++
, Shih-Chieh Chang

+

+
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

++
Computer Science Department, University of California, Los Angeles, USA

cthsieh@gmail.com, {cong, zhiruz}@cs.ucla.edu, scchang@cs.nthu.edu.tw

ABSTRACT

In this paper we discuss optimizing the interconnect

power of designs implemented in FPGA platforms. In

particular, we reduce the glitch power on interconnects

associated with the output of functional units in a design.

The idea is to activate unused flip-flops to block the

propagation of glitches, which takes advantage of the

abundant flip-flops in modern FPGA structures. Since the

activation of additional flip-flops may cause data hazard

problems, we develop several effective behavioral synthesis

techniques to prevent such data hazards. We also study the

optimality of our techniques. The experimental results show

that on average, our methods lead to a 28% reduction in

dynamic power in the Xilinx Virtex-II platform.

1. Introduction
Power efficiency is becoming a forefront concern of

FPGA designs in nanometer-scale technologies. The research

in [14][20] has shown that interconnect resources dominate

the power consumption in modern FPGA designs. In

particular, interconnect could dissipate at least 60% of the

total power in the Xilinx Virtex-II family [20]. Therefore,

reducing interconnect power is important for FPGA designs

to achieve power efficiency.

Figure 1: Generic structure of the FSMD model.

A synchronous design can be implemented with the

architecture of finite state machine with data path (FSMD).

Figure 1 shows the generic structure of FSMD. The data path

contains arithmetic functional units as well as registers which

serve to temporally store computation results between

functional units. We use the term boundary output signal to

refer to the interconnect at the boundary of the data path

(bold line in Figure 1), which is between the output of

functional units and the input of registers.

It is important to note that a boundary output signal may

have multiple fanouts; i.e., a functional unit is connected to

several registers, as shown in Figure 2(a). This occurs

commonly if during resource binding, multiple operations

are bound to the same functional unit, and those operations

produce results with overlapped lifetimes.

We observed that, when using an FPGA to implement

designs, if we insert a single register at a multi-fanout

boundary output signal, as shown in Figure 2(b), the power

consumption on the boundary output signal could

significantly decrease. This is because large glitches which

originally propagate through the whole boundary output

signal now occur only in the interconnect with an extremely

small capacitance C between the inserted register and the

functional unit. We call such an additional register a firewall

register due to its ability to filter out unwelcome glitches.

Figure 2: The insertion of a firewall register.

Interconnect capacitance C in Figure 2(b) can be much

smaller than the capacitance of the whole boundary output

signal if we implement it using FPGA. Figure 3 shows a

typical FPGA structure. A basic logic element (e.g., a Logic

Element in Altera Stratix FPGAs or a Slice in Xilinx Virtex

series FPGAs) contains a LUT as well as a flip-flop, so that

the output of a logic gate (implemented in LUTs) can be

configured as either an unregistered mode or a registered

mode. Precisely, if a logic gate is connected to only one

register, it can be implemented in the registered mode.

Inserting a firewall register to a functional unit creates such a

situation to benefit the registered mode. Therefore,

capacitance C in Figure 2(b) indicates the interconnect

capacitance between the LUT and the local flip-flop inside a

basic logic element, which is much smaller than the

capacitance of the inter-block programmable interconnect.

The insertion of firewall registers is not trivial because a

firewall register delays data propagation from a functional

unit to its original registers for one clock cycle, thus possibly

causing data hazard problems. We observed that the hazard

problem can be solved by scheduling and binding operations

in a particular way. Therefore, in this paper we propose

novel scheduling and binding methods to generate

functionally correct, low-power RTL designs with firewall

registers.

Figure 3: Firewall register implemented in a modern FPGA.

We intend to insert firewall registers to those functional

units generating large glitches at the output. This implies that

our method needs an accurate glitch estimation to guide the

insertion. Considering that the occurrence of glitches is

sensitive to component delays, we suggest to use our

behavioral synthesis method for data intensive designs,

which are mainly composed of arithmetic functional units

serving as IPs. Those IP blocks have pre-determined circuit

structure so the glitch information is predictable in the

behavioral synthesis stage. Our problem formulation

considers power models [7][12][19][21] for each arithmetic

module as the input.

In our experiments, we applied our method to a set of

data intensive designs, and obtained, on average, 28% power

reduction with 4% area overhead. The small area overhead

implies that the additional control circuit for firewall

registers is insignificant. Also, the leakage power is not

impacted much because leakage is roughly proportional to a

design’s area.

Similar to our idea, pipelining [15][18][22] and retiming

[13][17] also adopt flip-flops to block the propagation of

glitches for power minimization. However, all of them

assume that an RTL design is given so they cannot change

the computation sequence as scheduling does. This makes

the previous methods hard to solve the data hazard problem

encountered in our problem formulation. They focus on

activating unused flip-flops in a local scale, particularly,

within a functional unit. Still, one can apply both our method

and previous methods in different stages of design flow for

low power.

Our major contributions are 1) to expend the solution

space of low-power implementation by proposing an

additional dimension of using/not using firewall register, and

2) to provide methods to guide the insertion of firewall

registers in the behavioral synthesis stage. We have

incorporated our techniques into a behavioral synthesis tool,

xPilot, introduced in [8].

2. Data Hazard Problems
Inserting firewall registers may impact the correctness of

a design’s function. In fact, as we will discuss later, there

exists a certain scheduling and binding condition where the

use of firewall register will cause functional errors.

Therefore, if we want to take advantage of firewall register,

we must avoid scheduling and binding a design in that way.

In this section we discuss the scheduling and binding pattern

to be avoided.

A design’s function can be represented as a data-flow

graph (DFG). A DFG is a directed acyclic graph (DAG),

where every node represents an operation, such as an

addition or a multiplication, and every directed edge (u, v)

represents a dataflow indicating that operation u produces

values to be consumed by v. After scheduling, we can derive

a scheduled DFG, where every operation is scheduled to

execute at one or more consecutive control steps (c-steps).

To maintain a design’s functionality after inserting

firewall registers, we have to guarantee that for every

dataflow (u, v), consuming operation v correctly read results

from producing operation u. Figure 4(a) shows a partial

scheduled DFG, where operations u and v form a dataflow (u,

v) and are bound to functional units p and q, respectively.

Note that the use of the firewall register will delay the data

transfer from functional unit p to register r by one c-step. In

case functional unit q intends to fetch from register r a value

that is still stored at the firewall register, a functional error

occurs. We need to carefully deal with this condition when

using firewall registers.

We can just “forward” the results from the firewall

register to functional unit q as shown in Figure 4(b), which is

traditionally called forwarding. Forwarding can absolutely

resolve the functional error problem if the consuming

operation v is executed in a single c-step. In this case, the

firewall register is required to keep the target results for only

one c-step during operation v’s reading. However, if the

consuming operation v is a multi-cycle operation, the

firewall register must keep the target results for several c-

steps until operation v finishes the reading. In case the

firewall register cannot keep the target results long enough, a

functional error still occurs. We elaborate this issue using an

example.

Figure 5 shows a partial scheduled DFG, where dataflow

(u, v) are bound to functional units p and q, respectively. In

addition, operation w is also bound to functional unit p,

sharing the same functional unit with the producing

operation u. Note that the consuming operation v is a two-

cycle operation and will read results through forwarding

during c-steps i and i+1, so the firewall register must keep

the producing operation u’s results during the two c-steps.

However, at the end of c-step i, functional unit p will finish

the computation of operation w and store its results to the

firewall register, which, accidentally, overwrites the result

that is still forwarded to functional unit q. Formally speaking,

a write-after-read (WAR) hazard occurs on the firewall

register.

Note that we cannot attach two firewall registers to

functional unit p to store lifetime-overlapping results from

operations u and w, because this way the two firewall

registers will not be implemented in local flip-flops, making

no power reduction as shown in Figure 3. On the contrary,

because we can attach “original” registers, such as register r

in Figure 4(a), as many as possible to store lifetime-

overlapping results, it is impossible for original registers to

involve WAR hazards.

Figure 4: Forwarding.

We formally describe the conditions to induce a WAR.

Assume that an operation v is a non-pipelined multi-cycle

operation and is executed at k consecutive c-steps, which are

labeled by consecutive integers {i, i+1, …, i+k-1}.

Lemma 1: Inserting a firewall register for a dataflow (u,

v) causes a WAR hazard if and only if: (1) operations u and v

are scheduled at consecutive c-steps, and (2) there exists an

operation w such that w and u are bound to the same

functional unit, and w produces results between c-step i and

i+k-2.

Proof: Figure 5 shows a simple instance verifying this

lemma. Q.E.D.

Figure 5: Dataflow (u, v) with a WAR hazard after firewall

register insertion.

To maintain a design’s function, we cannot apply firewall

registers to dataflows satisfying Lemma 1. However, this will

reduce the opportunity of using firewall registers for low

power, so we should carefully perform scheduling and

binding to avoid such conditions.

3. Binding with Firewall Register Insertion

Support
In this section we discuss how to perform resource

binding to avoid the conditions in Lemma 1. Our idea can be

briefly illustrated with the example in Figure 5. Since

operations u and w are bound to the same functional unit p,

according to Lemma 1, a hazard on dataflow (u, v) appears.

If we can separately bind operations u and w to two

functional units, Lemma 1 will become unsatisfied.

Traditionally, binding achieves power optimization by

minimizing the switching activities of resources

[1][5][6][16]. In this research we perform a low-power

binding by considering both the switching activity and the

insertion of firewall registers simultaneously. The problem

formulation is described as follows.

Given: (1) A scheduled DFG G=(V, E); (2) a set of

resources R; (3) switching activity suw on u à w, where u, w

∈ V; (4) power models for each type of resource.

Goal: Generate a functional unit binding {B: v to r | for

all v, where v ∈ V and r ∈ R}, and for every r ∈ R determine

whether it is protected by a firewall register. The objective is

to minimize the power of the functional units.

In our problem formulation, the resource number is a

constraint. Therefore, although our method seems to increase

the usage of resources due to binding operations to separate

resources, our method will not use more resources than

conventional binding approaches. However, the resource

constraint limits how much our binding can avoid Lemma 1.

The looser the resource constraint, the more the dataflows to

be protected by firewall register.

3.1 Network Flow Formulation
We adopt network flow formulation to solve the binding

problem. We will show that, through proper network

construction and an optimal min-cost flow algorithm, we can

derive an optimal solution for the goal. The outline of our

algorithm is shown as follows.

Algorithm:

(1) Build a graph H representing the compatible

information among operations in V.

(2) Assign cost and capacity constraints to the edges in

H.

(3) Solve the min-cost flow problem on H with a set of

equal integral flow constraints.

(4) Derive a binding solution with firewall register

insertion based on the solution in step (3).

We first introduce several notations in our formulation.

In a DFG, G=(V, E), different types of operations (e.g.,

addition and multiplication) are bound separately. We use Vf

to denote the set of operations in type f. For two operations u

and w of type f, if their corresponding lifetimes do not

overlap, we call u and w compatible with each other. Two

compatible operations can be bound to a single functional

unit. Next we define two operations to be FR-compatible as

follows.

Definition 1: Two operations u and w of type f is FR-

compatible if and only if (1) they are compatible, and (2)

when they are bound together to a functional unit, the

functional unit can be protected by a firewall register; i.e.,

the conditions in Lemma 1 do not occur.

For example, in Figure 5 operations u and w are not FR-

compatible because binding them to the same functional unit

forbids inserting a firewall register to that functional unit.

We intend to build a graph H = (s, t, VH, EH, C, Kl, Ku)

based on the compatibility information among operations.

First there are source node s and sink node t in H. Next, VH is

the node set of the network. For each operation v ∈ Vf there

are six corresponding nodes in VH, as shown in Figure 6. We

denote the six nodes as {vFRin, vFRout, vPin, vPout, vXin, vXout},

where nodes vFRin and vFRout are responsible for the situation

of associating a firewall register, vPin and vPout are responsible

for the situation without firewall registers, and vXin and vXout

are responsible for the exclusive constraint that operation v is

either with a firewall register or not.

Figure 6: The six corresponding nodes in H of operation v.

EH is the edge set of the network. The edges in EH can be

classified into three categories.

(1) The internal edges among the six corresponding

nodes of an operation v, as shown in Figure 6.

(2) If two operations u and w are compatible and u

comes before w, edge (uPout, wPin) is in EH.

(3) If two operations u and w are FR-compatible and u

comes before w, edge (uFRout, wFRin) is in EH.

C is the cost assigned to the edges in EH, which is set in

the following way.

C(uPout, wPin) = powerprimitive(suw)

C(uFRout, wFRin) = powerFR(suw)

C(x, y) = 0 for any other edge (x, y) in EH.

In this formulation the dynamic power is affected by the

switching activity as well as whether a functional unit is

protected by a firewall register. There must be two power

models for each type of functional unit. Power model

powerFR(suw) is used to calculate the power for the case of

binding operations u and w together with a firewall register;

powerprimitive(suw) is for the case of binding operations without

a firewall register. Both the models take switching activity as

input. There have been plenty of papers [7][12][19][21]

discussing how to derive power models for behavioral

synthesis. Especially those methods can take glitches into

account when characterizing the power for pre-designed IP

blocks. Then we assign the calculated power values to the

corresponding edges in H as the cost.

Finally, Kl is the lower bound flow capacity, which is set

to 0 for every edge in EH; Ku is the upper bound flow

capacity, which is set to 1.

We use an example to illustrate the construction of H.

Figure 7(a) shows a scheduled DFG containing three

operations {1, 2, 3} with the same type. The constructed

network for those operations is shown in Figure 7(b). Note

that operations 1 and 2 are compatible but not FR-

compatible so there exists edge (1Pout, 2Pin) but no (1FRout,

2FRin). In addition, operations 2 and 3 are both compatible

and FR-compatible so both edges (2Pout, 3Pin) and (2FRout,

3FRin) exist.

Figure 7: Network construction.

3.2 Obtaining Binding from Network Flow

Solution
If the resource constraint of resource type f is Nf, we

solve the min-cost Nf-flow problem on the constructed

network H. Then we use the solution (network flows) to

perform binding and firewall register insertion

simultaneously, which will be discussed in this section.

All the operations visited by a flow will be bound to a

single functional unit with or without a firewall register.

Precisely, if a flow goes through edge (uFRout, wFRin),

operations u and w will be bound together with a firewall

register. If a flow goes through edge (uPout, wPin), operations

u and w will be bound without a firewall register. However,

if the condition occurs that a flow go through edge (uFRout,

xFRin) and then (xPout, wPin), i.e., operations u and x are bound

with a firewall register but operations x and w not, we cannot

decide whether the functional unit associated with operations

u, x, and w is protected by a firewall register. To avoid such

a situation, for each operation u we require that edges (uFRin,

uXin) and (uXout, uFRout) have the same flow and also edges

(uPin, uXin) and (uXout, uPout) have the same flow. With these

constraints, we guarantee that a flow always stays at either

the primitive part or the firewall register part of edges. We

call a unit flow satisfying the above constraints a valid flow.

For example, in Figure 7(b) the highlighted path indicates a

valid flow.

After applying a min-cost Nf-flow algorithm to the

network, we can derive a set of valid flows, and then

construct the corresponding binding result. Since we use the

power as the cost in the network, a min-cost algorithm leads

to a binding solution with the lowest power.

3.3 Solving Network Flow Problem with Equal

Integral Flow Constraints
As research [6] mentioned, the min-cost flow can be

solved by the shortest path based algorithm [1]. However,

different from the general characteristics of networks,

network H in our formulation requires that the flows on

certain edges are equal. The min-cost flow problem with

equal integral flow constraints is a difficult problem (NP-

hard) [2]. To trade off solution quality with runtime, we can

use heuristic algorithms, such as the one presented in [3],

where the authors used a Lagrangian relaxation technique to

speed up the min-cost equal-flow problem.

4. Scheduling with Firewall Register Insertion

Support
In this section we discuss how to perform scheduling to

avoid the conditions in Lemma 1. Our idea can be briefly

illustrated with the example in Figure 5, which shows a data

hazard on dataflow (u, v). If we can schedule the two

operations u and v in a nonconsecutive way, like in Figure 8,

Lemma 1 will never be satisfied. We define the slack of an

edge (u, v) as the distance between operations u and v in

terms of c-step. If the slack is zero, operations u and v are

executed at consecutive c-steps; if the slack is a positive

value, the two operations are separated by at least one c-step.

Our goal is to assign positive slacks to many edges to avoid

the situation in Lemma 1.

The problem formulation is as follows.

Given: (1) A DFG G; (2) A latency constraint T in

number of c-steps and a set of optional scheduling

constraints, including data dependency, throughput, and

relative timing [9].

Goal: Generate a scheduled DFG G’ without violating T

and all the given scheduling constraints; in the meantime, the

number of dataflows (or edges in G’) with hazards is

minimized.

Since the assignments of slacks are constrained by the

overall latency constraint, we have to intelligently budget

and distribute time slacks to the non-critical edges of the

given DFG. This problem is traditionally called the timing

budgeting problem. The previous research [10] has well

studied this problem and provided an optimal solution.

Figure 8: The use of slack for avoiding a hazard.

5. Experimental Results
We incorporated our scheduling and binding techniques

into the behavioral synthesis tool, xPilot, introduced in [8].

In this section we will compare the power efficiency of the

RTL designs generated by the conventional behavioral

synthesis [8] and by our firewall-register-supporting (FR-

supporting) behavioral synthesis.

The experimental flow is as follows. We first performed

both the behavioral synthesis methods under the same

resource and timing constraints. Next, we implemented each

RTL design into a real FPGA device using Xilinx ISE in

version 8.1.03i. The target FPGA is mainly device XC2V500

in Xilinx’s Virtex-II family while we use XC2V1500 for

benchmark CHEM due to its large size. All multiplications

are implemented using the dedicated multiplier blocks of an

FPGA device, and the target clock period is 15ns. After

deriving the post-place-and-route implementations, we

randomly simulated them to obtain switching activities and

then used xPower [23] to compute a circuit’s dynamic power.

We have to emphasize that the power and area reported in

the experimental results are extracted from the post-place-

and-route implementations in order to reflect the real

situations.

We used a set of data intensive benchmarks to test our

methods. The experimental results are shown in Table 1.

Column 1 presents the name of a benchmark. Columns 2 and

3 show the resource constraints of adders/subtractors

(ADD/SUB) and multipliers (MUL), respectively. Here the

resource constraints are 20% of the total number of the

operations in a DFG. Columns 4 to 6 show the results from

the conventional synthesis flow presented in [8]. Columns 7

to 9 present the results from the conventional flow with

firewall register insertion; i.e., we still use the conventional

scheduling and binding algorithms but additionally insert

firewall registers. Finally Columns 10 to 12 show the results

from our FR-supporting flow.

Let us consider benchmark DIF as an example. The RTL

from the conventional flow physically needs 788 flip-flops

and 987 slices. Note that the number of flip-flops includes

those in slices and dedicated multiplier blocks. The dynamic

power is 174mW. After the insertion of firewall registers at

the RTL, the flip-flop usage increases to 852 and the slice

usage increases to 988, but the power decreases to 155. In

other words, with an 8% increase of flip-flops and a 0.1%

increase of slices, the power can be decreased by 11%.

Furthermore, if we apply the FR-supporting flow to generate

an RTL, with a 16% increase of flip-flops and a 4% increase

of slices, the power can be reduced by 28%.

On average, the conventional flow with firewall registers

achieves a 16% reduction of dynamic power while

introducing a 1% increase of slices (area overhead). This

shows that for those designs, the insertion of firewall

registers can effectively reduce the dynamic power. In

addition, on average the FR-supporting flow achieves a 28%

reduction of dynamic power while introducing a 4% increase

of slices. This shows that our FR-supporting scheduling and

binding algorithms can further enhance the insertion of

firewall registers, thus leading to larger power reduction.

Our method is based on the assumption that a firewall

register must be implemented by local flip-flops; otherwise,

no power can be saved when glitches still propagate through

programmable interconnect with large capacitance. Note that

we can do nothing in high level synthesis to control the

placement of firewall registers while this is controlled by

FPGA placer. Fortunately, using Xilinx ISE placer in the

experiments, we checked the layouts of some designs and

found that all firewall registers are implemented as local flip-

flops by this tool. Secondly, according to the experimental

results, the use of firewall registers does not increase the

usage of slices much, suggesting that the firewall registers

are implemented in local flip-flops rather than occupying

spare slices. The slice increase is due to additional control

circuit for firewall registers. We believe that other synthesis

tools should produce the same results since the use of local

flip-flops is good for delay, power, and routing congestion.

Note that the use of firewall registers would not

adversely impact the timing of a design. Firstly, after

inserting a firewall register to a functional unit, because the

firewall register is implemented in local flip-flops with tiny

interconnect capacitance, this causes shorter critical paths

within the functional unit than those in the original design.

Therefore, no setup time violation can occur under the use of

firewall registers. Secondly, because there is no

combinational logic between the firewall register and the

original registers, hold time violation may occur in this place.

This issue can be automatically handled by the synthesis

tools, which will route wires or add buffers to increase the

propagation delay.

We do not show leakage power here because the FPGA

chip we used has no “turn-off” mechanism to shut down the

leakage of unused components. Therefore, the leakage power

is a constant in every result. However, we think the leakage

overhead should be small in our method considering that the

leakage is roughly proportional to the area.

6. Conclusions
In this paper we propose the concept of firewall registers

to block the propagation of glitches on boundary output

signals. To resolve the WAR hazard problem caused by the

insertion of firewall registers, we also propose an FR-

supporting behavioral synthesis flow. The experimental

results show that the reduction in dynamic power is around

28%.

Acknowledgements

This work is partially supported by the National Science

Foundation grant CCR 0096383 and the SRC GRC contract

2006-TJ-1400 0306682.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,

Algorithms, and Applications, Prentice-Hall, Englewood, Cliffs, 1993.
[2] R. K. Ahuja, J. B. Orlin, G. M. Sechi, and P. Zuddas, “Algorithms for

the simple equal flow problem,” in Management Science, pp. 1440-
1455, 1999.

[3] A. I. Ali, J. Kennington, and B. Shetty, “The equal flow problem,” in
European Journal of Operational Research, pp. 107-115, 1988.

[4] J. M. Chang and M. Pedram, “Register allocation and binding for low
power,” in Proc. of Design Automation Conf., pp. 29-35, 1995.

[5] J. M. Chang and M. Pedram, “Module assignment for low power,” in
Proc. of Conf. on European Design Automation, pp. 376-381, 1996.

[6] D. Chen, J. Cong, and J. Xu, “Optimal simultaneous module and
multivoltage assignment for low power,” in ACM Trans. on Design
Automation of Electronic Systems, vol. 11, Issue 2, pp. 362-386,
April 2006..

[7] J.A. Clarke, A.A. Gaffar, and G.A. Constantinides, “Parameterized
logic power consumption models for FPGA-based arithmetic,” in
Proc. of International Conference on Field Programmable Logic and
Applications, pp. 626-629, Aug. 2005.

[8] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang, “Platform-based
behavior-level and system-level synthesis,” in Proc. of IEEE
International SOC Conference, pp. 199-202, 2006.

[9] J. Cong and Z. Zhang, “An efficient and versatile scheduling
algorithm based on SDC formulation,” in Proc. of Design Automation
Conference, pp. 433-438, July, 2006.

[10] J. Cong, W. Jiang, and Z. Zhang, “Scheduling with integer time
budgeting for low-power optimization,” in Proc. of ASP-DAC, Jan.
21-24, 2008.

[11] C. Y. Huang, Y. S. Chen, Y. L. Lin, and Y. C. Hsu, “Data path
allocation based on bipartite weighted matching,” in Proc of Design
Automation Conference, pp. 499-504, June 24-27, 1990.

[12] P.E. Landman and J.M. Rabaey, “Architectural power analysis: the
dual bit type method,” in IEEE Trans. on VLSI Systems, pp. 173-187,
1995.

[13] J. Leijten, J. van Meerbergen, and J. Jess, “Analysis and reduction of
glitches in synchronous networks,” in Proc. of European conference
on Design and Test, pp. 398-403, 1995.

[14] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation for
power-efficient FPGAs,” in Proc. of ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey,
California, pp. 175-184, February 2003.

[15] H. Lim, K. Lee, Y. Cho, and N. Chang, “Flip-flop insertion with
shifted-phase clocks for FPGA power reduction,” in Proc. of the
IEEE/ACM International Conference on Computer-aided Design,
San Jose, CA, pp. 335-342, 2005.

[16] C. G. Lyuh and K. Taewhan, “High-level synthesis for low-power
based on network flow method,” in IEEE Trans. on VLSI Systems, pp.
364-375, 2003.

[17] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits
for low power,” in Proc. of the IEEE/ACM International Conference
on Computer-aided Design, pp. 398-402, 1993.

[18] N. Rollins and M. J. Wirthlin, “Reducing energy in FPGA multipliers
through glitch reduction,” in Proc. of 7th Annual International
Conference on Military Applications of Programmable Logic
Devices (MAPLD '05), Washington, DC, USA, September 2005.

[19] L. Shang and N.K. Jha, “High-level power modeling of CPLDs and
FPGAs,” in Proc. of ICCD, pp. 46-51, 2001.

[20] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power
consumption in Virtex-II FPGA family,” in Proc. of the International
Symposium on Field Programmable Gate Arrays, pp. 157-164,
February 2002.

[21] S.A. Wadekar and A.C. Parker, “Interconnect-based system-level
energy and power prediction to guide architecture exploration,” in
IEEE Trans. on VLSI Systems, pp. 373-380, 2004.

[22] S. J. E. Wilton, S-S. Ang, and W. Luk, “The impact of pipelining on
energy per operation in Field-Programmable Gate Arrays,” in Proc. of
International Conference on Field-Programmable Logic and its
Applications, Antwerp, Belgium, pp. 719-728, August 2004.

[23] Xilinx Website, http://www.xilinx.com.

Table 1: Experimental results.

Conventional flow [8]
Conventional flow [8] with

firewall register insertion
FR-supporting flow

Design
ADD

/SUB
MUL

FF Slice
Power

(mW)
FF Slice

Power

(mW)
FF Slice

Power

(mW)

ARAI 6 1 676 833 146 772 828 128 788 919 119

DIF 6 2 788 987 174 852 988 155 916 1029 126

DIT 7 3 932 1214 199 1012 1173 202 1076 1296 140

LEE 6 4 1028 1126 174 1092 1132 158 1172 1156 115

MCM 13 6 1652 2085 241 1956 2261 243 1940 2225 220

WANG 5 4 836 998 204 916 1025 144 980 1065 133

CHEM 33 33 5076 6063 719 5892 6126 553 5716 5330 556

DIR 11 12 1732 2091 275 2084 2156 195 2100 2152 160

HONDA 9 10 1364 1768 223 1668 1741 175 1668 1764 166

PR 5 3 548 859 137 612 872 101 676 850 86

Avg. 1 1 1 1.13 1.01 0.84 1.18 1.04 0.72

http://www.xilinx.com/

	1. Introduction
	2. Data Hazard Problems
	3. Binding with Firewall Register Insertion Support
	3.1 Network Flow Formulation
	3.2 Obtaining Binding from Network Flow Solution
	3.3 Solving Network Flow Problem with Equal Integral Flow Constraints

	4. Scheduling with Firewall Register Insertion Support
	5. Experimental Results
	6. Conclusions
	REFERENCES

