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Abstract
High-level synthesis (HLS) enables designing at a higher level of
abstraction to effectively cope with design complexity of emerg-
ing applications on modern programmable system-on-chip (SoC).
While HLS continues to evolve with a growing set of algorithms,
methodologies, and tools to efficiently map software designs onto
optimized hardware architectures, there continues to lack realis-
tic benchmark applications with sufficient complexity and enforce-
able constraints. In this paper we present a case study of acceler-
ating face detection based on the Viola Jones algorithm on a pro-
grammable SoC using a C-based HLS flow. We also share our in-
sights in porting a software-based design into a synthesizable im-
plementation with HLS-specific data structures and optimizations.
Our design is able to achieve a frame rate of 30 frames per second
which is suitable for realtime applications. Our performance and
quality of results are comparable to those of many traditional RTL
implementations.

1. Introduction
As the complexity of applications and hardware platforms contin-
ues to escalate, high-level synthesis (HLS) emerges as a popular
alternative to traditional register-transfer-level (RTL) methods for
improving design productivity that is crucial in today’s rapidly-
evolving technology landscape. By automatically generating dig-
ital circuits from behavioral specifications, it is able to significantly
reduce design effort while efficiently exploring a large multidimen-
sional design space. Designers can leverage HLS to quickly convert
software designs into customized hardware and obtain quality of re-
sults competitive to time-consuming manual RTL implementations.

While a growing interest in C-based design has led to the re-
lease of a range of commercial and academic HLS tools along
with an ever-improving set of design techniques, there continues
to be a lack of sufficiently complex software applications with
realistic design constraints that can be used to benchmark these
tools. Applications in current HLS benchmark suites often only
contain small application kernels, which are too simple to effec-
tively reflect the influence of specific optimizations and detail the
strengths and limitations of different tools in achieving the de-
sired design constraints. Furthermore, current benchmark applica-
tions rarely require hardware-software partitioning to leverage a
co-design methodology that takes advantage of the capability of
modern tightly-integrated programmable system-on-chips (SoCs).

To address the challenges of providing realistic benchmarks for
HLS tools, we identify face detection based on the Viola Jones
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algorithm [15] as a complex application whose achievable frame
rate serves as a realistic performance constraint. Face detection is
the task of finding faces within an image at different locations and
irrespective of their size. It finds applications in a number of fields
from photography to surveillance to robotics. The computationally
intensive nature of the Haar feature classifiers in the Viola Jones
algorithm makes face detection a suitable candidate for hardware
acceleration.

In this paper we present a case study of accelerating a face de-
tection system targeting a programmable SoC, emphasizing the in-
sights from bringing a software design into a synthesizable imple-
mentation with specific data structures and optimizations. Our main
contributions are twofold:

1. We identify Viola Jones face detection algorithm as a complex
and realistic application for benchmarking HLS tools and pro-
vide a comprehensive case study to explore the flow from a
pure software based implementation to an optimized C++ de-
sign suitable for HLS design flow.

2. We optimize our face detection system for performance, at the
C/C++ level and synthesize it with a full-system compiler using
SDSoC [9] from Xilinx. We show that our C-based design is
suitable for real-time face detection applications achieving a
frame rate of 30 fps. Our source code is publicly available on
the authors’ websites.

The rest of the paper is organized as follows: Section 2 examines
the related work; Section 3 provides an overview of face detection
based on the Viola Jones algorithm; Section 4 describes the base-
line implementation; Section 5 discusses various optimizations per-
formed; Section 6 presents performance and area results, followed
by conclusions in Section 7.

2. Related Work
There have been many prior studies to evaluate state-of-the-art HLS
tools [14, 16, 2]. Most of these works have used simple linear al-
gebra and digital signal processing kernels such as matrix multi-
plication, FIR etc. CHStone represents a step towards benchmark-
ing HLS with more realistic programs that make extensive use of
high-level language features such as structs, pointers, and function
calls [7]. However, most designs in CHStone remain small in size
and are not necessarily good representatives of complex applica-
tions that can be handled by modern HLS tools. (e.g., those from the
SoftFloat library [1]). MachSuite is a collection of 19 HLS bench-
marks designed to span a variety of application domains that can
potentially benefit from hardware acceraleration [13]. These bench-
marks are constructed to be kernels instead of complete applica-
tions. More recently, Liu et al. have made available an HLS imple-
mentation of an H.264 decoder design [11]. The authors have pro-
vided insights on porting a complex C reference design on FPGA
by applying a set of code optimizations and HLS directives.

In this work we select Viola Jones face detection algorithm to
benchmark FPGA-targeted HLS tool. FPGAs have become an at-
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tractive platform for real-time face detection systems. Several prior
works have explored the RTL implementation of face detection al-
gorithm on FPGAs. Lai et al. designed a parallel hardware archi-
tecture for FPGAs and were able to achieve 143 frames per second
(fps) for the VGA image (640×480 ) [10]. However, the number
of classifiers used was very small for real-world applications (52 as
compared to 2,913 classifiers in our case), which led to a poor accu-
racy. Ngo et al. presented an efficient modular architecture for de-
tection of multiple faces in video streams and were able to achieve a
frame rate of 30 fps on QVGA (320×240) [12]. However, their re-
sults were based on simulations instead of real hardware implemen-
tation. Gao and Lu designed an RTL implementation and were able
to achieve a frame rate of 98 fps for 16 classifiers in parallel [6], al-
though they had to retrain the Haar classifiers such that each stage
includes classifiers in the multiple of 16. He et al. proposed an SoC
architecture for face detection using artificial neural networks and
achieved a frame rate of 624 fps [4]. However, the number of sub-
window sizes used were 11×11, 19×19, and 17×17, which would
result in a poor detection accuracy for small faces. Jin et al. have
shown the best performance among the reported FPGA-based face
detection systems by attaining a frame rate as high as 307 fps for
VGA images [8]. But it is worth noting that their algorithm was
based on face uncertainty map using local binary pattern transform
instead of Viola Jones. Cho et al. implemented the Viola Jones al-
gorithm on a Virtex-5 FPGA and were able to achieve 26 fps for
three classifiers processing the image in parallel and 15 fps for a
single classifier [3]. This work is closest to our implementation in
terms of the overall system architecture, but their implementation
was in RTL as opposed to HLS. To our knowledge, we are the first
to implement Viola Jones face detection algorithm on FPGA using
C-based synthesis, and achieve a frame rate of 30 fps, suitable for
many real-time applications.

3. Face Detection Algorithm
Viola Jones face detection algorithm is a widely-used method for
real-time object detection. It uses Haar-like features, which are in-
ner products between the image and Haar templates. A face candi-
date is a rectangular section of the original image. As images may
have faces of different sizes, an image pyramid is constructed by
downscaling the image by a constant factor. This multiscale repre-
sentation of image is then searched for all possible 25×25 faces.
The inner product of Haar features requires the sum of different
rectangular sections of the downscaled image. Integral image is an
efficient way to sum up the pixel values within a rectangular region.
The value at any location (x,y) of the integral image is the sum of
the image pixel value above and to the left of the location (x,y). The
Haar features are mainly of two types – two-rectangle feature and
three-rectangle feature. The value of two-rectangle feature is the
difference between the weighted sum of pixels within two rectan-
gular regions. A three-rectangle feature feature is the weighted sum
within the two outside rectangles subtracted from the weighted sum
in center rectangle. The weights and size of each feature is gener-
ated using AdaBoost machine learning algorithm. The area of any
rectangle within the original image can be computed very easily
using each corner of the rectangle in the integral image (as shown
in Figure 1), where the area of the rectangular section D is com-
puted by adding the diagonal elements e5, c3 and subtracting the
off diagonal elements e3 and c5. To test every rectangle for a po-
tential face, a 25×25 sliding window shifts around the whole image
after downscaling, with a pixel offset of 1. Each time the window
shifts, the image region within the window goes through the cas-
cade classifier, which consists of multiple stages of classifiers (as
shown in Figure 2(c)). If the input region fails to pass the thresh-
old of a stage, the cascade classifier immediately rejects the region
as a face. If a region pass all stages successfully, it is classified as

a candidate of face. The cascade filter can reduce the computation
workload by rejecting a region at early stages. To compensate the
effect of different lighting conditions, all the images are mean and
variance normalized before sending them to the classifier.
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Figure 1: Image and its integral image — the value of the integral
image at location c3 is the sum of the pixels in rectangle A. The
value at location e3 is A+B, at location c5 is A+C, and at location
e5 is A+B+C+D. The sum within the rectangle D can be computed
as e5+c3-(e3+c5).

4. Baseline Implementation
In order to explore the flow from a software-based design to an op-
timized C/C++ based design suitable for HLS, we started with an
open-source software implementation of Viola Jones face detection
algorithm from [5]. The classifier used in this software implementa-
tion consisted of 25 stages, 2913 Haar classifiers, and Haar features
trained by faces of size 25×25 pixels. We modified the source code
to remove unsynthesizable constructs like system calls, heap ac-
cesses and recursive functions, to make it suitable for porting onto
FPGA. This gave us a naı̈ve hardware implementation of the face
detection system with a frame rate < 3 fps.

Figure 2 provides an overview of the entire system used for our
design. It consists of a CPU connected to FPGA where a host pro-
gram is running on the CPU and a face detection accelerator is run-
ning on the FPGA. The CPU sends the image in pgm format, where
each pixel value is an 8-bit number, to the hardware accelerator. The
face detection system implemented on the FPGA processes the en-
tire image to detect all possible faces and returns the coordinates of
the rectangles that are detected as faces to the CPU. The CPU then
marks the faces by printing rectangles on the image. The hardware
implementation consists of three main modules which are detailed
in the following sections.

4.1 Image Scaler
This module is responsible for downscaling the image to form an
image pyramid. It takes the original image and a scaling factor as
inputs and returns the downscaled image using a simple linear in-
terpolation algorithm. The linear interpolation algorithm is imple-
mented using two nested loops iterating over the image height and
image width respectively. The inner loop body has shift, multiplica-
tion, and assignment operations to perform downscaling. The typi-
cal scaling factor used for our design is 1.2

4.2 Integral Image Generator
This module takes a downscaled image from the image scaler and
constructs an integral image which is then stored in BRAMs. It
consists of nested loops, with outer loop iterating over the height of
the image and the inner loop iterating over the width of the image.
The inner loop updates integral image pixel values by accumulating
the pixels in the same row and to the left of a pixel location in the
downscaled image and adding the pixel value at the same location
but one row above in the integral image. This module also has
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Figure 2: Face detection system — (a) Image line buffer, image window buffer and integral image window buffer for integral image
generation, (b) Block diagram of the face detection system consisting of CPU and FPGA, and (c) Cascaded classifier with the classifiers
in first 3 stages applied in parallel and in pipeline for rest of the stages

another nested loop which iterates over the rows and columns of
the integral image and shifts the origin of the subwindow by one
pixel location every iteration. The new subwindow location and
the integral image is then sent to the cascaded classifier for further
processing.

4.3 Cascade Classifier
This module receives an integral image and a subwindow location
and passes the region inside the subwindow through the cascaded
Haar classifiers as shown in Figure 2(c). For the pre-trained cascade
classifier used for our implementation, there are 25 stages, each
containing multiple Haar classifiers, ranging from 9 to 211. To
implement cascading, this module contains a nested loop with the
outer loop iterating over the number of stages and the inner loop
iterating over the classifiers in each stage as shown in Figure 3.
For each classifier in any stage, 12 values (x-y coordinates for
the corner, plus width and height) corresponding to 3 rectangles
in the Haar-classifier are read from the integral image subwindow,
and the sum of each rectangle is obtained by adding the diagonal
elements and subtracting the off diagonal elements of the rectangle.
The sum of each rectangle is then multiplied by the corresponding
weight and then added together and compared to a threshold value.
Depending on whether the classifier sum exceeds the threshold
value, one of the two classifier parameters α or β is accumulated
into a running sum for that stage. For any stage, if the accumulated
value exceeds the stage threshold, then it is considered to pass that
stage and next iteration of the stage loop is processed, otherwise the
function returns a negative value to the integral image generator,
indicating that the given sub-window is not a face. In case the
thresholds for all the stages are passed, then the subwindow is
considered as a face and the cascade classifier notifies this by
returning a positive value to the integral image generator, which
then saves the upscaled version of those coordinates into a BRAM,
so that they can be streamed out to the CPU when the processing of
the entire image has finished. It also performs the normalization
of the integral image by computing the mean and the standard
deviation of the sub-window.

5. Optimizations
To improve the performance of our baseline implementation, we
performed various optimizations as mentioned below:

5.1 Parallel and Pipelined Classifiers
We determined that the nested loop in the cascade classifier (Fig-
ure 3) is critical for the performance of the face detection system,

Cascade Classifier:
for (i=0;i < Nstages;i++) {

for (j=0;j < Nclass[i];j++)
stagesum += Classifier(II,classifierid,stddev);

if (stagesum < sthresh[i]) break;
}

Classifier(II,k,stddev) {
sum0 = (II[r0.y][r0.x]+II[r0.y+r0.h][r0.x+r0.w]
-II[r0.y+r0.h][r0.x]-II[r0.y][r0.x+r0.w])*w0[k];
sum1 = (II[r1.y][r1.x]+II[r1.y+r1.h][r1.x+r1.w]
-II[r1.y+r1.h][r1.x]-II[r0.y][r1.x+r1.w])*w1[k];
sum2 = (II[r2.y][r2.x]+II[r2.y+r2.h][r2.x+r2.w]
-II[r2.y+r2.h][r2.x]-II[r2.y][r2.x+r2.w])*w2[k];
finalsum = sum0+sum1+sum2;
if (finalsum > cthresh[k]*stddev) return alpha[k];
else return beta[k];

}

Figure 3: Unoptimized code for cascade classifier and a single
classifier

as it is applied to all the subwindows in each downscaled image.
The nested loop consists of a call to a Haar classifier and the best
performance can be achieved when all the loops are completely un-
rolled and all the classifiers are processed in parallel. This requires
a lot of hardware resources, making it infeasible to fit the design
on the FPGA. Another approach is to pipeline the inner loop to ex-
ploit parallelism and to thus have a single pipelined classifier hard-
ware whose classifier parameters change every cycle. This drasti-
cally reduces the amount of hardware resources required, but hurts
the overall throughput. We wanted something in between these two
approaches. We studied the number of sliding windows passing
through each stage and the results obtained are shown in Figure
4. From the figure it can be seen that the number of subwindows
passing through the first stage is two orders of magnitude more
than the subwindows passing through the fourth and the fifth stages.
Also, the subwindows passing through the second and third stages
are an order of magnitude more than the ones passing from next
two stages. This study clearly indicates that the first three stages
are the throughput limiting factors. As the number of sliding win-
dows passing through each stage is not the same due to cascading
of the stages, the classifiers in the first three stages can be pro-
cessed in parallel to increase the throughput at the cost of hardware
resources. As the number of classifiers in the first three stages is
small 9, 16, 27 respectively, this does not impose much area over-
head and significantly improves the performance. For the next few
stages, pipelining of the classifiers is more appropriate to save hard-



0 2 4 6 8 10 12 14 16 18 20 22 24 26

Stage number

10
0

10
2

10
4

10
6

N
u
m

b
e
r 

o
f 
o
c
c
u
re

n
c
e
s

Figure 4: Number of occurrences of each stage on a 320×240
image

ware resources. Figure 2(c) shows an overview of the face detection
system and optimized cascaded classifier with first 3 stages having
classifiers in parallel and rest of them having pipelined classifiers.

To improve performance, we also stored the classifier values for
the first three stages in registers, instead of BRAMs. The paral-
lelization of the classifiers was done by making explicit function
calls to each classifier, instead of doing it in a loop, as HLS tool
we used schedules independent function calls outside the loop in
parallel. Storing the classifier values in registers was done by hard-
coding the constant values in the C code as shown in Figure 5.
Hardcoding the classifier values reduces the need for BRAM ac-
cesses and gives the compiler more freedom to perform various
optimizations. Some of these optimizations are shown in Figure 5,
where multiplications by constants in the unoptimized code are re-
placed by shift and add operations in the optimized code produced
by compiler. These kinds of optimizations, if lying on the critical
path of the design as in our case, can help improve the performance
of the design.

(a) Unoptimized Code
HardCodedClassifierk(II,variance){

sum0=(II[6][5]+II[16][19]-II[16][5]-II[6][19])*-4096;
sum1=(II[6][11]+II[15][13]-II[15][11]-II[6][13])*12288;
sum2=0;
if (sum0+sum1+sum2 > 58*variance) return 292;
else return -89;

}

(b) Compiler Optimized Code
HardCodedClassifierk(II,variance){

sum0=(-II[6][5]-II[16][19]+II[16][5]+II[6][19]);
sum0=sum0 << 12;
sum1=(II[6][11]+II[15][13]-II[15][11]-II[6][13]);
sum1=(sum1 << 13) + (sum1 << 12);
sum2=0;
if (sum0+sum1+sum2 > 58*variance) return 292;
else return -89;

}

Figure 5: Hardcoded classifier: (a) Unoptimized code with multi-
plication by constants (b) Compiler optimized code where multi-
plication is replaced by shift and add operations

5.2 Fast Integral Image Window Formation
As the coordinates of the classifiers are read from the integral image
which is stored in BRAM, it requires 12 cycles to read the values
of all the rectangle coordinates of a classifier. The classifiers are
applied in the cascade classifier loop (Figure 3) which is critical
for performance of the design. Reading classifier coordinates from
BRAM imposes a resource constraint on the BRAM ports and
prevents the tool pipeline the inner loop with the initiation interval
of 1. To achieve an II of 1 in the inner loop, all the pixels of the

integral image need to be stored in registers instead of BRAM. To
store the integral image for the entire 320×240 image in registers, it
would require 1,920,000 1-bit registers, while the FPGA board that
we are using has only 437,200 1-bit registers. Hence, if the integral
image for the whole image is calculated all at once, it can only be
stored in BRAMs. To address this issue, we used the integral image
formation method mentioned in [3]. With this method, instead of
producing the entire integral image at once, our design produces
an integral image subwindow every clock cycle and stores it in
an array of registers. As the integral image subwindow is stored
in registers, it allows all the classifier coordinates to be read in
parallel.

Here we describe the algorithm used for integral image gen-
eration. The integral image generator is provided with a 24×320
image line buffer, 25×50 image window buffer, 25×25 integral im-
age window buffer, 25×50 square image window buffer and 2×2
square integral image window buffer as shown in Figure 2(a). For
each incoming pixel with coordinate (x, y) representing the origin
of the sliding window, the image line buffer performs a shift oper-
ation as in (1), where n is the row size of image line buffer, p(x, y)
is the incoming pixel value, and L(x, y) represents a pixel in the
image line buffer.

L(x, (n− 2)− k) := L(x, (n− 2)− (k − 1)),

L(x, n− 2) := p(x, y) where 1 ≤ k ≤ n− 2
(1)

If each row of the line buffer can be stored in different BRAMs,
then it is possible to perform all these operations in parallel. The
image window buffer I is a two dimensional array of registers
which stores the pixel values from the image line buffer L and
the current pixel value p(x, y). The purpose of image window
buffer is to store the necessary pixels for integral image window
formation. For each incoming pixel p(x, y), the image window
buffer performs the following operations:

I(i, j) := I(i+ 1, j),where 0 ≤ i ≤ m− 2, 0 ≤ j ≤ n− 1

I(m− 1, j) := L(x, j),where 0 ≤ j ≤ n− 2

I(m− 1, n− 1) := p(x, y)

I(i, j) := I(i+ 1, j) + I(i+ 1, j − 1),where i+ j = m− 1,

0 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1,m = 2n,
(2)

The integral image window buffer II is used for classification of
a face, and stores the integral pixel values moving from the image
window buffer. For each incoming pixel p(x, y), the integral image
window performs the following operation:

II(u, v) := II(u, v) + I(u+ 1, v)− I(0, v),
where 0 ≤ u ≤ n− 1, 0 ≤ v ≤ n− 1

(3)

Similar operations are performed for the square integral image
SII , except we store square(p(x, y)) instead of p(x, y) in the
square image window buffer. The square integral image is used
to calculate the variance used to normalize the pixel values in the
subwindow to handle lighting conditions.

The HLS tool we use provides synthesizable data structures for
conveniently instantiating window and line buffers. However, the
available methods do not allow add operations while performing
left or right shift operations, as required in (2). Therefore, we
implemented our own window buffers and line buffers using two
dimensional arrays and partitioning them in dimension 0 and 1
respectively. When partitioned in dimension 0, HLS tool infer the
arrays as array of registers and for dimension 1 as multiple BRAMs.
The operations in (1), (2) and (3) if not coded properly, can end up
with dependencies which may restrict the tool to schedule them in
single cycle. As seen from the equations, to compute the current
value of II , the value of I in the previous cycle is required; and



to compute current value of I , the value L in the previous cycle
is required. We adopted a methodology where the equations in (1),
(2) and (3) are coded in reverse order as shown in Figure 6, to avoid
any read-after-write dependency. Loops were unrolled to schedule
all the operations in single cycle.

/* Integral Image Window Buffer */
for (u=0;u < WINDOW_SIZE;u++)

#pragma HLS unroll
for (v=0;v < WINDOW_SIZE;v++)

#pragma HLS unroll
II[u][v]=II[u][v]+(I[u][v+1]-I[u][0]);

/* Image Window Buffer */
for(j=0;j < 2*WINDOW_SIZE-1;j++)

#pragma HLS unroll
for(i=0;i < WINDOW_SIZE;i++)

#pragma HLS unroll
if( i+j != 2*WINDOW_SIZE-1 ) I[i][j] = I[i][j+1];
else if (i > 0) I[i][j]=I[i][j+1]+I[i-1][j+1];

for(i=0;i < WINDOW_SIZE-1;i++)
#pragma HLS unroll
I[i][2*WINDOW_SIZE-1]=L[i][x];

I[WINDOW_SIZE-1][2*WINDOW_SIZE-1] = IMG[y][x];

/* Image Line Buffer */
for(k=0;k < WINDOW_SIZE-2;k++)

#pragma HLS unroll
L[k][x]=L[k+1][x];

L[WINDOW_SIZE-2][x] = IMG1[y][x];

Figure 6: Code for integral image formation avoiding RAW depen-
dencies and unrolling the loops for single cycle updates

5.3 Integral Image Banking
To read 12 coordinates from the integral image window simulta-
neously, it requires twelve 625×1 18-bit MUXes. As this many
MUXes require more than 170K LUTs, the HLS tool has a hard
time generating and pipelining these MUXes. Even if the tool is
able to generate them, they are not able to pipeline them efficiently,
resulting in timing violations during the routing phase of the de-
sign. As the number of LUTs required is huge, this also adds a
lot of area overhead and routing congestion. Using a 625×1 MUX
means that for any rectangle coordinate in a classifier the value
can be read from anywhere in the integral image. We profiled all
the classifiers to see how many pixel locations does each of the 12
coordinates require and realized that a rectangle coordinate comes
from a blob of pixels in the integral image and does not use all the
625 pixels. We leverage this information to bank the integral image
into 28 banks, such that any of the 12 coordinates of a classifier do
not lie in the same bank. Figure 7(a) shows an integral image win-
dow buffer with a giant 625×1 MUX to read a single coordinate
from the integral image. Figure 7 (b) shows a two-level hierarchy
of MUXes, where the first level of MUXes select the values from
different banks, and the MUX in the second level selects a bank. As
all the coordinates lie in different banks, different offsets are used
as select signals for different MUXes in the first layer to read all
the 12 coordinates from the integral image (the MUX selects are
set to 0 for 16 banks that are not needed). The MUXes in the first
level are shared between all the 12 coordinates; only the second
layer is replicated. This integral image banking helped us reduce
the LUT utilization from 179,712 to 16,722 and also allowed the
tool to place and route the design quite easily.

18
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18
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(Banked)

Figure 7: Integral image banking — (a) shows an unbanked integral
image and a 625×1 MUX to read one coordinate from image. (b)
shows an integral image banked into 28 banks, MUXes for 12 of
these 28 banks read all the 12 coordinates and the MUX in the next
layer is used to choose one of the banks for a coordinate

5.4 Square Root Approximation
As the first few stages constitute the throughput limiting factors,
any logic before the cascaded classifier can bottleneck perfor-
mance. To eliminate lighting effects, each subwindow has to be
normalized. This requires the calculation of mean and standard de-
viation for every subwindow. As standard deviation is the square
root of variance, we identified square root calculation as another
throughput limiting factor because it takes 16 cycles on FPGA
and is calculated for each subwindow. It is hard to parallelize due
to inter-iteration dependencies in the loops. A better approach to
achieve single cycle performance was to store the square root val-
ues in BRAMs and use direct look up for standard deviation calcu-
lations. As the number of bits required to represent the variance of
a 25×25 window of 8 bit entries is 26, the square root look up re-
quires a storage of 226× 13 bits. This translates to 47,331 BRAMs
(each with 18Kb), which obviously would not fit on-chip. Hence
we adopted a different approach where we treated variance as the
sum of its most significant 10 bits left shifted by 16 and the lower
16 bits. The square root for the 16 bit numbers was stored in 32
BRAMs by declaring a statically initialized one dimensional ar-
ray of 65536 elements. The square root calculation was performed
by taking the square root of the upper and the lower halves of the
number and left shifting the first result by 8 and adding them. We
also made a separate case for the values which will be affected a
lot by this approximation, and used upper 18 bits and lower 8 bits
for them. We measured the percentage error for the approximated
square root for all the 226 bit numbers, and the error was less than
1% for 96% of the cases and less than 2% for 99.9% of the cases.
For all our experiments, this 1-2% error did not effect the accuracy
of face detection algorithm.

6. Experimental Results
The hardware-software setup used for our design consists of an
ARM CPU and Zynq-7000 XC7Z045 FPGA available on a ZC706
board. We used Xilinx SDSoC 2016.1 to partition the application
into software and hardware sections and automatically generate the
data motion network between CPU and FPGA. SDSoC internally
invokes Vivado HLS 2016.1 to synthesize the RTL from the de-
sign implementation in C. A high frame rate is very important for
real time applications. Because the performance of our face de-
tection system depends on the number of faces in the image, we
measured the performance for different number of faces for both
the software and hardware implementations. The software perfor-
mance was measured on ARM Cortex-A9 present on ZC706 board.

Table 1 shows the performance of the implemented face detec-
tion system for 1, 2, 4 and 8 faces. It can be seen that the perfor-
mance of the HLS-based face detection system is 8-9X higher than
that of the software implementation in all four cases. The HLS de-
sign is able to achieve a frame rate of more than 30 fps for 1 to 4



faces, which is suitable for real-time application. Figure 8 shows
the improvement in the frame rate for different optimizations. All
the optimizations are performed along with fast integral image gen-
eration and integral image banking. From the figure it can be seen
that baseline performance ranges from 1–3 fps, and all three opti-
mizations (pipelined classifiers, parallel classifiers, and square root
approximation) contribute almost equally to increasing the frame
rate of the face detection system.

Table 1: Performance of our proposed face detection system with
320×240 resolution images for both hardware and software

# of faces Software classifier Hardware classifier

1 206 ms 30 ms
4.8 fps 33.4 fps

2 232 ms 31 ms
4.3 fps 32.1 fps

4 250 ms 32 ms
4.0 fps 31.3 fps

8 371 ms 38 ms
2.7 fps 26.3 fps
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Figure 8: Frame rate improvement corresponding to various opti-
mizations for 1, 2, 4 and 8 faces in 320×240 image

Table 2 shows the resource utilization of the face detection sys-
tem. Most of the BRAM utilization comes from the storage of the
original and the downscaled image in the on-chip BRAMs, each
of which consumes 64 BRAMs. The rest of the BRAM utilization
comes from the storage of different classifier parameters (weights,
rectangle co-ordinates, thresholds, etc.). As we want single cycle
access to all these parameters, any two classifier parameters that
may be needed at the same time are stored in different BRAMs.
The main factors of LUT consumption are the MUXes in integral
image banking, logic for the integral image generation and arith-
metic expressions, contributing 24%, 50% and 26% respectively
toward the LUT utilization. Register utilization mainly comes from
integral image generation (57%) and temporary storage (43%) in
various modules and classifiers.

Table 2: Resource Utilization of our proposed face detection system
with 320×240 resolution images

Logic Total Used Total Available Utilization
LUT 62,522 218,600 28.6%

Registers 81,135 437,200 18.56%
DSP48E 111 900 12.33%

BRAM 18K 157 545 28.81%

7. Conclusions
In this paper, we provide insights for bringing a software design of
Viola Jones face detection algorithm into a synthesizable C-based
design. We describe various optimizations performed to achieve a
frame rate suitable for real-time application. We acknowledge the

strength of SDSoC and Vivado HLS in automatically generating
the data motion network and pipelining complex loop structures.
We also discuss the shortcomings of the tool in restricting the
designer from having fine control over the design and synthesis
process. We conclude that more advanced benchmarking is needed
to create HLS tools with out-of-box quality-of-results competitive
to traditional RTL implementations.
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