
ElasticFlow: A Complexity-Effective Approach for Pipelining Irregular Loop Nests
Mingxing Tan1,2, Gai Liu1, Ritchie Zhao1, Steve Dai1, Zhiru Zhang1

1School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
2Google Inc., Mountain View, CA

{mingxing.tan, gl387, rz252, hd273, zhiruz}@cornell.edu

Abstract
Modern high-level synthesis (HLS) tools commonly employ pipelin-
ing to achieve efficient loop acceleration by overlapping the exe-
cution of successive loop iterations. However, existing HLS tech-
niques provide inadequate support for pipelining irregular loop
nests that contain dynamic-bound inner loops, where unrolling is
either very expensive or not even applicable. To overcome this ma-
jor limitation, we propose ElasticFlow, a novel architectural syn-
thesis approach capable of dynamically distributing inner loops to
an array of loop processing units (LPUs) in a complexity-effective
manner. These LPUs can be either specialized to execute an indi-
vidual loop or shared amongst multiple inner loops for area reduc-
tion. We evaluate ElasticFlow using a variety of real-life applica-
tions and demonstrate significant performance improvements over
a widely used commercial HLS tool for Xilinx FPGAs.

1. Introduction
Diminishing benefits of technology scaling and challenges in phys-
ical design over the past decade have prompted extensive research
and development into architectural alternatives to the general-
purpose processor. In particular, specialized accelerators have been
employed in a multitude of applications and settings to deliver
improvements in performance and energy efficiency. To meet the
engineering demands of creating such hardware accelerators in
a timely and cost-effective manner, high-level synthesis (HLS)
has seen growing use over traditional register-transfer level (RTL)
design methodologies. By automatically compiling specifications
written in a software programming language into RTL and provid-
ing common architectural optimizations in the form of directives
or pragmas, HLS is capable of significantly improving both the
productivity and quality of hardware design.

One widely used optimization technique is pipelining, which
allows successive loop iterations (or function invocations) to begin
before the previous iteration has finished. Modern HLS tools can
automatically pipeline a single loop or perfect loop nests, but are
typically unable to efficiently address irregular loop nests that con-
tain dynamic-bound inner loops. Unfortunately, such loop nests are
commonplace in a variety of important application domains such
as scientific computing, social analytics, and in-memory databases,
as they are an inextricable part of key operations such as sparse
matrix-vector multiplication, graph traversal, and hash lookup.
Generating efficient accelerators for applications in these domains
remains a serious challenge for contemporary HLS tools [20].

The difficulty presented by irregular loop nests is a consequence
of the fundamental inability of existing pipelining techniques to
handle elastic workloads. We illustrate this using an example. Fig-
ure 1(a) depicts a hash table which employs separate chaining, and
Figure 1(b) shows keysearch, a kernel from the Memcached ap-
plication [7] which performs a series of key lookups by first com-
puting the hash bucket, and then pointer chasing over the keys in
that bucket using a while loop. In this example we are interested in
building a pipelined accelerator for this kernel which can achieve a
throughput of one lookup per cycle. While it is possible to pipeline

...

Keys

0
1

N
Hash

buckets

(a) A common hash table
implementation which uses
separate chaining to resolve
collisions.

for (k : keys_to_find) {
#pragma pipeline

// Stage A
hv = Jenkins_hash(k);
p = hashtbl[hv].keys;

// Stage B
while (p && p->key!=k)

p = p->next;

// Stage C
format_output(p);

}

(b) keysearch kernel using
a while loop.

for (k : keys_to_find) {
#pragma pipeline

hv = Jenkins_hash(k);
p = hashtbl[hv].keys;

for (i=0; i<M; i++) {
#pragma unroll

if (p && p->key!=k)
p = p->next;

}

format_output(p);
}

(c) Modified keysearch using
a for loop unrolled M times.

Figure 1. Irregular Loop Nest Example – keysearch, a kernel
from the Memcached benchmark which performs a series of hash
lookups; (a) Hash table representation; (b) Original code using a
dynamic-bound inner loop to do pointer chasing; (c) Modified code
using an unrolled fixed-bound inner loop of M iterations.

the outer loop without modifying the inner loop, the resulting de-
sign will be bottlenecked by the throughput of the inner loop, which
is much lower than the throughput target.

An alternative is to transform the dynamic-bound loop in Figure
1(b) into a fixed-bound loop, which can be done by either manually
changing the code or annotating static loop bounds in the HLS
tool. The result is shown in Figure 1(c), where we have assumed
M is the worst-case length of the collision chain in the hash table.
While it is now possible to unroll the inner loop and achieve our
throughput target, two major problems remain: (1) The design is
very inefficient in area – a good hash function ensures that the
vast majority of hash buckets contains at most one key, which
requires only one loop iteration. However, we are forced to unroll
M copies of the loop body to handle the extreme cases of the
few buckets that contain multiple keys, appropriating resources
which will spend most of their time idle; (2) For many loops,
the worst-case loop bound cannot be statically determined. The
bound-annotation approach cannot be applied in this case without
endangering program correctness because the maximum number of
keys in a hash bucket is often unknown.

The fundamental problem showcased by this example is that
existing pipelining techniques attempt to statically allocate and
bind resources for an elastic workload. This leads to unnecessary
resource wastage as the design must handle the worst-case load,
which is often unbounded. To efficiently address irregular loop
nests, we argue that a new synthesis approach is needed for gener-
ating hardware capable of dynamically optimizing loop execution.

for (i = 0; i < num_imgs; i++) {
#pragma pipeline

val = imgdiff[i];
count = 0;

while (val) {
count++;
val = val & (val - 1);

}

pc[i] = count;
}

for (i = 0; i < num_rows; i++) {
#pragma pipeline

tmp = 0;
s = row[i]; e = row[i+1];

for (c = s; c < e; c++) {
cid = col[c];
tmp += val[c] * vec[cid];

}

out[i] = tmp;
}

for (i = 0; i < num_vertices; i++) {
#pragma pipeline

v = vertice[i]; tmp = dist[i];

for (e = v.edge; e; e = e->next) {
j = e.target_vertice_id;
if (dist[j] + e.weight < tmp)

tmp = dist[j] + e.weight;
}

newdist[i] = tmp;
}

(a) PC (b) SPMV (c) SSSP

Figure 2. Representative Irregular Loop Kernels – (a) Population Count (PC) counts the ones in a bit vector, with an inner loop
bound equal to the number of set bits. (b) Sparse Matrix-Vector Multiplication (SPMV) accesses each element in a sparse matrix,
and has an inner loop bound dictated by the number of non-zero matrix entries; (c) Single-Source Shortest Path (SSSP) implements
one iteration of the Bellman-Ford algorithm, which updates the distance of each node by examining each of its neighbors in the inner loop.

In this paper we propose ElasticFlow – a novel, complexity-
effective technique which enables resource-efficient pipelining of
irregular loop nests. Returning to the example in Figure 1(b), Elas-
ticFlow generates a dataflow pipeline architecture containing an
array of loop processing units (LPUs), each of which continu-
ously executes an entire while loop to completion. Each iteration
of the outer loop dynamically dispatches each of its inner loops
(i.e., Stage C) to an LPU, allowing multiple outer loop iterations
to execute in a pipelined fashion. ElasticFlow exploits decoupled
pipeline parallelism to enable outer loop pipelining similar to the
coarse-grained pipelined accelerators (CGPA) architecture [13] dis-
cussed in Section 6. In addition, ElasticFlow achieves improved re-
source efficiency and increased performance compared to CGPA
by further enhancing the elastic nature of the pipeline; ElasticFlow
supports out-of-order execution of outer loop iterations, as well as
adaptive resource reallocation to allow an LPU to be appropriated
for different inner loops at runtime. A summary of our major con-
tributions include:

1. We propose a novel pipelined architecture and associated syn-
thesis techniques to effectively accelerate irregular loop nests
that contain dynamic-bound inner loops in HLS.

2. We propose an adaptive resource reallocation technique to re-
duce hardware overhead and improve pipeline performance for
loop nests containing multiple dynamic-bound inner loops.

3. We systematically study the trade-off between performance and
resource usage in terms of the number of LPUs and buffer sizes.
Experimental results on a suite of practical application kernels
demonstrate substantial performance improvements over a best-
in-class commercial HLS tool for Xilinx FPGAs.

The rest of the paper is organized as follows: Section 2 provides
an overview of irregular loop nests and the challenges they pose;
Section 3 and 4 respectively detail the ElasticFlow architecture and
synthesis approach; Section 5 presents experimental results; Sec-
tion 6 examines related work, followed by conclusions in Section 7.

2. Irregular Loop Nests
In this paper we define an irregular loop nest as one which con-
tains one or more dynamic-bound inner loops. Such loop patterns
often arise from operations on less-regular data structures such as
sparse matrices, graphs and hash tables. Figure 2 shows three real-
world application kernels which exhibit this pattern. Notably, each
application uses a different data structure which is usually sparse
in practice – input values for PC tend not to span all the bits, sparse
matrices for SPMV by definition contain very few non-zero entries
compared to the number of matrix columns, and graphs for SSSP

tend to be sparsely connected. This means that in the real world,
the inner loops in these applications will almost never require the
worst-case number of iterations.

The key challenge of pipelining irregular loop nests arise from
the compile-time-unknown inner loop bounds, which inhibit static
compiler transformations. Unrolling is also extremely inefficient
even if the loop pattern possesses a known worst-case bound, as
common-case execution will leave most resources idle. One ap-
proach is to partially unroll the inner loop and execute different
iterations concurrently on multiple hardware copies. Unfortunately,
this requires there to be no carried dependences in the inner loop,
which is not the case in many practical applications as Figures 1
and 2 demonstrate. However, we note that in these examples there
are no outer-loop-carried dependences involving the irregular in-
ner loops, allowing these inner loop instances from different outer
loop iterations to be executed in parallel. Indeed, we observe that
such dependence patterns are commonplace in many important ap-
plications, leading us to consider an approach where we pipeline
across different outer loop iterations by parallelizing the execution
of multiple instances of an inner loop.

3. ElasticFlow Architecture
To address the challenges introduced by irregular loop nests, we
present the ElasticFlow architecture, which implements such loop
patterns as a multi-stage dataflow pipeline. Figure 3 provides an
example which roughly corresponds to the keysearch kernel in
Figure 1(b). Stage B implements a dynamic-bound inner loop as
a loop processing array (LPA), which consists of multiple loop
processing units (LPUs) as well as a distributor to distribute work
to and a collector to collect results from the LPUs. Each LPU
contains the full datapath and control for executing the inner loop.
Other operations in the loop nest become fixed-latency pipelined
stages (i.e., A and C), which can be synthesized using traditional
pipelining techniques. We use FIFOs to connect successive stages
and transfer outer loop iteration IDs and live variables.

3.1 sLPA Architecture
A natural approach is to map each dynamic-bound inner loop to
a single-loop processing array (sLPA) containing multiple single-
loop processing units (sLPUs) which execute that inner loop until
completion. 1 Figure 4 illustrates pipelining using sLPAs with eight
iterations of keysearch. Figure 4(a) shows the baseline approach
taken by existing HLS tools, where every inner loop iteration ex-
ecutes serially on stage B. The throughput of stage B becomes the

1 We focus on two-level loop nests for the rest of this paper, but ElasticFlow
can be generalized to multi-level loop nests through hierarchical pipelining.

i=0

i=1

i=2

i=3

stall

i=4

i=5

i=6

i=7

Ti
m
e

A CB

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

stall

stall

stall

stall

stall

stall

i=0

i=1

i=2

stall
i=3

i=4

i=5

i=6

stall

stall

stall

stall

stall

i=7
stall... ...
..

(a) Baseline approach

Idle
Idle Idle

i=0

i=0
i=1
i=2
i=3

stall

i=4
i=5
i=6
i=7

i=3

i=4 i=7

LPU1 LPU2 LPU3 LPU4

Idle

i=1

i=5

Idle

i=2

i=6

Idle

Ti
m
e

A B

i=0
i=1
i=2
i=3

i=4
i=5
i=6
i=7

C

stall
...

...
...

...
...

..

(b) ElasticFlow with static scheduling

i=0 i=3

i=4

i=7

LPU1 LPU2 LPU3 LPU4

i=1

i=5

i=2

i=6

i=0
i=1
i=2
i=3
i=4

i=6
i=7

i=5
stall

Ti
m
e

A B

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7

C

...
...

...
...

...

..
(c) ElasticFlow with dynamic scheduling

Figure 4. Execution on Different Pipeline Architectures – The irregular loop nest in this example
is mapped to three pipeline stages (S1, S2, S3), where S2 implements a dynamic-bound inner loop.
Eight outer loop iterations are shown. (a) Baseline approach uses a sequential datapath for S2,
resulting in frequent pipeline stalls due to low inner loop throughput; (b) ElasticFlow with four parallel
LPUs for S2 can improve throughput by overlapping different inner loop instances, but the LPUs
are underutilized due to the static scheduling policy; (c) Dynamic scheduling can further increase
throughput by improving LPU utilization.

A and C are fixed-latency pipeline stages
B is a pipeline stage for a dynamic-bound inner loop

Collector

Distributor

Loop Processing Array (LPA)

LPU1 LPU2 LPUK

…
B

A

C

<i, valA>

<i, valB>

<i, valC>

Figure 3. ElasticFlow Architecture – An irregular loop nest is
transformed into a multi-stage dataflow pipeline. Each dynamic-
bound inner loop is mapped to a loop processing array (LPA),
which consists of multiple loop processing units (LPUs). The loop
iteration ID (i) and live values (valA,valB,valC) are passed through
the FIFOs between pipeline stages.

bottleneck, and the rest of the pipeline is frequently stalled. Figure
4(b) shows the sLPA approach using four sLPUs. In this exam-
ple each outer loop iteration is statically assigned an LPU based
on its ID modulo four. While throughput is improved, resource ef-
ficiency is poor as the workload is skewed towards LPU one, re-
sulting in periods of idling on the other three LPUs. Indeed, it is
not possible for a static scheduling policy to efficiently handle an
arbitrary unbalanced workload. To guarantee resource efficiency,
ElasticFlow employs a dynamic scheduling policy where an outer
loop may dispatch its dynamic-bound inner loop to a free LPU.
The resulting improvement in LPU utilization and throughput is
shown in Figure 4(c). This runtime mechanism marks a fundamen-
tal difference between existing pipelining techniques in HLS and
ElasticFlow. While it is possible to duplicate inner loop modules
via unrolling and achieve parallelization in current HLS tools, the
number of loop copies must be chosen at compile time to handle
the worst-case loop bound, resulting in enormous resource ineffi-

ciency. In contrast, the number of ElasticFlow LPUs for a given
dynamic-bound inner loop can target the common case, achieving
maximum throughput most of the time while conserving resource.

It is important to note that although different outer loop itera-
tions begin executing on an LPA in-order, they may finish out-of-
order because the latency of each inner loop varies depending on
the outer loop iteration, and cause incorrect results for many pro-
grams. To address this, the collector of an LPA can be configured to
implement a reorder buffer (ROB) that ensures results are produced
in the order indicated by the loop iteration ID.

Because each LPU continuously executes an entire inner loop to
completion, inner loop carried dependencies are naturally honored.
As discussed in Section 2, ElasticFlow assumes there are no outer
loop carried dependencies involving stages synthesized to LPAs,
and our synthesis algorithm ensures only loop nests adhering to
this assumption will be mapped to this architecture.

3.2 mLPA Architecture
The ElasticFlow architecture can further enable resource sharing
at runtime by using multi-loop processing units (mLPUs), which
have the ability to execute different dynamic-bound inner loops. We
illustrate the advantage of this design with Database Join (dbjoin)
in Figure 5(a), a common operation which combines the entries in
two hash tables so they can be written to a single new table. The
kernel uses two dynamic-bound inner loops (i.e., B and D), which is
synthesized into two sLPAs with three LPUs each as in Figure 5(b).
Figure 5(c) shows the execution of an example workload which is
heavily unbalanced, such that loop B requires many more iterations
than loop D. This causes idling in sLPAD as sLPAB bottlenecks
pipeline progress.

As before, this inefficiency is a consequence of static resource
assignment for an elastic workload. Figure 5(d) shows an alterna-
tive architecture where the sLPAs are fused. The resulting multi-
loop processing array (mLPA) contains four mLPUs, each of which
is capable of executing either loop. An additional parameter, the
stage IDs (s), must be passed into the mLPA to configure the mLPU
to execute the desired loop. As Figure 5(e) demonstrates, the mL-
PUs can be dynamically reallocated for loop B or D depending on
workload distribution, improving both resource utilizations and re-

for (i = 0; i < num_keys; i++) {
#pragma pipeline

// stage A: look up hashtbl1
k = input_keys[i]
hv1 = Jenkins_hash1(k);
p = hashtbl1[hv].keys;

// stage B: dynamic-bound loop
while (p && p->key!=k)
p = p->next;

// stage C: look up hashtbl2
k = input_keys[i]
hv2 = Jenkins_hash2(k);
q = hashtbl2[hv].keys;

// stage D: dynamic-bound loop
while (q && q->key!= k)
q = q->next;

// stage E: merge the results
return format_out(p, q);

}

(a) Kernel for dbjoin

C

Collector

Distributor

sLPAD

sLPUK

A

Collector

Distributor

sLPAB

sLPU1 sLPUK

E

<i, val> <i, val>

<i, val> <i, val>

……

sLPU1

(b) Architecture without LPU sharing

iD=0 iD=1
iD=3 iD=4

sLPU1 sLPU2

Idle Idle

iD=2

sLPU3

Idle

iB=0
iB=1

sLPU1 sLPU2

iB=3

sLPU3

iB=2

iB=4
iB=5

sLPAB sLPAD

iD=5Ti
m
e

(c) Execution of six loop iterations on (b)

C

Shared mLPUs

A

Collector

Distributor

00

E

<s, i, val> <s, i, val>

<i, val> <i, val>
mLPAB,D

…

(d) Architecture with LPU sharing

iB=0

iD=0
iD=1

mLPU1 mLPU2 mLPU3 mLPU4

iB=1iB=2

iB=3

iD=2

iD=3

Ti
m
e

iB=5 iD=4
iD=5

mLPAB,D

iB=4

(e) Execution of six loop iterations on (d)

Figure 5. LPU Sharing and Adaptive Resource Reallocation – This example shows sharing and no-sharing architectures for the Database
Join (dbjoin) kernel, (a) dbjoin code showing the five pipeline stages (A, B, C, D, E), where B and D contain dynamic-bound inner
loops; (b) ElasticFlow architecture with two separate sLPAs: sLPAB for stage B and sLPAD for stage D; (c) Execution of six iterations on
the no-sharing architecture; (d) ElasticFlow architecture with LPU sharing, where the mLPA consists of a set of mLPUs that can be shared
between stage B and D. (e) Execution on the sharing architecture; sLPU = single-loop processing unit; mLPU = multi-loop processing unit;
sLPA = single-loop processing array; mLPA = multi-loop processing array; s = stage ID (i.e., B or D for this example); iB, iD = loop iteration
ID for stage B or D; val = live-in values for the downstream pipeline stages.

ducing pipeline stalls. Compared to sLPUs, an mLPU trades off
additional area for increased throughput on unbalanced workloads.
These trade-offs are further explored in Section 5.2.

4. ElasticFlow Synthesis
ElasticFlow synthesis maps an irregular loop nest to the architec-
ture proposed in Section 3, which requires partitioning the loop
nest into multiple stages, identifying inner loop candidates to form
the LPAs, and synthesizing these loop bodies into sLPUs and mL-
PUs. The process considers resource sharing among different inner
loops to optimize area usage, scheduling of workload onto LPUs to
maximize throughput, and buffer sizing to avoid pipeline stalls.

Given a dependence graph for an irregular loop nest that cap-
tures both intra-iteration and inter-iteration data and control de-
pendences, our synthesis algorithm first applies dependence analy-
sis [8] to identify all dynamic-bound inner loops and partition each
of these inner loops into separate stages. The subgraphs preceding
or succeeding each dynamic-bound inner loop will be partitioned
into their own stages, resulting in a coarse-grained directed acyclic
graph (DAG) composed of stages. Figure 5 provides an example,
where the kernel is partitioned into five stages (A-E), and the two
dynamic bound inner loops are assigned two separate stages A and
B. A stage containing a dynamic-bound loop will be synthesized
as part of an LPA while other stages will be pipelined using con-
ventional techniques. As such, ElasticFlow supports dependences

among different outer loop iterations of all stages except A and B
because A and B are bound to LPAs.

4.1 LPU Allocation
Under hardware area constraints, ElasticFlow synthesis enables
static allocation of LPUs to meet the expected throughput require-
ment of the nested loop, TP , defined as the number of outer
loop iterations per cycle. For the sLPA architecture, we allocate
Ui = [IIi · (Bi − 1) + Li] · TP number of sLPUs for each in-
ner loop i, where IIi denotes the achievable initiation interval of
inner loop i from pipeline synthesis, Bi denotes the common-case
bound of inner loop i from profiling the loop, and Li denotes the
latency in cycles of a single iteration of loop i, also obtained from
synthesis. While a number of dedicated sLPUs proportional to the
common-case bound of each loop achieves good performance for
balanced, common-case workloads, this approach is less flexible
under unbalanced workloads where loop bounds vary greatly over
time. As demonstrated in Section 3.2, replacing dedicated sLPUs
with shared mLPUs that are able to execute multiple loops allows
us to maintain high throughput in this scenario. However, there is
an inherent trade-off between performance and area. While creating
more mLPUs improves performance by allowing adaptive assign-
ment of resources for different loops depending on the workload,
an mLPU typically consumes more area than an sLPU because it
contains the hardware to execute multiple inner loops.

To address this trade-off, ElasticFlow synthesis optimizes per-
formance given the resource usage of each type of LPU and the
area of the sLPA architecture. We formulate an integer linear pro-
gramming program as shown in Equation (1). LPUs are classified
into different types depending on which loops share the particular
LPU. For the example in Figure 5, LPUs are classified into three
types: stage B only, stage D only, and stages B/D. The first two are
sLPUs, and the latter is an mLPU. Since there are usually only a
few inner loops, it is reasonable to enumerate the different types of
LPUs. Given K types of LPAs, Sj

k denotes the area of resource j
of an LPU in a type-k LPA and can be obtained from synthesizing
each type of LPU individually. Given N inner loops, we also clas-
sify LPAs into N degrees where a degree-n LPA contains LPUs
that can be shared among n loops.

In Equation (1), Dk indicates the degree of a type-k LPA with
type-k LPUs, denoted LPA k. Aj

total represents the area constraint
of resource j and is derived as a user-specified fraction of the num-
ber of resources required to synthesize the baseline sLPA architec-
ture. nk is a nonnegative integer variable that represents the number
of LPUs needed for LPA k. rik is a binary variable that represents
whether loop i is bound to LPA k. T (i) denotes the set of LPAs on
which loop i can execute. Equation (1b) constrains the total area
of all the allocated LPUs. Equation (1c) prevents over-allocation
of LPUs. Equation (1d) ensures that each inner loop is allocated to
only a single type of LPA, and Equation (1e) enforces that loops are
mapped only to compatible LPAs. The objective of the optimization
is to maximize the weighted sum of the total degree of sharing and
the total number of LPUs, whereα and β are the weights that can be
defined by the user. This objective acts as a proxy for performance
by balancing the degree of sharing with the number of LPUs.

maximize α
K∑

k=1

N∑
i=1

Dkrik + β

K∑
k=1

nk subject to (1a)

K∑
k=1

Sj
knk ≤ Aj

total ∀j (1b)

N∑
i=1

Uirik ≥ nk ∀k (1c)

K∑
k=1

rik = 1 ∀i (1d)

rik = 0 ∀k /∈ T (i) (1e)

4.2 Distributor and Collector Synthesis
Each LPA contains a distributor and a collector for assigning in-
coming inner loop instances to, and gathering results from LPUs,
respectively. The distributor contains a scheduler which employs a
dynamic work distribution policy – when an inner loop instance is
available to be executed, the scheduler evaluates the busy/idle states
of the LPUs in a round-robin manner and assigns the loop instance
to the first idle LPU. For mLPAs, the scheduler gives priority to the
inner loop with the lowest outer loop iteration ID.

As a result of dynamic loop bound, different inner loop in-
stances may finish execution and exit their LPUs out of order. For
applications that require results to be produced in order, we syn-
thesize an ROB in the collector. Each LPU stores its results to a
location in ROB in the order of increasing inner loop iteration ID,
where the head of ROB stores the smallest loop iteration ID that is
being processed. At each cycle, the ROB examines its head entry,
and outputs the result if the head contains valid data. If the ROB
is full, it applies back pressure to the distributor to prevent further
work distribution until additional space frees up.

4.3 Deadlock Avoidance
ElasticFlow communicates live-in and live-out values in bundles
between pipeline stages. For the sLPA architecture, artificial dead-
lock may occur if the number of in-flight outer loop iterations,
consisting of those being processed by LPUs and those waiting in
ROB, is greater than the total number of entries in the ROB. In this
case, LPUs eventually stall because ROB does not have enough
available entries to accept new data, and at the same time lacks all
the data needed to proceed with reordering. To avoid such dead-
lock, we design the collector so that the number of in-flight outer
loop iterations is limited to be no greater than the number of avail-
able entries in the ROB. This guarantees that every in-flight outer
loop iteration will find an entry in the ROB once it finishes execu-
tion. As a result, the sLPAs are guaranteed to be deadlock free.

If we consider each sLPA as a single compute node, our
dataflow architecture contains no cycles and forms a DAG. As
proven in [12], such a system cannot deadlock if no inputs are
filtered – an input to a node always results in an output. Because
each live-in bundle always result in a live-out bundle per outgoing
FIFO, the sLPAs are deadlock free and our system encounters no
deadlock if it contains sLPAs only.

For mLPA architectures, we allocate one ROB for each inner
loop sharing a particular mLPA, and limit the number of in-flight
outer loop iterations of an inner loop to be no greater than the size of
its corresponding ROB. If there is no data dependency between the
shared inner loops, the resulting dataflow network forms a DAG,
and the result from [12] guarantees no deadlock.

Now we show intuitively that our architecture remains deadlock
free even if there exists data dependency between the shared inner
loops. Assume that the mLPA architecture encounters a deadlock
caused by two dependent inner loops that share an mLPA. In this
situation, the oldest uncommitted outer loop iteration of the pro-
ducer loop will be held up at the head of the ROB of its mLPA
because execution cannot proceed to the corresponding consumer
loop, which does not have an LPU to run on. However, the restric-
tion on the number of in-flight outer loop iterations dictates that
an mLPU will eventually free up when younger instances of the
producer loop finish execution and move to the ROB. The con-
sumer loop will then be able to execute using one of these freed
LPUs and consume the producer result. This contradicts with the
assumption that the consumer loop has been blocked due to insuffi-
cient resources. Hence, we conclude that the mLPA architecture is
also deadlock free.

4.4 Buffer Sizing
It is important to suitably size the ROB to maximize the utilization
of the LPUs. The distributor will be stalled when a long-latency
loop iteration blocks the head of ROB. As a result, the LPUs
cannot process new outer loop iterations, and the system becomes
underutilized. However, there is no one-size-fits-all design since
different applications may have drastically different loop latency
patterns. Here we propose a profiling-driven approach to estimating
the size of the ROB.

We profile a given application with representative sample
datasets to obtain four key parameters for each dynamic-bound in-
ner loop: the maximum latency Lmax, the minimum latency Lmin,
the average-case latency Lavg , and the standard deviation σ of the
loop latencies. Assume that there areK LPUs in the LPA, and con-
sider the worst-case scenario where the head of ROB is blocked by
a loop with Lmax. In the meantime, the other (K − 1) LPUs are
free to continue executing other inner loop instances. We assume
that these inner loop instances have a latency of (Lavg−3σ), where
the -3σ term accounts for the latency deviation from the mean. In
situations where Lavg − 3σ < Lmin, we use Lmin instead to
avoid over-pessimistic estimations. We define a parameter S using

the following equation:

S =
Lmax

max(Lavg − 3σ, Lmin)
(K − 1) + 1 (2)

To increase LPU utilization by minimizing pipeline stalling, we
require the ROB size to be no less than S. To reduce the logic
overhead of ROBs, we round up S to the nearest power of two
as the estimated ROB size.

A second consideration is the sizing of delay lines, which for-
ward data that do not need to enter an LPA but must nevertheless
proceed down the pipeline. A delay line is implemented as a FIFO
that connects the stages before and after the LPA, and should be
large enough to hold all in-flight data waiting to be consumed with
the results from the LPA, or the pipeline will be stalled. The worst-
case scenario for the delay line is similar to that of the ROB. Essen-
tially, the delay line entries D should be no fewer than the number
of possible in-flight loop instances in the LPA when the LPA is
blocked by a loop instance with the maximum latency Lmax, i.e.,
D ≥ S+K. Compared with Equation (2), the additional term +K
corresponds to the fact that the K LPUs have also received new
tasks by the time the long-latency loop instance finishes execution.

5. Experimental Results
Our setup leverages a widely used commercial HLS tool, which
uses the LLVM compiler [10] as its front end and compiles a be-
havioral C/C++ program into Verilog or VHDL targeting Xilinx
FPGAs. To our best knowledge, the tool employs modulo schedul-
ing to pipeline a function or a loop nest, where all inner loops must
be completely unrolled. Dynamic-bound inner loops will therefore
prevent the functions or loop nests from being pipelined. We imple-
ment our ElasticFlow synthesis algorithm as an additional LLVM
pass, which is applied after compilation and other optimizations.
The pass automatically partitions the irregular loop nest into multi-
ple stages as described in Section 4. Each stage in the loop nest is
placed into a separate function. Stages with dynamic-bound inner
loops will be mapped to sLPAs or mLPAs as described in Section
3, while other stages are pipelined using the default algorithm in
the commercial tool. Our LLVM pass also inserts FIFOs between
different stages and annotates dataflow directives to force differ-
ent stages to run in a pipelined dataflow manner. We push the re-
sults through the same HLS engine to perform RTL code genera-
tion. The generated Verilog RTL design is implemented by Xilinx
Vivado 2014.1 targeting a Virtex-7 FPGA device with 5ns target
clock period. All timing and area numbers are obtained post place
and route. We evaluate ElasticFlow using a variety of real-life ap-
plications from search engine, graph processing, database, scien-
tific computing, image processing, and security. Table 1 briefly de-
scribes these applications. Each application contains one or more
dynamic-bound inner loops that the commercial HLS tool cannot
effectively pipeline.

Table 1. Descriptions of ElasticFlow Benchmarks.

Design Description

bgcd Stein’s binary GCD algorithm for greatest common divisor
cfd Computational fluid dynamics solver
dbjoin Database join operation
digitrec Digit recognition based on KNN algorithm
pagerank Popular website ranking algorithm
spavg Computing the mean value of each row in a sparse-matrix
spmv Sparse matrix-vector multiplication kernel
sssp Bellman-Ford single-source shortest path algorithm

5.1 Performance and Resource Usage Comparison
Table 2 shows the performance and resource usage comparison
between the commercial HLS tool (i.e., the baseline approach) and

Table 3. Elasticflow vs. Aggressive Unrolling Comparison –
The unroll* approach applies a user-specified worst-case unroll
factor based on the profiling results of the worst-case loop bounds
(120 for dbjoin and 100 for spmv), which may be unsafe if the
actual loop bound exceeds the user-specified unroll factor.

Design LAT CP SLICE LUT FF

dbjoin Unroll* 386 4.5 6679 10632 21187
ElasticFlow 389 5.0 2019 6493 4239

spmv Unroll* 365 4.4 2327 2884 6319
ElasticFlow 372 4.4 632 1894 1412

our proposed ElasticFlow approach. We also vary the number of
LPUs for each benchmark to study the performance-area trade-
off for ElasticFlow. With our synthesis flow, the user either use
the default LPU allocation automatically generated by the tool, or
manually specify the number of LPUs for each individual loop. Not
surprisingly, for all designs, ElasticFlow consistently outperforms
the baseline in terms of performance. We note that increasing
the number of LPUs proportionally improves the performance of
most designs, where dynamic-bound inner loops bottleneck the
throughput of the pipeline without ElasticFlow.

An alternative approach to pipelining the outer loop is to fully
unroll all inner loops, if the worst-case bounds of these loops are
known. Obviously, such a complete unrolling approach can lead
to good performance, but would incur significant area overhead.
Moreover, the worst-case loop bounds may not be easily deter-
minable for many real-life applications. Table 3 compares an ag-
gressive unrolling approach with ElasticFlow on two benchmarks,
where we optimistically specify the worst-case loop bounds based
on profiling results. Specifically, the unrolling factor for dbjoin
is 120, and spmv is unrolled by 100 times. While these unrolled
designs may not function correctly when the actual loop bound ex-
ceeds the specified unroll factor, they are still useful references for
measuring the quality of results of ElasticFlow. According to Ta-
ble 3, ElasticFlow achieves similar performance with aggressive
unrolling, but requires significantly less resource usage (by 3-4x).

5.2 LPU Sharing
We evaluate the effectiveness of our LPU sharing technique with
two representative designs which contain more than one inner loop.
dbjoin comprises two pointer-chasing inner loops that can share
the same array of LPUs as shown in Figure 5(a); cfd contains
two dynamic-bound inner loops that perform similar iterative fluid
dynamics computations. As detailed in Section 4.1, we enforce an
area constraint such that the total area of the mLPA designs are
similar to that of the corresponding sLPA designs.

Table 4 demonstrates the latency reduction and resource usage
of LPU sharing. For each benchmark, we provide two design points
where the comparable sLPA design contains 8 or 16 LPUs. In ad-
dition, we are able to have equal numbers of mLPUs for cfd, since
its two inner loops are structurally similar. For dbjoin, we allo-
cate seven mLPUs (dbjoin-A) and 14 mLPUs (dbjoin-B), re-

Table 4. LPU Resource Sharing – Latency reduction and re-
source overheads for cfd and dbjoin. cfd-A: 8 mLPUs vs. 8 sL-
PUs; cfd-B: 16 mLPUs vs. 16 sLPUs; dbjoin-A: 7 mLPUs vs. 8
sLPUs; dbjoin-B: 14 mLPUs vs. 16 sLPUs.

Design LAT
Reduction

Slice
Overhead

LUT
Overhead

FF
Overhead

cfd-A 34.7% 3.8% 9.3% 3.3%
cfd-B 31.5% 5.2% 8.9% 3.5%

dbjoin-A 21.3% 7.0% 9.7% -10.5%
dbjoin-B 21.6% 5.7% 9.8% -12.7%

Table 2. Performance and Resource Usage Comparison – base is the design generated by the commercial HLS tool; [n] represents the
proposed ElasticFlow approach with n LPUs. LAT = latency of the entire design in # of cycles; CP = clock period in ns (target CP is set to
5ns); SLICE = # of slices; LUT = # of lookup tables; FF = # of flip-flops; Speedup = speedup of ElasticFlow over base in terms of latency.

Design LAT CP SLICE LUT FF Speedup Design LAT CP SLICE LUT FF Speedup

bgcd-base 48770 4.5 500 1564 942 pagerank-base 702 3.7 181 432 543
bgcd-[2] 24402 4.5 574 1808 1109 2.0x pagerank-[2] 358 4.2 267 691 761 2.0x
bgcd-[4] 12228 4.9 778 2547 1357 4.0x pagerank-[4] 193 4.3 441 1154 1197 3.6x
bgcd-[8] 6147 4.9 1161 3868 1853 7.9x pagerank-[8] 113 4.5 806 2202 2071 6.2x

cfd-base 5059 4.6 3874 10595 10856 spavg-base 2604 4.4 1025 3067 2926
cfd-[2] 2597 4.7 4703 12717 13139 1.9x spavg-[2] 1336 4.9 1073 3261 3073 1.9x
cfd-[4] 1675 5.0 6534 17639 17447 3.0x spavg-[4] 704 4.9 1184 3564 3281 3.7x
cfd-[8] 1675 5.4 9589 27167 26077 3.0x spavg-[8] 480 4.9 1401 4295 3697 5.4x

dbjoin-base 2248 4.5 1180 3538 2319 spmv-base 2719 4.0 157 420 460
dbjoin-[2] 1157 4.6 1328 3831 2667 1.9x spmv-[2] 1370 3.8 243 620 596 2.0x
dbjoin-[4] 627 4.7 1503 4704 3191 3.6x spmv-[4] 697 4.4 376 1019 868 3.9x
dbjoin-[8] 389 5.0 2019 6493 4239 5.8x spmv-[8] 372 4.4 632 1894 1412 7.3x

digitrec-base 275402 4.0 312 807 510 sssp-base 780 3.8 169 445 502
digitrec-[2] 137717 4.0 366 1018 624 2.0x sssp-[2] 399 4.0 241 702 678 2.0x
digitrec-[4] 68877 4.4 456 1358 852 4.0x sssp-[4] 208 4.2 416 1212 1030 3.8x
digitrec-[8] 34464 4.0 686 2097 1308 8.0x sssp-[8] 122 4.4 756 2319 1736 6.4x

spectively. As shown in Table 4, using m-LPA can further improve
the performance by 21%–34% with similar area, showing the ef-
fectiveness of the LPU sharing technique. For dbjoin, the mLPA
designs require fewer FFs as we observe that many flip-flops are
mapped to shift register LUTs (SRLs).

5.3 Reorder Buffer Sizing
Figure 6 demonstrates the performance impact of ROB sizing as
well as the effectiveness of the ROB size estimation scheme de-
scribed in Section 4.4. To simplify the ROB logic, we restrict the
buffer size to be a power of two. As illustrated by the figure, our
profiling-based approach for estimating the buffer size can reason-
ably predict the optimal ROB sizes that are free from stalling. For
several benchmarks, the estimation matches exactly with the opti-
mal ROB size. For dbjoin and spavg, the estimation provides a
reasonable upper bound of the buffer size, which still ensures that
the LPAs can achieve the best performance.

5.4 Comparison with CGPA

0

0.2

0.4

0.6

0.8

1

1.2

1.4

bgcd cfd dbjoin digitrec pagerank spavg spmv sssp

Sp
ee
d
u
p

Parallel-fork-and-join ElasticFlow

Figure 7. Performance Comparison between ElasticFlow
and Parallel-Fork-and-Join – ElasticFlow is our approach;
Parallel-fork-and-join implements the CGPA architec-
ture [13] using sLPAs. We use eight LPUs for all the designs.

We note that the CGPA architecture can be implemented us-
ing sLPAs with a special distributor-collector scheme, termed as
parallel-fork-and-join in [13]. The parallel-fork distributes inner
loop instances based on a predetermined mapping between outer
loop iteration IDs and the available LPUs (i.e., static scheduling
illustrated in Figure 4(b)). The parallel-join collects outputs only
after all LPUs have produced valid results. With parallel-join, ROB
is not used although we still need to allocate sufficient amount

of buffers in the distributor to temporarily hold the results from
LPUs. Figure 7 shows that ElasticFlow can achieve up to 37% per-
formance improvement compared to the alternative approach that
resembles CGPA. We also observe that similar resource usage be-
tween two approaches. We attribute the additional speedup to LPU
sharing with m-LPAs, and the more adaptive scheduling and load
balancing enabled by ROBs.

6. Related Work
Loop pipelining is typically enabled by modulo scheduling [17], a
software pipelining technique for extracting instruction-level paral-
lelism across loop iterations, and is an important optimization im-
plemented in various academic and commercial HLS tools, includ-
ing Vivado HLS [4], Altera SDK for OpenCL [5], and LegUp [3].
Recent advances in pipeline flushing [6], multithreading [19],
and runtime dependency analysis [1] aim to achieve even higher-
performance designs, along with techniques to optimize area by
reducing the usage of registers [21], LUTs [18, 22], and memory
ports [2]. Despite these optimizations, existing approaches mostly
focus on pipelining simple loops and are ineffective for more com-
plex loop nests seen in many programs.

Like simple loop pipelining, nested loop pipelining was first in-
troduced in the software domain [16] and later extended to hard-
ware synthesis [14]. Recent optimizations in HLS employ poly-
hedral analysis to enable automatic parallelization, streaming, and
data reuse of regular nested loops with affine data access pat-
terns [15]. Such compiler analysis performs polyhedral code trans-
formation to optimize the design for performance and area based
on the program pattern. However, polyhedral analysis is performed
at compile time and is mostly useful for regular loop nests with
static bounds. Lattuada and Ferrandi propose a technique to paral-
lelize irregular loop nests by unrolling the outer loop and vectoriz-
ing certain instructions [11]. However, this technique requires that
the inner loop bound does not depend on the outer loop iteration,
making it inapplicable to our benchmarks.

The CGPA framework generates coarse-grained pipelines for a
loop nest by partitioning it into parallel and non-parallel sections.
CGPA employs replicated data-level parallelism to create multi-
ple identical copies of the parallel section and applies decoupled
pipeline parallelism to separate the parallel and sequential sections
with a set of FIFOs [13]. While CGPA is similar to ElasticFlow
with sLPAs, ElasticFlow achieves additional performance improve-
ment by enabling out-of-order execution and dynamic scheduling

200

400

600

800

1000

1200

1400

1600

1800

4 8 16 32 64 128

La
te

n
cy

Number of ROB entries

spavg

2-LPUs

4-LPUs

8-LPUs

2-LPUs
estimated

4-LPUs
estimated

8-LPUs
estimated

200

250

300

350

400

450

500

550

600

650

4 8 16 32 64 128

La
te

n
cy

Number of ROB entries

keysearch

5000

10000

15000

20000

25000

30000

4 8 16 32 64 128

La
te

n
cy

Number of ROB entries

bgcd

1600

1800

2000

2200

2400

2600

2800

3000

4 8 16 32 64 128

La
te

n
cy

Number of ROB entries

cfd

300

500

700

900

1100

1300

1500

4 8 16 32 64 128

La
te

n
cy

Number of ROB entries

dbjoin

Figure 6. Performance Impact of Reorder Buffer (ROB) Size and the Estimated ROB Size using Equation (2).

of inner loop instances. In addition, ElasticFlow realizes better re-
source efficiency and potentially higher throughput by optimizing
the allocation and sharing of LPUs with the mLPA architecture. We
also study buffer sizing for both ROB and delay line and propose a
runtime policy that guarantees the absence of deadlock.

Kocberber et al. propose Widx, a reconfigurable accelerator for
hash indexing in database systems which uses decoupled pipeline
architecture similar to ElasticFlow [9]. In Widx, a hashing unit dis-
tributes work to a parallel array of walker units, with the result com-
bined in an output unit. While bearing some similarity, Widx is a
specialized architecture for accelerating a single class of operation,
whereas ElasticFlow is a technique for addressing a more general
problem of pipelining irregular loop nests.

7. Conclusions
We presented ElasticFlow, a novel hardware architecture and as-
sociated synthesis techniques, which can efficiently address the
pipelining of irregular loops nests containing dynamic-bound in-
ner loops in HLS. ElasticFlow generates a dataflow pipeline archi-
tecture containing arrays of loop processing units, on which multi-
ple instances of inner loops can be executed concurrently. We fur-
ther study the complications of enabling out-of-order loop execu-
tion to improve throughput, and propose adaptive resource sharing
schemes that enable the reallocation of loop execution units during
runtime in response to workload imbalance for improved resource
efficiency. Experimental results over a variety of real-life bench-
marks show that ElasticFlow is able to achieve substantial perfor-
mance improvement over a best-in-class commercial HLS tool tar-
geting Xilinx FPGAs.

Acknowledgements
This work was supported in part by NSF CAREER Award #1453378,
NSF XPS Award #1337240, and a research gift from Xilinx, Inc.

References
[1] M. Alle, A. Morvan, and S. Derrien. Runtime Dependency Analysis

for Loop Pipelining in High-Level Synthesis. Design Automation
Conf. (DAC), Jun 2013.

[2] Y. Ben-Asher, D. Meisler, and N. Rotem. Reducing Memory
Constraints in Modulo Scheduling Synthesis for FPGAs. ACM Trans.
on Reconfigurable Technology and Systems (TRETS), 3(3), Sep 2010.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski. LegUp: High-Level
Synthesis for FPGA-Based Processor/Accelerator Systems. Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2011.

[4] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and
Z. Zhang. High-Level Synthesis for FPGAs: From Prototyping to
Deployment. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 30(4):473–491, Apr 2011.

[5] T. S. Czajkowski, D. Neto, M. Kinsner, U. Aydonat, J. Wong,
D. Denisenko, P. Yiannacouras, J. Freeman, D. P. Singh, and S. D.

Brown. OpenCL for FPGAs: Prototyping a Compiler. Int’l Conf.
on Engineering of Reconfigurable Systems and Algorithms (ERSA),
pages 3–12, Jul 2012.

[6] S. Dai, M. Tan, K. Hao, and Z. Zhang. Flushing-Enabled Loop
Pipelining for High-Level Synthesis. Design Automation Conf.
(DAC), Jun 2014.

[7] B. Fitzpatrick. Distributed Caching with Memcached. Linux journal,
2004(124):5, Aug 2004.

[8] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern
Architectures: a Dependence-Based Approach. Morgan Kaufmann
Publishers Inc., 2002.

[9] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ran-
ganathan. Meet the Walkers: Accelerating Index Traversals for
In-Memory Databases. Int’l Symp. on Microarchitecture (MICRO),
pages 468–479, Dec 2013.

[10] C. Lattner and V. Adve. LLVM: a Compilation Framework for
Lifelong Program Analysis & Transformation. Int’l Symp. on Code
Generation and Optimization (CGO), pages 75–86, Mar 2004.

[11] M. Lattuada and F. Ferrandi. Exploiting Outer Loops Vectorization
in High Level Synthesis. Architecture of Computing Systems (ARCS),
pages 31–42, Mar 2015.

[12] P. Li, K. Agrawal, J. Buhler, and R. D. Chamberlain. Deadlock
Avoidance for Streaming Computations with Filtering. Int’l Symp. on
Parallelism in Algorithms and Architectures (SPAA), Jun 2010.

[13] F. Liu, S. Ghosh, N. P. Johnson, and D. I. August. CGPA: Coarse-
Grained Pipelined Accelerators. Design Automation Conf. (DAC),
pages 1–6, Jun 2014.

[14] D. Petkov, R. Harr, and S. Amarasinghe. Efficient Pipelining of
Nested Loops: Unroll-and-Squash. Int’l Parallel and Distributed
Processing Symposium (IPDPS), Apr 2001.

[15] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong. Polyhedral-
Based Data Reuse Optimization for Configurable Computing. Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2013.

[16] J. Ramanujam. Optimal Software Pipelining of Nested Loops. Int’l
Parallel Processing Symp. (IPPS), pages 335–342, Apr 1994.

[17] B. R. Rau. Iterative Modulo Scheduling: an Algorithm for Software
Pipelining Loops. Int’l Symp. on Microarchitecture (MICRO), pages
63–74, Nov 1994.

[18] M. Tan, S. Dai, U. Gupta, and Z. Zhang. Mapping-Aware Con-
strained Scheduling for LUT-Based FPGAs. Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), Feb 2015.

[19] M. Tan, B. Liu, S. Dai, and Z. Zhang. Multithreaded Pipeline
Synthesis for Data-Parallel Kernels. Int’l Conf. on Computer-Aided
Design (ICCAD), pages 718–725, Nov 2014.

[20] F. Winterstein, S. Bayliss, and G. A. Constantinides. High-Level
Synthesis of Dynamic Data Structures: A Case Study Using Vivado
HLS. Int’l Conf. on Field Programmable Technology (FPT), pages
362–365, Dec 2013.

[21] Z. Zhang and B. Liu. SDC-Based Modulo Scheduling for Pipeline
Synthesis. Int’l Conf. on Computer-Aided Design (ICCAD), pages
211–218, Nov 2013.

[22] R. Zhao, M. Tan, S. Dai, and Z. Zhang. Area-Efficient Pipelining
for FPGA-Targeted High-Level Synthesis. Design Automation Conf.
(DAC), Jun 2015.

