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Abstract
Mainstream FPGA CAD tools provide an extensive collec-
tion of optimization options that have a significant impact
on the quality of the final design. These options together
create an enormous and complex design space that cannot
effectively be explored by human effort alone. Instead, we
propose to search this parameter space using autotuning,
which is a popular approach in the compiler optimization
domain. Specifically, we study the effectiveness of apply-
ing the multi-armed bandit (MAB) technique to automat-
ically tune the options for a complete FPGA compilation
flow from RTL to bitstream, including RTL/logic synthe-
sis, technology mapping, placement, and routing. To miti-
gate the high runtime cost incurred by the complex FPGA
implementation process, we devise an efficient paralleliza-
tion scheme that enables multiple MAB-based autotuners to
explore the design space simultaneously. In particular, we
propose a dynamic solution space partitioning and resource
allocation technique that intelligently allocates computing
resources to promising search regions based on the runtime
information of search quality from previous iterations. Ex-
periments on academic and commercial FPGA CAD tools
demonstrate promising improvements in quality and conver-
gence rate across a variety of real-life designs.

1. Introduction
Over the last three decades, FPGAs have evolved from a
small chip with a few thousand logic blocks to billion-
transistor system-on-chips containing hardened DSP blocks,
embedded memories, multicore processors, alongside mil-
lions of programmable logic elements. Concurrently, FPGA
development tools have also grown into sophisticated design
environments. Compiling an RTL design into bitstream typ-
ically involves heuristically solving a sequence of complex
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combinatorial optimization problems such as logic synthe-
sis, technology mapping, placement, and routing [7].

To meet the stringent yet diverse design requirements
from different domains and use cases, modern FPGA CAD
tools commonly provide users with a large collection of op-
timization options (or parameters) that have a significant
impact on the quality of the final design. For instance, the
placement step alone in the Xilinx Vivado Design Suite of-
fers up to 20 different parameters, translating to a search
space of more than 106 design points [3]. In addition, mul-
tiple options may interact in subtle ways resulting in unpre-
dictable effects on solution quality. Traditionally, navigating
through such an enormous design space requires designers
to rely on either prior design experience or vendor-supplied
guidelines. Such ad hoc design practices incur costly manual
effort to achieve the desired quality of results (QoR). Worse,
each new design may require a drastically different set of
options to achieve the best QoR [24].

One solution to improve design productivity is employing
meta-heuristic search techniques to explore the parameter
space automatically. Figure 1 shows the improvement of the
worst negative slack (WNS) of three designs generated by
Vivado, each tuned using three different search techniques:
active learning, Bayes classification, and greedy mutation.
From our experiments, it is evident that the most effective
search technique (in terms of the number of Vivado runs
needed to close timing) varies across different designs. In-
tuitively, distinct designs often present vastly different struc-
tures of the search space. Besides, different phases of the
design space exploration benefit from different search tech-
niques. For example, stochastic methods such as genetic al-
gorithm may be more useful during the initial phase of the
search, while first-order optimizations like gradient descent
are very efficient in finding local minima when the promis-
ing search space is narrowed.

The above observations clearly motivate the use of an en-
semble of search heuristics rather than one particular tech-
nique to effectively explore the design space of FPGA com-
pilation. Similar insights were also gained in the OpenTuner
project, which aimed to provide an extensible open-source
framework for software program autotuning [4]. OpenTuner
currently incorporates a collection of search techniques to
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Figure 1: The search traces of three designs using three different search algorithms with the goal of improving worst
negative slack — We use meta-heuristic algorithms to analyze results from Vivado, and guide the selection of Vivado
configuration parameters. The x-axis denotes the number of Vivado runs. (a) greedy mutation, a simple genetic algorithm,
is to first to close timing for binary GCD; (b) active leaning, a semi-supervised machine learning technique, is the first to
close timing for computational fluid dynamics; (c) Bayes classification, the naı̈ve Bayes classifiers, is the first to close
timing for the bubble sort design.

provide robustness against different search spaces and uses
the multi-armed bandit (MAB) algorithm [11] to determine
the allocation of trials between the available techniques dy-
namically. In addition to applications in program autotun-
ing [4], MAB has already been applied to many important
optimization problems in various fields, such as artificial in-
telligence [19, 22] and operations research [9, 15].

Since FPGA CAD tools usually require long execution
times (minutes to hours for real-world designs), it is crucial
to significantly speed up the MAB-guided search without
sacrificing the final QoR. An intuitive approach is launching
multiple machines simultaneously, each conducting a MAB-
guided search within the solution space independently. Al-
ternatively, one can use a more efficient scheme that dynam-
ically partitions the solution space into multiple partitions,
and allocates additional computing resources to regions that
are more likely to generate high-quality solutions.

In this paper, we propose DATuner — a parallel
bandit-based framework for autotuning FPGA compilation.
DATuner is built on OpenTuner but instead focuses on im-
proving the productivity and quality of FPGA-targeted hard-
ware designs. We also propose scalable and effective paral-
lelization techniques based on dynamical solution space par-
titioning to speed up the convergence of DATuner. Our main
contributions are as follows:

1. We adapt OpenTuner to tune the CAD tool parameters for
FPGA compilation and demonstrate the effectiveness of
the bandit-based approach in improving the design QoR.

2. We propose a scalable parallelization scheme which ac-
complishes the following: (1) efficiently partitions the
global solution space into promising subspaces; (2) allo-
cates compute resource among subspaces to balance the

exploration of unknown subspaces and the exploitation
of subspaces with known high-quality solutions.

3. Experiments with DATuner on academic and commer-
cial FPGA CAD tools demonstrate very encouraging im-
provements in design quality across a variety of real-life
benchmarks. We believe that our framework is also ap-
plicable to many other EDA problems.

The rest of the paper is organized as follows: Section 2
introduces the preliminaries that serve as the basics of this
work; Section 3 discusses our proposed techniques; Sec-
tion 4 presents the experimental results; Section 5 summa-
rizes the related work, followed by conclusions in Section 6.

2. Preliminaries
In this section, we provide an overview of the MAB problem
formulation, its usage in OpenTuner, as well as the basics of
the FPGA compilation process.

2.1 Multi-Armed Bandit Approach
The MAB problem and its solutions are extensively studied
in statistics and machine learning [11]. The classic problem
is formulated as a game, where the player has a fixed number
of actions to choose from (i.e., arms), each of which having
a reward given by an unknown probability distribution with
an unknown expected value. The game progresses in rounds,
and in each round, the player chooses one action (i.e., pull
an arm) and obtain a reward sampled from the correspond-
ing distribution. The reward loosely captures the effective-
ness of an arm, and crucially, its probability distribution is
learned during the process of the game. The objective is to
maximize the total payoff after all the rounds. An effective
MAB algorithm must find a right balance between exploita-
tion (choosing the known best arm to obtain the highest ex-



pected reward), and exploration (selecting an infrequently
used arm to gain more information about its reward distri-
bution). Choosing an infrequently used arm sacrifices short-
term gain for the possibility of discovering greater payoff in
the long run. Existing methods are usually randomized al-
gorithms, which pick an action in each round based on the
history of chosen actions and observed rewards so far [5, 6].
The quality metric of an MAB algorithm is regret, which
is the ratio between optimal payoff (obtained by pulling the
optimal arm every round) and that generated from the MAB
algorithm. Several known MAB algorithms can achieve a
regret of O(log N) for an N-round MAB, which has been
shown to be asymptotically optimal [8].

Recently, an open-source autotuning framework called
OpenTuner has adopted MAB to improve the runtime of
software benchmarks [4]. Specifically, OpenTuner incorpo-
rates an ensemble of meta-heuristics for effectively search-
ing the space of software compiler options. Examples of
these heuristic methods include differential evolution, ge-
netic algorithm, particle swarm optimization, and simulated
annealing. The MAB algorithm used in OpenTuner treats
each search method as an arm, and measures its reward us-
ing the area under curve mechanism — If an arm has yielded
a new global best, an upward line is drawn, otherwise, a
flat line is drawn. The area under this curve (scaled to a
maximum value of 1) is the total payoff attributed to the
corresponding arm. To balance exploitation and exploration,
OpenTuner ranks each arm with a weighted sum of the area
under curve metric and the frequency of its previous uses.
Notably, OpenTuner reported up to 2.8x speedup at no pro-
gramming cost by automatically tuning GCC flags.

2.2 FPGA Compilation Flow
The mainstream FPGA compilation flow takes an RTL de-
sign as input and generates a device-specific bitstream.
This process involves several distinct and modular steps:
logic synthesis, technology mapping, placement, and rout-
ing. Synthesis lowers the RTL design into a technology-
independent logic or gate-level network. Technology map-
ping then maps this network into a netlist of look-up tables
(LUTs). Placement determines the physical location of each
LUT in the netlist, and routing connects all signal paths us-
ing the available programmable interconnects.

Many of these steps involve NP-hard problems. To tackle
the difficulty of solving these problems, experts propose
some approximated solutions with heuristic-based methods.
FPGA CAD tools often provide designers with a set of con-
figuration parameters that select between heuristics or influ-
ence the behavior of a heuristic. Examples of parameters
include enabling remapping or retiming in logic synthesis,
deciding how much to spread logic for congestion or how
much to weight wire delay. Table 1 shows the tunable param-
eters available in the open-source Verilog-to-Routing (VTR)
toolflow [16], covering logic synthesis, packing, placement
and routing. With commercial FPGA CAD tools from Alter-

a/Intel and Xilinx, a much larger collection of switches are
available (roughly 60 to 80 options are exposed to design-
ers).

Table 1: List of tunable VTR configuration parameters.

Parameter Value Stage

resyn {on,off} logic synthesis
resyn2 {on,off} logic synthesis
resyn3 {on,off} logic synthesis
alpha clustering [0,1] packing
beta clustering [0,1] packing
allow unrelated cluster {on,off} packing
connection {on,off} packing
alpha t [0.5-0.9] placement
seed {1,2,3,4,5} placement
inner num {1,10,100} placement
timing tradeoff [0.3-0.7] placement
inner loop recompute {0,1,5} placement
td place exp first {0,1,3} placement
td place exp last {5,8,10} placement
max router iterations {20,50,80} routing
initial pres fac [0.3-100] routing
pres fac mult [1.2-2] routing
acc fac [1-2] routing
bb factor {1,3,5} routing
astar fac [1-2] routing
max criticality [0.8-1] routing
criticality exp [0.8-1] routing
base cost type {’demand only’, routing

’delay normalized’}

2.3 Autotuning FPGA Compilation Parameters
Obviously, these tool options together create an enormous
design space which cannot be effectively explored by human
effort alone. Besides, there is no single set of compilation pa-
rameters that works for all designs [24]. Thus, we propose to
automatically configure the FPGA tool options to achieve a
faster design closure and better QoRs. The QoR metrics can
be timing slack, resource usage, or power consumption. Due
to the slow runtime of FPGA compilation, effective paral-
lelization is paramount to ensure the viability of autotuning.

In this paper, we propose a parallel search methodology
named DATuner. DATuner adopts OpenTuner as its core
search engine to leverage the advantage of an ensemble over
a single technique.

3. DATuner Techniques
In this section, we first propose a dynamic solution space
partitioning method for parallelization. We also provide a
MAB-based method for uneven computing resource alloca-
tion. Then we illustrate our paralellization framework.

3.1 Motivation
We formulate the EDA autotuning problem as a search prob-
lem in an N -dimensional solution space called S0, where



each dimension can be either continuous or discrete. Obvi-
ously, S0 grows exponentially with the dimensionality of the
solution space. When N is large, it is impractical to exhaus-
tively traverse the search space to find the optimal solution.
A simple approach is to partition S0 into subspaces, launch
multiple parallel searches, and assign each search instance
to explore within one subspace. However, since some sub-
spaces are more promising than others in terms of yielding
good solutions, it is vital to properly partition the solution
space in a way that the majority of search instances are as-
signed to the most promising subspaces. Of course, just as
there is no single set of tool parameters that works well for
all designs, no static partitioning of the solution space is op-
timal across designs.

Finding a suitable partitioning of the search space is key
to improving the quality of the search. But doing so man-
ually is usually hard, and requires adequate domain knowl-
edge. In addition, just as there is no single set of parameters
that works well for all designs, no static partitioning of the
parameter space is optimal across designs. Thus, we propose
a novel parallelization method, where we gradually identify
promising subspaces via dynamic partitioning based on QoR
samples obtained at runtime. We further propose an MAB-
based compute resource allocation method for uneven sam-
pling — more compute resources are assigned to promising
subspaces to increase sampling quality.

3.2 Dynamic Solution Space Partition
We propose to partition the solution space dynamically,
where the partitioning does not rely on any prior knowledge;
instead it is decided by posterior knowledge learned during
runtime. More specifically, our partitioning method itera-
tively constructs a space partitioning tree (SP tree), where
the root node of the tree represents the initial solution space,
and each intermediate node represents a subspace. The leaf
nodes of the SP tree collectively form the active partitioning
that is currently used by the parallel search instances. In each
iteration, we select a subspace and divide it into multiple
smaller partitions. As a result, a leaf in the SP tree will be-
come an intermediate node that branches out to multiple new
children, with which each “newborn” representing a newly
created subspace.

Given an N dimensional solution space, we propose
to dynamically partition the search space into subspaces
and allocate more computing resources for searching within
promising subspaces. This dynamic partitioning process is
illustrated in Figure 2. S0 represents the initial solution space
and S1, S2, ..., Sn are the subspaces iteratively created dur-
ing space partitioning process. Figure 2(a) shows the known
samples that are explored, where each grey dot indicates a
sample with a good QoR and red crosses are those with poor
QoRs. At each step of the partitioning process, a key deci-
sion is to select the most profitable dimension out of the N
dimensions to partition, such that we can gain as much in-
formation about the solution space as possible. Here we pro-

pose to examine the entropy and information gain [20] when
partitioning a specific dimension. Specifically, for each di-
mension i in the N -dimensional search space, we compute
conditional entropy assuming we partition along dimension
i and derive the corresponding information gain. We select
the dimension with the highest information gain to partition.

Formally, for a subspace Si, we define the set of known
samples within Si as Di. We further label each sample as
good or bad based on its associated QoR, and use Dgi and
Dbi to denote subset of good and bad samples within Di,
respectively (note that Dgi ∪ Dbi = Di). Then we define
the entropy of Di as

H(Di) = −(
|Dgi|
|Di|

log(
|Dgi|
|Di|

) +
|Dbi|
|Di|

log(
|Dbi|
|Di|

))

where |Di|, |Dgi|, |Dbi| are the cardinalities of sets Di,
Dgi, and Dbi, respectively. We next define the conditional
entropy of Di conditioned on a specific dimension of Si.
Suppose d represents the parameter chosen for the dth di-
mension of Si, and we assume d has k possible discrete val-
ues. If we further define H(Di|d = j) as the entropy of Di

conditioned on d taking the value of j, we will have

H(Di|d) =
k∑

j=1

|Di,d=j |
|Di|

H(Di|d = j)

Here |Di,d=j | is the cardinality of the set of samples in
Si with d set to j. With the above notations, we can for-
mally define the information gain along dimension d as
G(Di, d) = H(Di) − H(Di|d). Our dynamic space par-
titioning algorithm creates a new subspace by partitioning
along the dimension with the highest information gain. If
the chosen dimension has k possible parameter values (con-
tinuous value will be discretized), it will get partitioned and
become an intermediate node in SP tree with (k − 1) new
children.

For the example in Figure 2(a), we have the follow-
ing calculations when deciding whether to partition along
x or y dimension. Here we assume have sampled 14 de-
sign points and eight of them have good QoRs. Therefore,
the entropy of the initial solution space S0 is H(D0) =
−( 8

14 log(
8
14 ) +

6
14 log(

6
14 )) = 0.986. We then compute the

conditional entropy of D0 conditioned on dimension x and
y as H(D0|x) = 8

14 ∗ 0.81 + 6
14 ∗ 0.91 = 0.853, and

H(D0|y) = 6
14 ∗ 1.00 + 8

14 ∗ 0.96 = 0.977. Finally, we
compute the information gain for partitioning along x or y
dimension as G(D0, x) = 0.133 and G(D0, y) = 0.009.
Since the former information gain is higher, we decide to
partition S0 along the x dimension, which results in two new
subspaces S1 and S2, as shown in Figure 2(b,c). In the next
iteration of this process, we follow the same method and
choose to further partition along the y dimension in S2 as
shown in Figure 2(d).
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Figure 2: Conceptual illustration of the solution space
partitioning method — The solution space is 2D with each
dimension constrained to [0,1]. grey circles represent sam-
ples with good QoR and red crosses are poor samples. (a)
and (c) show the partitions and the known samples at each
iteration. (b) and (d) show the corresponding SP trees. Given
four cores, we assign a different number of cores to each sub-
space based on the quality of solutions in that subspace. At
each step, we choose the dimension with the highest infor-
mation gain to partition.

3.3 MAB-directed Computing Resource Allocation
Once we obtain an SP tree, we need to properly allocate
the available compute resources to the subspaces to maxi-
mize the overall sampling rewards. The key here is to bal-
ance exploitation (i.e., allocating more search instances to
the most promising subspace) with exploration (i.e., sam-
pling less promising subspaces to obtain a better estimate of
enclosed solutions). Just as we can leverage MAB to choose
the search technique when exploring within a subspace, we
also propose to use it to solve the resource allocation prob-
lem. More concretely, we treat the subspaces as arms. To
calculate the reward, we employ the UCBI algorithm [5],
which defines the reward of a subspace Si at round t as
payoff(Si, t) = xi +

√
2 ln t
ni

. In this formulation, xi is the
average QoR of samples in Si and ni is the number of times
(i.e., frequency) Si has been chosen so far by the MAB. Es-
sentially, the QoR and frequency terms are used to balance
exploitation and exploration in the compute resource alloca-
tion.

3.4 Parallelization Framework
Figure 3 shows the overall flow of the proposed paralleliza-
tion scheme, which follows a master-slave model. The mas-
ter is responsible for distributing the parallel slave processes
(search instances) to different subspaces. It starts with the
original global space, and after collecting a sufficient num-
ber of samples, it performs dynamic space partitioning and
allocates search instances to appropriate subspaces. A slave
process invokes its search techniques to explore a specific
subspace, and reports its result backs to the master. The mas-
ter then further partition the search space and reallocates the
slaves. This process iterates until attaining the target QoR or
reaching timeout.

Original Space
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Dynamic Partition

Resource Allocation

Send Tasks

Recv Results

Stop?

End

StartMaster

OpenTuner

Y

N

Y

N

Task

QoR
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Figure 3: DATuner parallelization framework — We ap-
ply Master/Slave parallelization model and use MPI for
communication. Master sends Tasks to slaves. Task spec-
ifies which subspace that slave instance should explore and
may contain a historical best found QoR sample (if exists) in
this subspace for slave instance to use as a search seed.

4. Experimental Results
In this section we evaluate the QoR improvement and con-
vergence time of DATuner on two widely-used FPGA CAD
tools: (1) the academic Verilog-to-Routing (VTR) frame-
work [16] (version 7.0) and (2) Xilinx Vivado Design
Suite [3] (version 2016.1). We run DATuner with eight ma-
chines (each machine with one search instance). Each ma-
chine has a quad-core Xeon processor running at 2.8GHz.

We make use of a set of real-life benchmarks from sev-
eral different domains including image processing, general-
purpose computing, communication, security, and computer
vision. For the experiments targeting VTR, we choose 10
benchmarks covering different domains from the VTR-7.0



benchmark suite [16]. For the experiments using Vivado, we
use five large industry designs. The characteristics of the
VTR benchmarks and industry designs are summarized in
Table 2 and Table 3, respectively.

Table 2: Profiles of the benchmarks used for VTR tuning.

Circuit LUT BRAM Description

MkPktMerge 239 7344 Packet processing
Diffeq1 362 0 Scientific computing
Ch intrinsics 425 256 Memory system
Raygentop 1884 5376 Ray tracing
MkSMAdapter4B 1960 4456 Packet processing
Sha 2001 0 Cryptography
Boundtop 3053 32768 Ray tracing
Or1200 3075 2048 RISC-V Processor
Blob merge 8067 0 Image processing
Stereovision0 9567 0 Computer vision

Table 3: Profiles of the industry benchmarks used for
Vivado tuning.

Circuit FF LUT Constraint (ns) Device

Design1 14545 14122 2.60 Virtex 7K160T
Design2 17847 29012 6.55 Virtex 7K70T
Design3 18204 28361 2.00 Virtex 7K160T
Design4 26098 17242 2.65 Virtex 7VX330T
Design5 27873 38261 4.30 Virtex 7VX330T

We select 23 tunable parameters from the VTR-7.0 man-
ual [16] and 9 tunable parameters from Vivado flow covering
logic synthesis, packing, placement and routing. The list of
parameters for VTR and Vivado are shown in Table 1 and
Table 4, respectively.

4.1 Tuning VTR
We first compare DATuner with a parallel baseline that per-
forms a static partitioning scheme, denoted as Static-Part in
Section 4.1.1. Then we compare DATuner with a serial base-
line running OpenTuner on one machine, denoted as Ser-
MAB in Section 4.1.2.

4.1.1 Comparison with Static Partitioning
For the case of static partitioning, we choose three pa-
rameters from the VTR parameter list as the pivots for
partitioning and partition the solution space into eight
subspaces. We empirically choose the partitioning piv-
ots to be alpha t, allow unrelated clustering, and
base cost type, which usually have large impact on the
timing quality.

In Figure 4, we compare DATuner with Static-Part, where
both methods use eight machines for parallel searching. We
conduct 100 iterations of searching for 10 VTR benchmarks
and show the best-found frequency at different iterations.
DATuner achieves better QoR as well as faster convergence

Table 4: List of tunable Vivado configuration parame-
ters.

Parameter Value Stage

OptDirective {Explore, logic synthesis
ExploreSequentialArea,
AddRemap, ExploreArea,
Default}

PlaceDirective {Explore, placement
ExtraNetDelay high,
ExtraNetDelay medium,
ExtraNetDelay low,
ExtraPostPlacementOpt,
WLDrivenBlockPlacement,
LateBlockPlacement,
SSI SpreadLogic high,
SSI SpreadLogic low,
AltSpreadLogic low,
AltSpreadLogic medium,
AltSpreadLogic high,
ExtraTimingOpt, Default}

Fanout opt {on,off} post-placement
Placement opt {on,off} post-placement
Critical cell opt {on,off} post-placement
Critical pin opt {on,off} post-placement
Retime {on,off} post-placement
Rewire {on,off} post-placement

RouteDirective {Explore, routing
HigherDelayCost, Default}

rate than Static-Part for eight out of the ten designs. Be-
sides, DATuner shows a significant improvement on aver-
age QoR than Static-Part, further demonstrating the benefits
of dynamic partitioning. From our experiments, the SP trees
learnt by DATuner at runtime through dynamic partitioning
are indeed very different across different designs.

Table 5 provides a more detailed comparison between the
best configurations found by DATuner and static partition-
ing in terms of the clock frequency, runtime, and area in-
crease over the results from the default setting. It is not sur-
prising to see frequency improvements from both dynamic
and static partitioning, which indicates effectiveness of us-
ing MAB-guided search ensembles. In addition, DATuner
with dynamic partitioning outperforms the static scheme in
the majority of designs in terms of both frequency and LUT
counts. The runtime overheads are also similar.

4.1.2 Comparison with Serial Search
We further compare DATuner with Ser-MAB in Figure
5. For fair comparison, we constrain DATuner and Ser-
MAB with the same amount of compute efforts, where Ser-
MAB runs on one machine for 800 iterations and DATuner
runs eight search instances of 100 iterations each. While
each MAB instance makes use of an ensemble of heuris-
tic searches to avoid getting easily stuck in local optima, our
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Table 5: Profiles of the best-found VTR configurations by DATuner and static partitioning — Freq., RT, and LUT are the
ratios of the best configuration over default on clock frequency, runtime, and LUT count, respectively.

Circuit
DATuner Static-Part

Freq. ratio RT ratio LUT ratio Freq. ratio RT ratio LUT ratio
Blob merge 1.11 5.22 1.01 1.09 2.54 1.01
Boundtop 1.17 3.85 1.08 1.14 3.21 1.06
Diffeq1 1.16 1.16 1.06 1.13 1.23 1.36
Ch intrinsics 1.06 3.51 0.97 1.06 4.59 1.73
MkPktMerge 1.09 0.89 1.20 1.14 0.68 1.00
MkSMAdapter4B 1.04 1.86 0.99 1.01 0.69 1.00
Sha 1.12 2.28 1.00 1.06 1.69 1.00
Raygentop 1.12 3.62 0.99 1.07 2.09 1.42
Or1200 1.08 0.95 1.00 1.06 2.18 1.12
Stereovision0 1.18 1.74 1.29 1.21 2.04 1.24
Avg. 1.11 2.51 1.06 1.09 2.10 1.19

parallelization scheme further enables multiple MAB search
instances to explore additional promising regions that can-
not be quickly reached by a single search. In Figure 6, we
attempt to visualize the search trajectory of one VTR de-
sign through dimensionality reduction. Here the black dash
line captures the search trajectory of Ser-MAB, which is
mostly trapped in one region. Other colored lines represent
search trajectories of different search instances instantiated
by DATuner, where they are simultaneously exploring dif-
ferent promising regions of the design space. We believe that
this partly explains the results in Figure 5 where Ser-MAB
results in a worse QoR than that from DATuner in six out of
the ten VTR designs.

In Figure 7, we further compare DATuner with Ser-MAB
in terms of the runtime to achieve a specific QoR target.

We set the QoR target to be 2% improvement in design
frequency over the default design, and measure the speedup
in runtime of DATuner (with eight search instances) over
Ser-MAB. DATuner reaches the target QoR 11X faster than
Ser-MAB.

4.2 Tuning Vivado
We have also applied DATuner to resolve the timing closure
problem for five large industry designs, which are listed in
Table 3. These designs are specified with very tight timing
constraint, and are known as challenging benchmarks in
terms of meeting timing.

In addition to showing the timing improvement over the
default settings of Vivado, we also experiment with the Vi-
vado exploration mode, a tool option that explores various
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Figure 5: Comparison of DATuner and sequential search (Ser-MAB) for VTR tuning — We use the same total number of
search iterations for DATuner and Ser-MAB.
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Figure 6: Search trajectory of VTR tuning for Diffeq1
— We use t-SNE package [23] to reduce dimensionality
of the search space for VTR design Diffeq1 from 23 to
2 for the sake of visualization. Different colors represent
samples of different search engines. Arrows indicate search
time sequence. The black dash line represents trajectory of
Ser-MAB. Other colored lines capture traces of DATuner.
Ser-MAB is stuck in one promising region while DATuner
leads to multiple promising regions.

optimizations in the placement and routing stages for im-
proving timing. Figure 8 shows that this mode improves the
WNS for four designs, but still fail to meet the timing con-
straint. In contrast, DATuner helps close timing for all de-
signs.

We also study the profiles of the best-found configura-
tions by DATuner. Figure 9 shows that average similarity
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Figure 7: Runtime improvement using DATuner for VTR
tuning — Compared with Ser-Search, DATuner reaches the
same frequency target 11.1X faster on average using eight
machines.

among the five designs is only 46%, indicating that the one-
size-fits-all solution indeed does not exist. Table 6 further
shows the ratios of worst negative slack (WNS), runtime,
and area between the best-found configurations and default.
On average, we reduce WNS by 11% and increase the run-
time by a factor of 3.7X. The resource utilization is almost
the same as the default configuration.

5. Related Work
Intelligent design space exploration and autotuning-based
techniques have been proposed in the domain of high-



Figure 8: Vivado tuning by DATuner for large-scale industry designs — These designs fail to meet timing with both
Vivado-default and Vivado-explore modes, whereas DATuner closes timing for all of them.
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Figure 9: Similarity matrix of best-found configurations
for Vivado designs — the average similarity is 46%.

Table 6: Profiles of the best-found Vivado configurations
by DATuner — WNS, RT, LUT, and FF are the ratios of
the best configuration over the default one in terms of worst
negative slack, runtime, LUT count, and flip-flop count, re-
spectively.

Circuit WNS ratio RT ratio LUT ratio FF ratio

Design1 0.77 2.38 0.83 1.00
Design2 0.93 6.80 1.00 1.00
Design3 0.94 3.26 1.00 1.00
Design4 0.88 4.30 1.03 1.00
Design5 0.90 1.62 1.00 1.00
Avg. 0.89 3.67 0.97 1.00

performance computing (e.g., stencil computation [10] and
matrix computation [21]) and compiler optimization (e.g.,
a domain-specific compiler for image processing applica-
tions [18] and the compiler for Java Virtual Machine [12]).

Similar research efforts have recently emerged in the
EDA field to configure CAD tool options to improve design
quality automatically. Xilinx SmartXplorer [1] and Altera
Design Space Explorer [2] use predefined or user-specified
configuration bundles for design space exploration. They
support parallel CAD runs with fixed sets of parameters and
automatically report the best solution found. Unlike the fixed

heuristics used in these tools, DATuner dynamically deter-
mines the best search method for the current design.

InTime [13, 14] is a commercial autotuning tool for
FPGA timing closure based on the naı̈ve Bayesian classi-
fier, and has recently been extended to include other machine
learning techniques as well [24]. InTime builds a database of
configurations from a series of preliminary runs and learns to
predict the next set of CAD tool options to improve timing
results, achieving 30% improvement in timing result com-
pared to vendor-supplied design space exploration tools. The
authors in [17] also propose machine learning techniques
such as linear regression and random forest to autotune the
performance and power consumption of FPGA designs. We
note that the learning-based sampling and classification tech-
niques used in InTime [14] and [17] are complementary to
our proposal. It is possible to integrate these methods into
DATuner as an additional arm in the MAB algorithm. Be-
sides timing closure, our framework can also be applied to
other EDA tools.

OpenTuner [4] leverages the MAB method to dynami-
cally select the best searching technique from an ensem-
ble of searching strategies to tune global compiler switches,
which improves the performance of software compilers such
as GCC by to 2.8x over the baseline using gcc -o3. Our
work builds on OpenTuner, and targets hardware synthesis
rather than software compiler optimizations, and investigates
parallelization techniques to speed up the tuning process.

6. Conclusions
In this paper we propose DATuner, a parallel autotuning
framework for FPGA compilation using the multi-arm ban-
dit technique. To mitigate the high runtime cost incurred by
the complex CAD optimization process, we devise an effi-
cient parallelization scheme that enables many MAB-based
autotuners to explore the design space simultaneously. Con-
cretely, DATuner dynamically partitions solution space into
promising subspaces based on information gains, and al-
locates compute resource among subspaces to balance the
exploration of unknown subspaces and the exploitation of
subspaces with known high-quality solutions. Applications



of DATuner on VTR and Xilinx Vivado tools have demon-
strated promising improvements in quality and convergence
rate across a variety of academic and industry designs.
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