
CASA: Correlation-Aware Speculative Adders
Gai Liu, Ye Tao, Mingxing Tan, and Zhiru Zhang

Computer Systems Laboratory, Electrical and Computer Engineering
Cornell University, Ithaca, NY

{gl387, yt434, mingxing.tan, zhiruz}@cornell.edu

ABSTRACT
Speculative adders divide addition into subgroups and exe-
cute them in parallel for higher execution speed and energy
efficiency, but at the risk of generating incorrect results. In
this paper, we propose a lightweight correlation-aware spec-
ulative addition (CASA) method, which exploits the corre-
lation between input data and carry-in values observed in
real-life benchmarks to improve the accuracy of speculative
adders. Experimental results show that applying the CASA
method leads to a significant reduction in error rate with
only marginal overhead in timing, area, and power consump-
tion.

1. INTRODUCTION
Opportunistic computing [3] is an emerging design

paradigm to improve the performance and energy efficiency
of digital computer systems. By allowing inaccurate or oc-
casionally incorrect results to occur, designers are offered a
choice to more easily trade the quality of solution for cost.
The central idea of opportunistic computing is to speed up
the common-case execution while allowing errors to happen
in rare occasions. In applications such as signal process-
ing [8, 7] where inexact results are tolerable, opportunistic
computing techniques can improve both speed and energy
efficiency. On the other hand, when exact results are de-
sired, appropriate error detection and recovery mechanisms
are necessary to correct the errors.

Being one of the essential building blocks of the digital cir-
cuits, adders have been recently re-examined and “retooled”
in the context of opportunistic computing. The main idea is
to exploit the fact that the typical length of the carry prop-
agation is usually much shorter than the full width of the
adder. Therefore, an opportunistic adder built with short
carry chains can potentially operate at a much faster speed
with reasonably accurate results. Broadly speaking, oppor-
tunistic adders can be categorized into two classes, namely,
approximate adders and speculative adders. Approximate
adders [4, 17, 12] are more concerned with minimizing the
error amplitude to ensure the accuracy of the output value.
Speculative adders [11, 13, 10, 14, 16, 15, 2, 9], on the other
hand, primarily aim to improve the speed of the addition
by making speculations about the carry-in values. When a
misspeculation results in an incorrect output, the error re-
covery circuit will be triggered to correct the result. Since

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISLPED’14, August 11–13, 2014, La Jolla, CA, USA.
Copyright 2014 ACM 978-1-4503-2975-0/14/08 ...$15.00.
http://dx.doi.org/10.1145/2627369.2627635.

the error recovery logic usually incurs considerable overhead
in latency and energy consumption, a speculative adder is
expected to operate with a low error rate (i.e., the number
of errors divided by the total number of additions).

In this work, we focus on speculative adders consider-
ing that they are applicable to a wider range of problems.
Clearly, minimizing the error rate without significant tim-
ing/area/power degradation is one of the key challenges for
designing an effective speculative adder. Although a vari-
ety of techniques [10, 16, 15, 2] have been proposed to ad-
dress this issue, the existing speculative adders are mostly
tested against uniformly distributed random vectors, which
often do not reflect the actual data patterns from the real-
life benchmarks. In fact, according to our experiments on
MiBench [5], two representative speculative adders exhibit
high error rates (above 30%) for multiple benchmarks, sug-
gesting that random test vectors are insufficient for evalu-
ating the effectiveness of existing and new speculation tech-
niques.

In this paper, we address the problem of reducing error
rate of speculative adders in the context of real-life appli-
cations. Our method intelligently exploits the correlation
between the most significant bit of the input operands and
the carry-in values to improve the “correctness” of specula-
tive adders. Our major contributions are as follows:

1. We present a systematic study using real-life bench-
marks to evaluate the effectiveness of state-of-the-art
speculative adders. We show that significant room ex-
ists for reducing the error rates of existing techniques.

2. We propose the correlation-aware speculative addi-
tion (CASA), which is a generic lightweight extension
to existing speculative adders. We show that CASA
achieves a significant reduction in error rate with small
overhead in timing and area. Compared with a fast
parallel prefix adder, CASA can also achieve substan-
tial power reduction with comparable speed.

The rest of the paper is structured as follows: Section 2
reviews the related work on speculative adder designs; Sec-
tion 3 provides background and preliminaries of the op-
erating principles of the speculative addition; Section 4
presents the quantitative study of two existing speculative
adders and motivates our own method; Section 5 present our
correlation-aware speculative addition approach; Section 6
reports the experimental results followed by conclusions in
Section 7.

2. RELATED WORK
One of the early attempts to build a speculative adder

is described in [11] where a long addition is divided into
smaller groups of length K, with each group responsible for
generating the result only for the most significant bit in that
group adder. Since each group adder only handles a window

size of K bits, an error would occur when the actual length
of the carry propagation exceeds K. Variable latency spec-
ulative adder (VLSA) [13] employs a similar scheme formed
by K-bit group adders and further proposes resource shar-
ing techniques to significantly reduce the overall circuit area.
Error detection and recovery circuits are also introduced in
this work.

In the error-tolerant adder (ETA) [16, 15], a different de-
sign is proposed where the original adder is divided into sev-
eral non-overlapping groups and each group also has a sep-
arate carry generation logic. The carry-in value for a group
adder depends on the result of the carry generation from
the preceding group adder. A different method of carry-
in prediction is used in the speculative carry select adder
(SCSA) [2], which pre-computes both cases with and with-
out the carry-in. The carry-out value from the preceding
group will be used to determine the actual outcome. Al-
though this method can achieve higher speed and accuracy,
pre-computations are quite expensive in terms of both area
and energy. Accuracy configurable adder (ACA) [10] only
uses the result of upper half part of each addition so as to
improve accuracy. They also propose a pipelined accuracy-
reconfigurable scheme where results are incrementally cor-
rected in different pipeline stages. Since error amplitude of
ACA can be limited within certain range by the incremen-
tal correction scheme, ACA can also be viewed as a hybrid
adder combining the feature of approximate and speculative
adders. In [14], a reconfigurable prediction scheme is pro-
posed where carry-in value of current window is predicted by
previous K windows, where K is a configurable parameter.
This serves as an improvement for ACA achieving accuracy-
configurability during compute stage.

3. PRELIMINARIES
In this section, we review the basics of the speculative

adders in terms of how they achieve speed improvement with
short carry chains and detect errors. In particular, we will
examine VLSA and ACA, which are two representative spec-
ulative adder designs, in more detail.

3.1 Group Adders
The rationales of the existing speculative adder designs

are similar. The key insight is that the typical length of
the carry propagation is much shorter than the worst-case
scenario. Hence, dividing a long addition into smaller groups
and executing them in parallel would lead to smaller delay
and potentially lower power consumption.

Existing speculative adders can be roughly categorized
into two classes based on how addition groups are defined
and how the final sum is composed from the result of each
group adder. In the first class [11, 13], each group adder
only contributes one bit to the final sum, i.e., only the most
significant bit (msb) of each group adder will be used. VLSA
is a good representative design for this class of speculative
adders. In the second class [10, 14, 16, 15, 2], the addition is
divided into multiple windows with each window responsible
for generating a range of bits for the final sum. The existing
window-based speculative adders are logically similar, but
usually exhibit different trade-offs among delay, area and
power consumption. In this paper, we focus on ACA [10] in
the subsequent discussion since it is a good representative
of the window-based speculative adders and has a low area
overhead.

Figure 1 illustrates the circuit structures of group adders
in VLSA and ACA. In VLSA, only the msb of each group

addition will be used in the final result. VLSA can achieve
relatively high accuracy because each bit in the final sum is
calculated from one dedicated group adder. However, the
circuit cost is also relatively high for VLSA because of the
large number of group adders needed. In contrast, window-
based speculative adders such as ACA organize group addi-
tions in a manner of overlapping windows. Area overhead is
reduced in this case since less amount of redundant compu-
tation is conducted.

SUM[0:7]

…

A[1:8] B[1:8]

SUM[8]

1‐bit

8‐bit
adder

8‐bit 8‐bit

A[23:31] B[23:31]

SUM[31]

8‐bit
adder

8‐bit 8‐bit

1‐bit8‐bit

8‐bit

8‐bit
adder

8‐bit

A[0:7] B[0:7]

A[4:11] B[4:11]

SUM[0:7] SUM[8:11]

8‐bit

8‐bit

…

A[23:31] B[23:31]

SUM[27:31]

4‐bit

8‐bit
adder

8‐bit
adder

8‐bit
adder

8‐bit 8‐bit 8‐bit 8‐bit 8‐bit

A[0:7] B[0:7]

4‐bit

A[2:9]

SUM[9]

1‐bit

8‐bit
adder

8‐bit 8‐bit

B[1:9]

VLSA:

ACA:

25 group adders

7 group adders

Figure 1: Group adders of VLSA and ACA.

The key design technique to ensure high accuracy is that
only certain part (usually left-most bits) of the group sum
goes into the final result. In this scenario, even if there exists
a carry propagation from the previous group, the result of
current group addition may not necessarily be wrong. This
is because there is a high probability that carry will be gen-
erated or killed inside the lower bits in the group adder, so
that carry-in from the previous group will have no impact
on the correctness of the current group addition.

3.2 Error Condition
Speculative adders truncate the original addition into

group additions of length K, and assume that the carry-in
values will not propagate across more than K bit positions.
Hence it is not too difficult to derive the error condition of
a speculative adder as follows:

ErrorF lag =

n−k−1∑
i=0

pipi+1 . . . pi+kgi+k+1 (1)

The definitions gi and pi signals in the above equation
are described below. We also define the kill signal (ki) to
facilitate the later discussions.

• Generate gi: gi = 1 if both operands are 1 at position i;

• Kill ki: ki = 1 if both operands are 0 at position i;

• Propagate pi: pi = 1 if two operands differ at position i.

It is worth noting that having a long sequence of propagate
signals p’s does not necessarily result in an error. In fact,
only when this sequence is trailed by a g signal (instead of
k), the actual carry propagation would occur, resulting in
an error.

4. QUANTITATIVE STUDY OF REPRE-
SENTATIVE SPECULATIVE ADDERS

In this section, we present a quantitative study using real-
life benchmarks to evaluate the effectiveness of VLSA and
ACA.

4.1 Error Rate Evaluation
We have set up a comprehensive evaluation flow based on

the GEM5 [1] architectural simulator to assess the effective-
ness of existing speculative adders against real-life bench-
marks. Specifically, we have modified the arithmetic logic
units in a MIPS32 processor and tested benchmarks from
the MiBench [5] suite. Results of two representative spec-
ulative adders, i.e., VLSI and ACA, are compared against
the correct results to obtain error instructions and derive
the error rates.

0%

10%

20%

30%

40%

50%
VLSA ACA

(a)

0%

10%

20%

30%

40%

50%
VLSA ACA

(b)

Figure 2: Error rates for VLSA and ACA. (a) K=4; (b)

K=8.

The error rates of VLSA and ACA on 12 MiBench bench-
marks are shown in Figure 2. Among these benchmarks,
the error rates vary widely from below 10% to above 40%.
This suggests that the common practice of using uniformly
distributed random test vectors is insufficient for evaluating
the effectiveness of existing speculative addition techniques.
Furthermore, this study shows that significant room exists
for reducing the error rates of state-of-the-art speculative
adders.

4.2 Diagnosis of Erroneous Additions
In this section, we examine the data patterns in MiBench

benchmarks that frequently trigger errors in speculative
adders. We compile the benchmark code of MiBench, an-
alyze the assembly, and keep track of the operands of the
addition instances during execution.

We identify the most frequently executed and error-prone
instructions and examine the characteristic patterns of their

jpeg PC#: 0x40abf8 (addu)
operand #1: 00000000110011100111111111111111
operand #2: 11111111111011011111001011000010

dijkstra PC#: 4335b8 (addiu)
operand #1: 00000000000000000000000000110011
operand #2: 11111111111111111111111111010000

patricia PC#: 402740 (addiu)
operand #1: 00000000000000000000000000000100
operand #2: 11111111111111111111111111111111

Carry‐in

Carry‐in

Carry‐in

Figure 3: Example of long carry propagation chain causing

errors.

0

0.2

0.4

0.6

0.8

1

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t K=4 K=8 K=12 K=16

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

LSB MSB

(a)

(b)

Figure 4: (a) Correlation coefficient for different bench-

marks. (b) Correlation coefficient for each of the 32 bits for

benchmark fft.

source operands. Figure 3 shows several instances of such
additions that are executed many times and prone to errors.
It can be observed that the carry propagation chains in the
above examples are usually long. Any speculative adder that
fails to anticipate such long carry propagation will result
in an error. In fact, we observe that in most cases these
long carry propagation chains arise from sign bit extensions.
In other words, long sequence of propagate signals usually
happen when adding numbers of different signs. These long
carry chains are the major source of errors.

Given this observation, we hypothesize that there exists
a correlation between the difference of the most significant
bits (i.e. XOR(msb)) and the length of the carry propa-
gation chain. We will further justify the correlation in the
following section, and show that this correlation-based spec-
ulation technique can be used as a lightweight extension to
speculative adders, achieving significant reduction in error
rate.

4.3 Correlation Analysis
As previously mentioned, we hypothesize that there exists

correlation between the length of the carry propagation and
the XOR(msb) value. In this section, we will examine this
hypothesis based on the well-known Pearson’s correlation
coefficient for additions from MiBench. To facilitate our
test, we define the following two random variables:

• Random variable X: X = 1 ifXOR(msb) = 1; x = 0 if
XOR(msb) = 0.

• Random variable Y : Y = 1 if there exists a sequence of
propagate signal ending with generate g (i.e. ppp . . . g)
whose length is equal to or greater than the group size.

The Pearson’s correlation coefficient between X and Y can
be defined as:

ρX,Y =
cov(X,Y)

σXσY

(2)

where cov is the covariance and σX and σY are the standard
deviation of X and Y respectively. Intuitively, large ρX,Y

indicates strong correlation between X and Y , while small
ρX,Y indicates weak correlation between X and Y .

To investigate the Pearson’s correlation coefficient of X
and Y , we have sampled 12 benchmarks from MiBench. Fig-
ure 4 shows the Pearson’s correlation coefficient of X and

Y in these designs. Results show that the correlation coeffi-
cient are greater than 0.5 in a majority part of benchmarks,
which largely confirms our hypothesis. 1

5. CASA DESIGN
In this section, we present the design of our correlation-

aware speculative addition (CASA) and the corresponding
error rate evaluation. CASA is a lightweight carry predic-
tion scheme that can serve as an extension to most existing
speculative adders. Here we use ACA adder [10] as our base-
line design, while extensions to other speculative adders can
be fulfilled in a similar manner.

5.1 Implementation of CASA

XOR
A[31]

B[31]

Error
Detection

en

A[4:11] B[4:11]

SUM[0:7] SUM[8:11]

8‐bit

8‐bit

…

A[23:31]B[23:31]

SUM[27:31]

4‐bit

8‐bit
adder

8‐bit
adder

8‐bit
adder

cin cin cin

8‐bit 8‐bit 8‐bit 8‐bit 8‐bit

A[0:7] B[0:7]

4‐bit

Figure 5: Circuit implementation of CASA.

Figure 5 shows the structural diagram of the CASA ex-
tension based on ACA. The first modification to the orig-
inal ACA adder is an XOR gate connecting the msb of
two operands to the carry-in of group adders. When
XOR(msb) = 0, the carry-in to the group adders will be
all zeros, which is the same in the original ACA. As long
as the length of carry propagation chain does not exceed
K, CASA will always generate the correct result. On the
other hand, when XOR(msb) = 1, the carry-in to the group
adders will be set to one to account for the potential long
carry propagation that are frequently encountered when the
most significant bits differ. In this case, CASA will achieve
higher accuracy compared to the baseline design because it
often correctly predicts the carry-in signal generated from
previous group adders.

In order to improve the error rate for applications with
relatively small correlation coefficient, we also propose a dy-
namic 1-bit prediction scheme to further reduce error rate
for certain benchmarks. The high-level idea of this 1-bit
prediction scheme is similar to a simple 1-bit branch predic-
tor. Instead of always predicting carry-in equals one when
XOR(msb) = 1, we make CASA adaptive by keeping some
history information and update the prediction value every
time an error occurs. In our case, if the prediction is wrong
for the current instruction leading to an error, the predic-
tion outcome will be reversed. This way, the carry predic-
tion unit can dynamically adapt to the characteristics of the
input vector, thus further reducing the error rate.

Prediction is realized by one flip-flop enabled by the er-
ror detection circuit. We only apply dynamic prediction
when XOR(msb) = 1 by introducing an AND gate connect-
ing the XOR gate and the output of the flip-flop. Also, to
ensure that the state of prediction is only updated when

1
It is worth noting that [6] also observed that long carry propaga-

tion chains are more likely to occur when adding small numbers with
opposite signs in DCT/IDCT algorithms. Based on this observation,
approximate adders with reduced bitwidths are used to improve the
area and timing of the design.

XOR(msb) = 1, we implement an enable signal driven by
the result of an AND gate that takes as inputs the error
flag and output of XOR gate. Then each group adder will
conduct addition based on the predicted carry-in and two
operands, and the final result will be selected from the group
adders accordingly.

Our CASA implementation is lightweight and flexible.
CASA only requires one extra XOR gate and one additional
flip-flop to conduct correlation-based speculation and dy-
namic prediction. Although we are extending ACA in this
case, CASA can be applied to other speculative adders such
as VLSA.

5.2 Error Rate Analysis of CASA under Uni-
formly Distributed Random Inputs

Although CASA is motivated by observations from real-
life input vectors, we can also show that CASA does not
significantly degrade the performance under uniformly dis-
tributed random input vectors. First of all, we note that
for uniformly distributed random inputs, dynamic 1-bit pre-
diction is unbiased and have no impact on the overall error
rate. This is confirmed by our Monte Carlo simulation. For
simplicity, we restrict our analytical evaluation to CASA
with correlation speculation and take VLSA as our baseline
design.

Let us first define function Gn(x) as the total number of n-
bit long sequences in which the longest run of pppp . . . g does
not exceed x. Gn(x) can be calculated using the following
recursive relation:

Gn(x) =

x∑
i=1

2
i ×Gn−i(x) +

n∑
i=x+1

2
i−1 ×Gn−i(x) + 2

n
(3)

with the boundary condition:

Gn(x) = 4
n
, n ≤ x (4)

where the first summation corresponds to run of p that is
shorter than x and is terminated by g or k; the second sum-
mation corresponds to run of p longer than or equal to x
but is terminated by k; and the third term corresponds to a
run of p whose length is exactly n. Now using Gn(x), error
rate of CASA for XOR(msb) = 0 and XOR(msb) = 1 can
be separately calculated as:

ErrorRate
xor=0

=
4n−1 −Gxor=0

n (x)

4n−1
(5)

ErrorRate
xor=1

=
4n−1 −Gxor=1

n (x)

4n−1
(6)

where

G
xor=0
n (x) = Gn−1(x) (7)

G
xor=1
n (x) = Gn−1(x) −

n−1∑
i=x+1

2
i × 4

n−i−1
(8)

The additional sum in Equation 8 accounts for the fact that
when XOR(msb) = 1, the msb itself contributes to possible
propagate chains starting from msb. The overall error rate
for CASA is the expectation of Equation 5 and Equation 6:

ErrorRate =
1

2
× (ErrorRate

xor=0
+ ErrorRate

xor=1
) (9)

As a reference, the error rate for VLSA can be calculated
as:

ErrorRate =
4n −Gn(x)

4n
(10)

Table 1: Theoretical error rate for VLSA and CASA with

uniformly distributed random input vectors.
K 4 6 8 10 12

VLSA 37.44% 9.87% 2.33% 0.54% 0.12%
CASA 39.50% 10.29% 2.43% 0.56% 0.13%

Based on above derivations, we provide theoretical error
rates for VLSA and CASA under uniformly distributed ran-
dom input vectors.

From Table 1, we observe that CASA achieves similar ac-
curacy compared to baseline design, confirming the feasibil-
ity of CASA even for uniformly distributed random vectors.

5.3 Error Detection for CASA

8‐bit
adder

A[0:7]

B[0:7]

cout

8‐bit
adder

A[4:11]

B[4:11]

cout

…

8‐bit
adder

A[24:31]

B[24:31]

cout

couthalf

…

error

XOR

XOR

XOR

couthalf

4‐bit
adder

4‐bit
adder

cout

couthalf

cin

cin

cin

cin

Figure 6: Error detection circuit for CASA. (couthalf rep-

resents carry-out signal generated by the lower 4 bits in the

group adder.)

Our error detection logic is similar to the ACA adder
[10] but with slight modification to account for the different
carry-in values predicted by the XOR gate. A naive way of
implementing error detection circuit is to search in the origi-
nal input operands for every sequence of ppp . . . g or ppp . . . k
for XOR(msb) = 0 and XOR(msb) = 1, respectively. Then
the error detection circuit will flag an error if the length of
such sequences is longer than the available look-ahead bits
in the group adder. Here we introduce a logically equivalent
but much simpler version of error detection circuit: For each
group addition, error detection circuit compares the carry-
out value from the previous window with the carry-out value
generated by the lower-half of the current group adder, as
shown in Figure 6. If the error detection circuit finds a mis-
match between these two values in any of the group adders,
it means that the upper-half of the group adder fails to cap-
ture the correct carry-in value. Thus the final result will be
wrong and error detection circuit will flag an error. Other-
wise, if no mismatch is found, the result is guaranteed to be
correct.

6. EXPERIMENTAL RESULTS
In this section, we first present error rate reduction of

CASA applying to both VLSA and ACA. Then we report
the timing, area, and power results of our CASA design.

6.1 CASA Error Rate Evaluation
We evaluate the error rate reduction of using the pro-

posed CASA method on VLSA and ACA, under two dif-

ferent group sizes with K = 4 and K = 8. Table 2 shows
that CASA can significantly reduce the average error rate of
VLSA from 16.7% to 3.5% when K = 8. For ACA, CASA
reduces the average error rate from 14.4% to 2.1%. When
K = 4, the error rate reductions are also substantial.

Figure 7 shows the breakdown of the error rate reductions
by CASA due to prediction and correlation. It is important
to note that dynamic prediction alone does not provide suf-
ficient error rate reductions without correlation-based spec-
ulation. For example, the error rate for fft only decreases
from 12.7% to 11.9% if we employ a naive dynamic pre-
diction scheme where carry-in prediction is always updated
regardless of the result of XOR(MSB). In contrast, the fi-
nal error rate is down to 3.7% with CASA. For patrica, the
error rate even increases from 16.1% to 17.8% after applying
naive dynamic prediction. With CASA, the error rate is as
small as 2.0%. From our experiments, coordinated predic-
tion and carry-in speculation leads to most significant error
rate reduction.

6.2 Circuit Implementation
We have implemented CASA in behavioral Verilog and

synthesized the circuit using Synopsys Design Compiler
with a Synopsys 90nm technology library. Table 3 com-
pares the timing, area, and power results of parallel prefix
adder, ACA, and CASA. Comparing to the original ACA,
CASA can lead to significant error rate reduction with only
marginal hardware overhead.2 We also compare CASA with
a fast parallel prefix adder provided by the Synopsys Design-
Ware library. According to Table 3, CASA is able to achieve
25.6% power savings without any compromises in speed.

Table 3: Implementation results for 32-bit ACA and CASA,

K=8.
prefix adder ACA CASA

delay (ns) 0.594 0.559 0.560
area (µm2) 4238 3063 3300
power (mW) 1.29 0.93 0.96
CASA vs. ACA
timing overhead 0.2%
area overhead 7.7%
power overhead 3.2%
CASA vs. prefix adder
power savings 25.6%

7. CONCLUSIONS
In this paper, we conduct quantitative study of existing

speculative adders with realistic benchmarks and propose
a lightweight extension called CASA to significantly reduce
the error rate. Our approach is based on the correlation be-
tween the MSB of input operands and the carry-in values
for the group adders. To validate our observation, we pro-
vide detailed correlation analysis based on the input vectors
extracted from real-life benchmarks. We further perform
circuit implementation of CASA and detailed performance
and power analysis to validate the feasibility of our method.

ACKNOWLEDGMENTS
This work was supported in part by NSF Award CCF-
1337240 and a research gift from Xilinx, Inc.

2
Note that we can potentially use a CASA adder with a smaller

group size to meet the same accuracy requirement, leading to even
higher speed and better energy efficiency than the baseline specula-
tive adders.

Table 2: Error rate reduction after applying CASA.
VLSA vs. CASA ACA vs. CASA

K=4 K=8 K=4 K=8
VLSA CASA VLSA CASA ACA CASA ACA CASA

blowfish 38.7% 23.4% 20.9% 1.3% 36.1% 5.1% 5.4% 0.1%
cjpeg 29.8% 14.5% 11.4% 3.6% 20.2% 6.4% 7.9% 2.5%
crc 30.1% 14.8% 12.0% 0.1% 20.2% 0.0% 18.2% 0.1%

dijkstra 24.3% 6.7% 6.3% 2.4% 9.6% 3.5% 3.6% 1.8%
fft 30.0% 7.2% 21.7% 2.5% 18.0% 5.2% 12.7% 3.7%

gsm 35.7% 27.2% 23.1% 18.5% 25.6% 17.4% 14.6% 9.0%
lame 39.0% 10.6% 17.6% 1.2% 37.8% 2.7% 26.2% 0.4%

patricia 33.9% 12.4% 22.8% 3.4% 22.4% 4.7% 16.1% 2.0%
qsort 34.7% 7.5% 22.0% 3.9% 19.1% 5.4% 12.7% 3.6%

rijndael 36.4% 13.7% 7.3% 0.9% 24.3% 3.4% 6.4% 0.2%
sha 45.3% 24.6% 14.1% 1.7% 27.0% 6.6% 6.9% 0.9%

susan 27.9% 13.0% 21.2% 2.4% 45.0% 8.3% 41.6% 0.6%
average 33.8% 14.6% 16.7% 3.5% 25.4% 5.7% 14.4% 2.1%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

VLSA+CASA with K=8

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%
VLSA+CASA with K=4

 prediction correlation ACA+CASA with K=4 ACA+CASA with K=8

Figure 7: Breakdown of error rate improvements for CASA due to dynamic prediction and correlation-based speculation.

REFERENCES
[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,

A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
et al. The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[2] K. Du, P. Varman, and K. Mohanram. High performance
reliable variable latency carry select addition. In Proceedings of
the conference on Design, automation and test in Europe,
pages 1257–1262, 2012.

[3] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta,
R. Kumar, S. Mitra, A. Nicolau, T. S. Rosing, M. B.
Srivastava, et al. Underdesigned and opportunistic computing
in presence of hardware variability. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on,
32(1):8–23, 2013.

[4] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy.
Low-power digital signal processing using approximate adders.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 32(1):124–137, 2013.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In Workload
Characterization, 2001. WWC-4. 2001 IEEE International
Workshop on, pages 3–14, 2001.

[6] K. He, A. Gerstlauer, and M. Orshansky. Circuit-level
timing-error acceptance for design of energy-efficient
dct/idct-based systems. Circuits and Systems for Video
Technology, IEEE Transactions on, 23(6):961–974, 2013.

[7] R. Hegde and N. R. Shanbhag. Energy-efficient signal
processing via algorithmic noise-tolerance. In Proceedings of
the 1999 international symposium on Low power electronics
and design, pages 30–35, 1999.

[8] R. Hegde and N. R. Shanbhag. Soft digital signal processing.
Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 9(6):813–823, 2001.

[9] J. Huang, J. Lach, and G. Robins. A methodology for
energy-quality tradeoff using imprecise hardware. In
Proceedings of the 49th Annual Design Automation
Conference, pages 504–509, 2012.

[10] A. B. Kahng and S. Kang. Accuracy-configurable adder for
approximate arithmetic designs. In Proceedings of the 49th
Annual Design Automation Conference, pages 820–825, 2012.

[11] S.-L. Lu. Speeding up processing with approximation circuits.
Computer, 37(3):67–73, 2004.

[12] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Modeling
and synthesis of quality-energy optimal approximate adders. In
Proceedings of the International Conference on
Computer-Aided Design, pages 728–735, 2012.

[13] A. K. Verma, P. Brisk, and P. Ienne. Variable latency
speculative addition: a new paradigm for arithmetic circuit
design. In Proceedings of the conference on Design,
automation and test in Europe, pages 1250–1255, 2008.

[14] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On
reconfiguration-oriented approximate adder design and its
application. In Proceedings of International Conference on
Computer-Aided Design, 2013.

[15] N. Zhu, W. L. Goh, G. Wang, and K. S. Yeo. Enhanced
low-power high-speed adder for error-tolerant application. In
Proceedings of the 7th International SoC Design Conference,
pages 323–327, 2010.

[16] N. Zhu, W. L. Goh, and K. S. Yeo. An enhanced low-power
high-speed adder for error-tolerant application. In Proceedings
of the 12th International Symposium on Integrated Circuits,
pages 69–72, 2009.

[17] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong.
Design of low-power high-speed truncation-error-tolerant adder
and its application in digital signal processing. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on,
18(8):1225–1229, 2010.

