
Bitwidth-Aware Scheduling and Binding
in High-Level Synthesis

Jason Cong+, Yiping Fan+, Guoling Han+, Yizhou Lin+, Junjuan Xu*+, Zhiru Zhang+, Xu Cheng*
+Computer Science Department, UCLA, Los Angeles CA 90095 USA

*Computer Science and Technology Department, Peking University, Beijing 100871 PRC

Abstract - Many high-level description languages, such as
C/C++ or Java, lack the capability to specify the bitwidth
information for variables and operations. Synthesis from these
specifications without bitwidth analysis may introduce wasted
resources. Furthermore, conventional high-level synthesis
techniques usually focus on uniform-width resources, thus
they cannot obtain the full resource savings even with bitwidth
information. This work develops a bitwidth-aware synthesis
flow, including bitwidth analysis, scheduling and binding, and
register allocation and binding, to exploit the multi-bitwidth
nature of operations and variables for area-efficient designs.
We also develop lower bound estimation to evaluate the
efficiency of our proposed solutions for register allocation and
binding. The flow is implemented in the MCAS synthesis
system [11]. Experimental results show that our proposed
bitwidth-aware synthesis flow reduces area by 36% and
wire-length by 52% on average compared to the
uniform-width MCAS flow, while achieving the same
performance.

I. Introduction

The gap between design productivity and complexity continues to
grow larger. According to [4], the increasing rates for VLSI
complexity and design productivity are 58% and 21% per year,
respectively. This large gap must be shortened to satisfy the
time-to-market and design cost requirements. Using high-level
languages is one of the most promising solutions for improving
design productivity by raising the level of abstraction. Alleviating
the design complexity and producing high-quality products are the
two key points for making high-level languages successful and
accepted by designers.
Recent system-level languages from academia or industry, such as
SystemC [3] and SpecC [2], can specify variables and operations
with arbitrary bitwidths. However, traditional high-level languages
such as C/C++ only provide computation types with restricted
lengths, e.g., an 8/16/32/64 bitwidth. Experimental results show
that there are 40% redundant bits on average in a set of benchmark
programs written in C [21]. Applying the bitwidth analysis
technique proposed in [21] for nine real-life benchmarks from [20],
we obtained similar results showing that there is a 36%
redundancy for operations and 21% for variables.
Potential hardware resource cost can be reduced if these redundant
bits are identified. Empirical relations between area usage and
bitwidth for multipliers and adders can be found in [12]. An
adder’s area is proportional to its input bitwidth, and a multiplier’s
area is proportional to the product of its two input bitwidths. In
practice, we obtained similar results in Altera’s Stratix FPGA
devices: a 16-bit adder uses 17 logic elements, and a 32-bit adder
uses 35; for 16×16- and 32×32-bit multipliers, the logic element
usages are 380 and 1325 respectively. For other resource types
such as registers and multiplexers, we can reasonably assume a
linear relationship between area and bitwidth. Wiring cost, which

is even more expensive in nanometer technologies, will also be
saved, thanks to the reduction of the operation bits.
In RTL languages, explicitly declared bitwidths are used for
variables, registers, functional units (FU), and data buses to reduce
area and power. However, specifying bitwidths explicitly for
hardware designs starting from a traditional algorithmic
description is time consuming. An ideal design flow is the one that
can automatically analyze bitwidths for variables and operations to
alleviate the designer’s burden and reduce the opportunity for
errors.

Adders: 26, 5 (30% saving)
Multipliers: 32×16, 18×6 (31% saving)

Adders: 26, 18
Multipliers: 32×16, 24×16

(b) (a)

16*4

32*16 24*16

18*6

18

16*424*16

18*6

18

+

+

+

+

*

*

*

*

26

5 16

32*16

+

+

+

*

+

*

5

16

* *
26

Figure 1. Two scheduling and binding solutions of

multi-bitwidth operations.
Furthermore, even after the precise bitwidth information is
available, most conventional synthesis methods focus only on the
uniform bitwidth resources, and cannot take full advantage of the
bitwidth information. To obtain good quality-of-result, awareness
of the bitwidth information should be added into the high-level
synthesis flow. We will use an example to illustrate the
inefficiency of the traditional approach. Figure 1 shows two
scheduling and FU binding solutions for a same data flow graph
(DFG). Nodes represent operations (additions or multiplications),
and edges represent data dependence. The required minimum
operation bitwidth is annotated on each node. The required latency
is 8 cycles, and the execution times for adders and multipliers are
1 and 3 clock cycles, respectively. Note that operations bound to
the same FU are colored in the same way. For each solution, two
adders and two multipliers are required. However, FUs for (b) cost
less area due to smaller bitwidths, 30% saving for adders and 31%
for multipliers. From this example, we learn that scheduling and
binding without considering the bitwidth information may produce
sub-optimal results. Because of the great impact on area, and thus
on power, connection, and clock period, optimization by
exploiting bitwidths of variables and operations becomes one
important issue in high-level synthesis.
Recently, several techniques have been proposed for bitwidth
optimization in architecture and high-level synthesis.
Constantinides [12] formulated the scheduling and FU binding
problem as an ILP, and proposed an iterative solution in [13].
However, the proposed binding solution, which selects the clique
with the maximum ratio of clique size and clique cost, is not
suitable for register binding. The work in [17] uses the
force-directed scheduling to balance the number of bits per cycle

for additive operations. One limitation is that this method can only
be applied to additive operations. In addition, the resulting
controller may have unaffordable cost due to the large number of
small adders. The work in [5] proposes an iterative scheduling
method for a data flow graph with bitwidth information. Complete
allocation and binding of FUs and registers are performed to
obtain cost for each feasible scheduling. Because of the large
search space, the scheduling may be extremely slow. There are
other techniques proposed to optimize a datapath using bitwidth
information from the architecture point of view [6] [9]. However,
none of the previous works on high-level synthesis consider
interconnect delay for bitwidth-aware scheduling, or study the
multiple bitwidth register allocation and binding thoroughly.
In this paper we propose a complete bitwidth-aware high-level
synthesis flow from a behavioral C description to a RTL VHDL
implementation based on the MCAS synthesis system [11]. MCAS
is an architectural synthesis system on top of a recently proposed
Regular Distributed Register (RDR) micro-architecture [10]. In
this paper, our goal is to minimize the total bitwidth for FUs and
registers while maintaining the performance. Specifically, we
propose a simultaneous scheduling and binding to minimize the
total bitwidth of FUs with consideration of interconnect delay. For
register allocation and binding, we transform it into a minimum
weighted-interval-graph coloring problem and propose an efficient
heuristic solution. The results approach the lower bound with only
a 0.05% gap presented. Experimental results show that our
synthesis flow can achieve a significant amount of savings in
terms of area and wire-length.
We will present the overall bitwidth-aware synthesis flow and
define the problem to be solved in Section II. Section III
introduces the simultaneous scheduling and binding algorithms.
Section IV presents the detailed lower-bound estimation and
heuristic solution for the register allocation and binding. Section V
shows experimental results and Section VI concludes this paper.

II. Bitwidth-Aware Synthesis Flow

In Figure 2 we illustrate the proposed bitwidth-aware high-level
synthesis flow, which is composed of four steps. First, a
behavioral description in C is transformed into the Machine-SUIF
[19] intermediate representation. After compilation optimizations,
such as dead code elimination and peep-hole optimization are
applied, the bitwidth analysis is performed as a stand-alone
Machine-SUIF pass. The goal of the bitwidth analysis is to
automatically decide the minimum bitwidth for each variable and
operation while retaining the program correctness. We adopt the
bitwidth analysis method introduced in [21] which uses constants,
array indices and computation to decide the minimum bitwidth.
The output is a DFG annotated with bitwidth information.
In the second step, the MCAS architectural synthesis system is
utilized to perform scheduling, binding and placement. MCAS is a
synthesis system targeting RDR micro-architecture, which is an
integrated architectural and synthesis solution for multi-cycle
on-chip communication. A RDR chip is divided into an array of
islands. The size of each island is chosen such that all intra-island
communications can be performed in a single clock cycle, and the
inter-island communications take multiple cycles. Its regularity
facilitates the predictability of interconnect delays at early design
stages. The output of this step is a scheduled and bound DFG with
placement information. In this step, clock period and clock cycles
are traded off to optimize speed performance, while bitwidth
information is not explored.

In the third step, bitwidth-aware re-scheduling and re-binding is
performed to minimize area cost of FUs with consideration of
interconnect delay obtained from placement information. And
bitwidth-aware register allocation and binding is performed to
minimize area cost of registers. After the corresponding datapath
and controller are generated in the last step, the whole RTL design
is written into the output VHDL files.
In the following sections we will present the bitwidth-aware
high-level synthesis of the third step in detail. The multiple
bitwidth scheduling and binding problem is formulated as
follows:
Given: (1) A DFG annotated with bitwidths, (2) a time constraint,
(3) placement information of functional units, and (4) a resource
IP library, where each resource type has arbitrary bitwidth
configurations, each of which is associated with an area cost.
Objective: Schedule and bind the DFG into the library with
consideration of interconnect delay from placement and without
violating the time constraint, such that the final area of the
required resources is minimized.

3. Bitwidth-aware
Synthesis

Scheduled and bound DFG with bitwidth

DFG with initial scheduling & binding

DFG with bit-width information

C
Compilation &
optimization

Bit-width analysis

Scheduling, binding,
& placement

Datapath & FSM generation

RTL VHDL

Bitwidth-aware Scheduling,
FU allocation & binding

Bitwidth-aware
register allocation & binding

1. Machine-SUIF

2. MCAS

4. Back end
implementation

Figure 2. The proposed bitwidth-aware synthesis flow.

With a target design frequency, the time constraint becomes a
number constraint of clock cycles (or control steps), and the
execution time of operations is represented by cycle numbers. In
this work, we set the target clock period as 5ns in MCAS system.
We assume a unified latency for a functional unit type, in
particular, 1 cycle for adders and 3 cycles for multipliers. To
simplify the presentation of the problems, we assume all the IPs
are non-pipelined, and IPs with the same type have a same latency
regardless of bitwidth configurations. However, the approaches we
proposed in this paper can be easily extended to handle pipelined
IPs or IPs with various latencies for different bitwidth
configurations.
Since the area of an IP is a function of its bitwidth (Section I), in
this paper we focus on minimizing the total bitwidth for each kind
of resource, which can directly lead to minimized area. We solve
the multi-bitwidth scheduling and binding problem in two phases.
First, we try to schedule and bind the operations to minimize FUs.
Register allocation and binding are then performed on the
scheduled DFG to minimize the total bitwidth of required registers.
Since the bitwidth for FUs and registers is reduced, the wirelength
is optimized accordingly.

III. Scheduling and Binding

In this section we first introduce the lower-bound estimation of FU
bitwidth for a DFG. The lower-bound-based simultaneous

scheduling and binding are then presented. Through the
scheduling and binding sub-task, we will consider the interconnect
delay obtained from placement information given by MCAS.

A. Preliminaries
In a DFG after bitwidth analysis, each operation is annotated with
the information of required input/output bitwidths. The
input-width constraint indicates a bitwidth requirement for a FU to
perform the operation correctly, and the output-width constraint
enforces a register with enough bitwidth to hold the result value.
Only two types of operations, addition and multiplication (ADD
and MUL, for short), are considered in this work. We assume each
operation o has a single output with bitwidth b0, and two inputs
with bitwidth pair (b1, b2). It is clear that the bitwidth of a variable
produced by operation o is b0.
A multiplier can be configured as b1≠b2, but the wider input
dominates the cost of the implementation. For an adder, a general
interface restriction of a conventional IP library requires that the
inputs must have the same bitwidths. Therefore, we only consider
the larger bitwidth as the bitwidth of an operation for both
multiplication and addition, and define the bitwidth of operation o
as b(o) = max{b1, b2}, where o has input bitwidth pair (b1, b2).

B. Lower-Bound Estimation of FUs
Previous research on the FU lower-bound estimation only focuses
on the number of FUs [7] [8] [14] [18] [22]. In this section we will
introduce a lower-bound estimation for the total bitwidth of FUs
with various bitwidth. In particular, our solution extends the
technique of [18] to support multi-bitwidth FUs. The bitwidth
lower bound is the maximum of the minimum resource
requirement for each interval.
The minimum resource requirement for an interval is calculated in
two steps. First, ASAP(o) and ALAP(o), the as-soon-as-possible
and as-late-as-possible control steps of operation o are computed
for a DFG under time constraint T. If operation o is unscheduled,
ASAP(o) and ALAP(o) correspond to the earliest and latest feasible
control step, respectively. Otherwise, ASAP(o) and ALAP(o) are
both equal to the scheduled control step. For a time interval [p,
q]⊆[1, T], the minimum overlap between operation o and the
interval is denoted as λ(o, p, q) and calculated as follows:
λ(o, p, q) = min{| [ASAP(o), ASAP(o)+exe(o)]∩[p, q] |,

| [ALAP(o), ALAP(o)+exe(o)]∩[p, q] |},
where exe(o) stands for the required execution time of o.
After the calculation of overlap numbers, we insert λ(o, p, q)
copies of b(o) into the bitwidth list of [p, q], denoted by Lf (p, q),
where f is the type of operation o, either ADD or MUL.
Figure 3 shows the ASAP and ALAP schedules for Figure 1 under
the time constraint T = 8. The overlap between the multiplications,
a, b, c and d, and interval [4, 7] can be calculated as

λ(a18*6, 4, 7) = 1, λ(b24*16, 4, 7) = 2,
λ(c32*16, 4, 7) = 1, λ(d16*4, 4, 7) = 1.

Based on the results, the bitwidth list of interval [4, 7] for the
multiplications is LMUL(4, 7) = {18, 24, 24, 32, 16}.
In the second step, the required minimum FU bitwidth is
calculated for each interval. For a constructed bitwidth list Lf (p, q)
of interval [p, q] for operation type f, the bitwidths are sorted in
non-increasing order. It is easy to understand that the required
minimum number of the FUs of type f during this interval is nf (p,
q) = |Lf (p, q)| / (q-p+1).
The sorted list Lf (p, q) is then partitioned into nf (p, q) sub-lists of
size q-p+1 each, except that the last sub-list might be smaller. We

choose the largest one (i.e, the first one) from these sub-lists to
form a dominant bitwidth list Df (p, q), which contains the required
bitwidths of FUs to execute the operations during interval [p, q].
For the example in Figure 3, LMUL(4, 7) will be partitioned to
sub-lists {32, 24, 24, 28} and {16}. The dominant bitwidth list
DMUL(4, 7) = {32, 16} indicates that the DFG in Figure 3 needs at
least two multipliers of bitwidths 32 and 16.

16*4

32*16

24*16

18*6

26

18 step1

step 2

step 3

step 4

step 5

step 6

step 7

step 8

+

165 + + +

a
*

b
*

c
*

d
*

(b)

16*4 24*16

18*6

18 +

+

+

+

a
*

b
*

c
*

d
*

26

5

16

32*16
(a) ASAP scheduling (b) ALAP scheduling

Figure 3. An illustration of the lower-bound calculation.
Theorem 1: With the dominant bitwidth lists for all intervals
within [1, T], the lower bound of the required bitwidths for each
instance of operation type f is

()(){ }{ }1
max , k

f fp q T
D p qζ

≤ ≤ ≤
= ,

where Df (p, q)(k) denotes the kth element of Df (p, q), and Df (p, q)(k)
= 0 if k>|Df (p, q)|. �
This formula is based on the fact that the maximum of the kth
bitwidth of all dominant bitwidth lists is the minimum required
bitwidth for the kth instance of FUs of type f. The time complexity
will be O(T2(n+nlog(n))).
After the bitwidth lower bound is computed for each instance of
all operation types, we have weighted-area lower-bound Φ of a
DFG as follows:

() () ()

1 | | 1 | |add mul

i i i
add mul mul

i iζ ζ

φ ζ α ζ ζ
≤ ≤ ≤ ≤

= + ⋅∑ ∑

where α is a ratio weight of multiplier area over adder area, and
ζf

(i) is the ith element of ζf. Due to the fact that the area of a
multiplier is proportional to the product of its two input bitwidths
(Section I), we use the square of bitwidth to represent the area cost
for multipliers. Since the minimum overlaps, bitwidth lists,
dominant bitwidth lists, and ζf are all decided by the current
scheduling status S of the DFG, the weighted-area lower bound is
also a function of S, denoted as Φ(S). We will use this weighted-
area lower bound technique in the following scheduling algorithm.

C. Scheduling and Binding Algorithm
Based on the lower bound computation stated above, simultaneous
scheduling and binding are performed to minimize the total
bitwidth of required FUs with consideration of interconnect delay
and without violating time constraint.
The basic idea is to schedule an operation at a control step such
that the resulted weighted-area lower bound is kept as small as
possible. In each step, suppose S is the current scheduling status,
recording the control steps for scheduled operations and feasible
control steps for un-scheduled operations, and S’ is the updated
scheduling status of S if an unscheduled operation o had been
scheduled to control step c, we define

LB(S, o, c) = Φ(S’).
This metric indicates the impact of the scheduling step on the
potential resource requirements, which is estimated as the

weighted-area lower bound. We first choose a pair (o, c) with
minimum LB(S, o, c). FU binding is then performed to decide
whether operation o can be scheduled at step c finally. If there is
an available FU f at step c, o will be scheduled and bound.
Otherwise, the next pair of (o, c) with minimum LB(S, o, c) among
the remaining operations and steps will be considered. The
checking rule for binding o to f is that data dependence is
maintained between o and its scheduled and bound predecessors
and successors with consideration of interconnect delay.
Specifically, for a predecessor p of o, which is scheduled at cp and
bound to fp, the following expression needs to hold true to keep the
data dependence:

cp+exe(p)+delay(f, fp) ≤ c,
where delay(f, fp) is the interconnect delay between FU f and fp
obtained from the placement information as determined by MCAS
(step 2 in our flow). Similar expressions are checked for
successors. The iterative choosing process will guide the algorithm
to minimize the area of required resources.
In the algorithm implementation, we apply two methods to reduce
the lower-bound updating time and operation selecting time
without sacrificing solution quality. The first is to update bitwidth
lists incrementally, which is the base for lower-bound calculation
and is in the inner loop of our scheduling algorithm.
Theorem 2: Given a DFG and a scheduling status S. After one or
more unscheduled operations are scheduled and the scheduling
status becomes S’, the new minimum overlap number λ’(o, p, q)
under S’ is no less than λ(o, p, q) under S, for any operation o and
interval [p, q].
Proof: When o is scheduled to any control step between ASAP(o)
and ALAP(o), the overlap number with [p, q] is no less than that
when o is scheduled to ASAP(o) or ALAP(o) [18]. After the
scheduling status is updated, regardless of whether o is scheduled
or not, the new feasible lifetime [ASAP’(o), ALAP’(o)] is a subset
of the old one [ASAP(o), ALAP(o)]. Combining the previous
definition of minimum overlap, we have the conclusion that λ’(o,
p, q)≥λ(o, p, q). �
According to Theorem 2, each time the scheduling status is
updated, the bitwidth list L’f (p, q) can be obtained by adding λ’(o,
p, q)-λ(o, p, q) copies of b(o) into Lf (p, q). Since the feasible
lifetime may not change for some operations, only those
operations whose feasible lifetimes are changed need to be
checked to update Lf (p, q). Furthermore, only those bitwidth lists
which are indeed updated need to be checked to recalculate the
new weighted-area lower bound Φ.
Theorem 3: Given a DFG and a scheduling status S. After one or
more unscheduled operations are scheduled and the scheduling
status becomes S’, the new weighted-area lower bound Φ(S’) is no
less than Φ(S).
Proof: After one or more operations are scheduled, the new
overlap result L’f (p, q) is a superset of Lf (p, q), which is inferred
by Theorem 2. From the computation of Φ shown in the previous
section, it is straightforward that the new lower bound Φ(S’) is no
less than Φ(S). �
Based on Theorem 3, since Φ(S’) is no less than Φ(S), Φ(S) is the
lower bound of LB(S, o, c) over all o and c. When one LB(S, o, c)
is equal to Φ(S), o must be one of the operations that have the least
value of LB. We can skip the computation of LB for the remaining
unscheduled operations, schedule o to control step c, and enter the
next scheduling iteration.

IV. Register Allocation and Binding

In a traditional high-level synthesis flow, register allocation aims
to decide the required registers, and binding is defined as the
explicit mapping from variables to register instances. For variables
with multiple bitwidths, it is natural to combine the allocation and
binding together to improve the solution quality. We propose a
weighted-interval-graph coloring algorithm to cope with these two
tasks simultaneously. In our synthesis flow, we perform register
allocation and binding after the simultaneous scheduling and
binding. We assume that optimizations for other resources, such as
ports and multiplexers, can be performed afterward.

A. Problem Definition
For a scheduled DFG with uniform bitwidths, the problem of
minimizing the number of registers can be reduced to the
chromatic number problem in an interval graph, which can be
solved with the left-edge algorithm in polynomial time [16]. In the
remainder of this paper, we denote the minimum chromatic
number of graph G as χ(G). Considering registers with various
bitwidths, the new problem is to minimize the total bitwidth of
registers.
Some definitions and concepts related to this problem are
introduced below. Let s(a) denote the control step where variable
a is generated, and t(a) denote the last control step where a is
consumed by other operations. Given a scheduled DFG with
bitwidth information, a weighted interval graph G (V, E) can be
derived, where each vertex in V corresponds to a variable in the
DFG and edge (a1, a2)∈E if and only if the lifetimes of the two
corresponding variables a1 and a2 have non-trivial overlap, i.e.,

[s(a1), t(a1)]∩[s(a2), t(a2)]≠∅.
It is clear that two variables can be bound to a same register only if
their lifetimes do not overlap. Therefore, a coloring scheme of G
corresponds to a binding solution for variables. All variables with
the same color are bound to the same register.
Let w(v) denote the weight of vertex v, w(v) = b(a), where a is the
corresponding variable of v. We define the weight of a vertex set V
as W(V) = max{w(v) | v∈V}, and the weight of a graph G(V, E) as
W(G) = W(V). Suppose that a proper coloring scheme P = {c1,
c2,…, ck} of G(V, E) partitions V into vertex subsets V1, V2,…, and
Vk, the weight of color ci, for 1≤i≤k, is defined as W(Vi), and the
weight of the coloring scheme P is defined as

Ψ(G, P) = ∑1≤i≤kW(Vi).
From the above definitions, the bitwidth-aware register allocation
and binding problem is equivalent to a weighted-interval-graph
coloring problem as follows:
Given: A weighted interval graph G(V, E).
Objective: Find a coloring scheme P of G, such that the weight of
the coloring scheme P, Ψ(G, P) is minimized.
When the weights of vertices are uniform, this problem can be
solved in polynomial time [16]. However, the complexity of the
general problem with various weights remains unknown. In the
following sections, a lower-bound estimation for Ψ(G, P) and a
heuristic solution will be presented. Experimental results show
that only a 0.05% gap is presented between the solution and lower
bound.

B. Lower-Bound Estimation of Registers
We will use a register-sharing problem to illustrate how to
calculate the lower bound of the weight of the coloring schemes
for a weighted interval graph. Figure 4(a) shows the lifetimes of
five scheduled variables, with bitwidths annotated, and Figure 4(b)
is the derived weighted interval graph G(V, E). We first divide G

into subgraphs according to the weights of the vertices. All
vertices in each subgraph have the same weight. It is obvious that
these subgraphs and their unions still keep the interval property.
We then sort these subgraphs in the decreasing order of weights.
For the example in Figure 4, the sorted subgraphs will be G1 = {a,
b}, G2 = {c, e, f}, and G3 = {d}. From G1, we know that the
number of the colors with weight 28 must be no less than χ(G1) =
1 for any coloring scheme of G. Then for G1∪G2, the number of
colors with weight no less than 16 must be at least χ(G1∪G2).
Combing these two facts, we conclude that the number of colors
with weight 16 must be at least χ(G1∪G2)-χ(G1) = 1. Similarly for
G1∪G2∪G3, the color number with weight 5 must be no less than
χ(G1∪G2∪G3)-χ(G1∪G2) = 1. Basing on these results, we
conclude that the lower bound of the weight of any coloring
scheme for this interval graph will be 28×1+16×1+5×1 = 49.

16

28 16

5

a

b

d

c

(a)

cstep 8

cstep 1
cstep 2
cstep 3
cstep 4
cstep 5
cstep 6
cstep 7

(b)

28
a

28
b

16
c

5
d

16
e

cstep 9

28

e

16
f

16
f

Figure 4. (a) Lifetimes and (b) the derived interval graph.

Theorem 4: For any proper coloring scheme P for a weighted
interval graph G, Ψ(G, P) ≥ L(G), where

∑
≤≤

−≤≤≤≤

 ∪−

 ∪⋅=

mi
jijjiji GGGWGL

1 111
)()(χχ

,

where Gi, for 1≤i≤m, are the sorted subgraphs constructed in the
aforementioned way.
Proof: This is straightforward and correct given the definitions of
Ψ(G, P) and L(G). The formal proof is omitted here. �

C. Allocation and Binding Algorithm
We use the ideas in the lower-bound calculation to solve the
weighted-interval-graph coloring problem. Again, we use the same
example in Figure 4(b) to illustrate the heuristic solution.
After the weight-based partitioning and sorting of G into
subgraphs G1 = {a, b}, G2 = {c, e, f}, and G3 = {d}, we first try to
move vertices from Gi, for 2≤i≤3, to G1 to decrease the chromatic
number for each Gi without increasing χ(G1). Since G2 has the
largest weight among the three subgraphs, reducing χ(G2) is
preferred. Noting that the chromatic number χ is equal to the
maximum clique size for an interval graph, we always try to move
the vertices from the maximal cliques of Gi to G1. In this way,
χ(Gi) can be directly decreased. For G2, the only maximum clique
is {c, e}. Moving c from G2 to G1 decreases χ(G2) by 1, but
increase χ(G1) at the same time. However, moving e can safely
decreases χ(G2) without increasing χ(G1). Therefore, e is chosen
to add into G1 finally. Since no vertex in the new G’2, {c, f}，can
be safely moved into G1, we continue to process G3. Adding d into
G1 increases χ(G1), so no moving happens for G3. Now,
processing on G1 is done. We then move on to process Gi, for
2≤i≤3 in the same way.
The final partition of G is G1 = {a, b, e}, G2 = {c, f}, and G3 = {d},
and the coloring scheme will be P = {{a, b, e}, {c, f}, {d}} with
weight 49, which is equal to the lower bound calculated in the
previous section.
Figure 5 presents the pseudo code of the heuristic algorithm,
weighted interval-graph coloring (IGC). The formal algorithm
description is as follows. During the processing of subgraph Gi,

we try to move vertices from Gj, for i+1≤j≤m, to Gi. The moving
process consists of two phases, both of which process the
subgraphs in the decreasing order of their weights. The first phase
selects one vertex from each maximum clique of Gj to compose a
vertex set S and merge it to Gi, such that the chromatic number of
Gi will not increase. Since the cardinality of the maximum clique
equals the chromatic number for interval graphs, decreasing the
cardinality of all the maximum cliques in Gj will directly reduce
the chromatic number. Therefore, taking vertex set S out from Gj
decreases χ(Gj) by 1.
When no operations from Gj, for i+1≤j≤m, can be moved to Gi in
the first phase, the second moving phase is performed. Now we
randomly select a vertex from Gj to move into Gi without
increasing χ(Gi). The purpose of this phase is to maximize the
utilization of colors with high weight, and thus provide further
chances for reducing the number of colors with lower weight.
After the operation moving is done, the conventional left-edge or
other optimization techniques, such as connection and MUX
minimization algorithms, can be separately applied for each new
subgraph G’1, G’2,…, G’m’, where m’≤m. The weight for the
coloring scheming is Σ1≤i≤m’W(G’i)⋅χ(G’i).

 Procedure Weighted_Interval_Graph_Coloring
Input:

Weighted interval graph G
Output:

Coloring scheme of G

Partition and sort G into {G1, G2,…, Gm}, with the decreasing order of the weights
for each Gi, 1 ≤ i ≤ m-1

Compute χ(Gi)
for each Gj, i+1 ≤ j ≤ m

while ∃S ⊆ Gj, such that χ(Gj-S) = χ(Gj)-1 and χ(Gi∪S) = χ(Gi)
Gi Gi ∪ S
Gj Gj - S

for each Gj, i+1 ≤ j ≤ m
while ∃v ∈ Gj , such that χ(Gi∪{v}) = χ(Gi)

Gi Gi ∪ {v}
Gj Gj - {v}

Coloring each new subgraph separately

Figure 5. Algorithm for weighted-interval-graph coloring.
In RDR, registers are located in each island independently. After
register allocation and binding are done for every island, extra
registers are inserted between different islands to achieve
multi-cycle communication. Due to page limitation, we will not
introduce RDR in detail.

V. Experimental Results

A. Register Allocation and Binding
Table 1. Bitwidth-aware register binding.

Designs LB Left-Edge KS[15] Weighted IGC
aircraft 1270 1402 1335 1270
chem 896 962 929 897

dir 474 487 505 474
honda 312 328 368 313

lee 216 216 232 216
mcm 689 721 691 689

pr 270 297 298 270
u5ml 1717 1892 1778 1717
wang 269 293 302 269

Ave gap 1 +6.6% +7.5% +0.05%
To evaluate the efficiency of the heuristic algorithm for coloring,
we conducted experiments on a set of real-life benchmarks from
[20], including several different DCT algorithms such as pr, wang,
lee, and dir, and several DSP programs such as aircraft, mcm,
honda, chem, and u5ml. The results, represented by the total
bitwidth, are summarized in Table 1. The second column presents
the lower-bound results from Section IV.B. The third column is
the result from left-edge plus bitwidth post-processing, which is to

set the bitwidth of a register as the maximum bitwidth of all
variables stored in it. The fourth column presents the results from
the clique-partition method of [15]. The last column is the result
given by our proposed solution. The three methods share the same
scheduling method to generate the scheduled DFGs. The left-edge
algorithm can produce the minimum register number, but it does
not consider the bitwidths of variables while doing binding. KS
noticed the bitwidth influence but it suffers from the larger number
of registers. The results of left-edge and KS are 6.6% and 7.5%
higher than the lower bound, while our method is only 0.05%
higher. This shows that our lower-bound estimation and heuristic
solution for the weighted-interval-graph coloring problem are both
close to optimal solutions.

B. Comparison of Three Flows
Our synthesis flow is implemented in a C++/UNIX environment.
In order to obtain the final performance results, Altera’s Quartus II
version 2.2 0 is used to synthesize the resulting RTL VHDL onto
the FPGA device StratixTM EP1S80F1508C6. We use the default
compilation options in Quartus II.
To validate our proposed bitwidth-aware synthesis flow, we set
up three experimental synthesis flows as follows. All of them have
the same control step constraint, and share the same backend to
generate datapath and controllers.

 Flow1(MCAS): MCAS generates the scheduling and binding
results and placement information. All operations and
variables have uniform bitwidth (32-bits).

 Flow2(MCAS+MB-PP): Perform a bitwidth post-processing
after Flow1 is done, which is to set the bitwidth of a FU as
the maximum bitwidth of all operations executed on it, and
set the bitwidth of a register as the maximum bitwidth of all
variables stored in it.

 Flow3(MCAS-MB): After MCAS generates the scheduling
and binding results and placement, the lower-bound-based
scheduling & binding and the bitwidth-aware register
allocation and binding are performed.

Table 2. FPGA compilation results of three synthesis flows.
MCAS MCAS+MB-PP MCAS-MBDesign Node# LE WL(k) LE WL(k) LE WL(k)

aircraft 422 - - 10559 267 6860 181
chem. 342 8339 247 7101 191 4814 136

dir 127 2810 91 2075 48 1135 27
honda 107 2433 77 1774 38 1124 24

lee 49 1033 54 722 35 614 25
mcm 94 2562 105 2411 83 2392 75

pr 42 1194 63 1030 45 967 38
u5ml 565 14447 396 12774 318 7143 166
wang 48 1275 73 1078 36 1050 38
Ave - 1 1 -18.1% -34.5% -36.3% -51.5%
Table 2 shows the experimental results for these three flows,
including area results for datapath and control logic in terms of
logic element (LE) and wire-length (WL) reported by Quartus II.
The column “Node#” lists the node number for each benchmark.
Flow3 reduces area and wire-length by 36.3% and 51.5%
respectively compared to Flow1 when averaged over the
benchmarks (excluding aircraft). When compared to Flow2, Flow3
still reduces area and interconnect by 24.2% and 26.4%,
respectively.
Design aircraft fails to fit into the selected FPGA device in Flow1
because of the large number of its I/O pins. Interestingly, with the
same bitwidth constraints for the primary inputs, bitwidth analysis
reduces the bitwidth requirements for the primary outputs so that
the I/O fitting problem is resolved for the other two flows.

VI. Conclusions

We have presented a complete bitwidth-aware high-level synthesis
flow based on MCAS synthesis system, including bitwidth
analysis, simultaneous scheduling and binding, and a
weighted-interval-graph coloring solution for register allocation
and binding. Lower-bound calculation is used both for estimation
of potential improvement of the existing solutions and for
development of the heuristic algorithms. Experimental results
show that our bitwidth-aware synthesis flow achieves significant
reduction for area (36%) and wire-length (52%) for a set of
benchmark designs.

Acknowledgements
This research is funded by National Science Foundation
under award CCR-0096383.

References

[1] Altera Web Site, http://www.altera.com.
[2] SpecC Web Site, http://www.ics.uci.edu/~specc.
[3] SystemC Web Site, http://www.systemc.org.
[4] “The National Technology Roadmap for Semiconductors:

Technology Needs,” Semiconductor Industry Association, 1997.
[5] V. Agrawal, A. Pande, and M. M. Mehendale, “High Level Synthesis

of Multi-Precision Data Flow Graphs,” Proc. of the 14th
International Conference on VLSI Design, 2001.

[6] Y. Cao and H. Yasuura, “A System-level Energy Minimization
Approach Using Datapath Width Optimization,” Proc. of ISLPED,
2001.

[7] S. Chaudhuri and R. A. Walker, “Computing Lower Bounds on
Functional Units before Scheduling,” Proc. of the 7th International
Symposium on High-Level Synthesis, 1994.

[8] S. Chaudhuri, R. A. Walker and J. E. Mitchell, “Analyzing and
Exploiting the Structure of the Constraints in the ILP Approach to the
Scheduling Problem,” IEEE Trans. on VLSI Systems, 1994.

[9] J. Choi, J. Jeon and K. Choi, “Power Minimization of Functional
Units by Partially Guarded Computation,” Proc. of ISLPED, 2000.

[10] J. Cong, Y. Fan, X. Yang, and Z. Zhang, “Architecture and Synthesis
for Multi-Cycle Communication,” Proc. of ISPD, 2003.

[11] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, "Architecture and
Synthesis for On-Chip Multicycle Communication," IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 2004.

[12] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Optimal
Datapath Allocation for Multiple-Wordlength Systems,” IEEE
Electronics Letters, 2000.

[13] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Heuristic
Datapath Allocation for Multiple Wordlength Systems,” Proc. of
Design, Automation and Test in Europe, 2001.

[14] E. B. Fernandez and B. Bussell, “Bounds on the Number of
Processors and Time for Multiprocessor Optimal Schedule,” IEEE
Trans. on Computers, 1973.

[15] K. Kum and W. Sung, “Combined Word-Length Optimization and
High-Level Synthesis of Digital Signal Processing Systems,” IEEE
Trans. on Computer Aided Design of Integrated Circuits and Systems,
2001.

[16] G. D. Micheli and G. Demicheli, Synthesis and Optimization of
Digital Circuits, McGraw-Hill Inc., 1994.

[17] M. C. Molina, J. M. Mendias, and R. Hermida, “High-Level
Synthesis of Multiple-Precision Circuits Independent of Data-Objects
Length,” Proc. of Design Automation Conference, 2002.

[18] A. Sharma and R. Jain, “Estimating Architectural Resources and
Performance for High-Level Synthesis Applications,” IEEE Trans.
on VLSI Systems, 1993.

[19] M. D. Smith and G. Holloway, “An Introduction to Machine SUIF
and its Portable Libraries for Analysis and Optimization,” Division of
Engineering and Applied Sciences, Harvard University.

[20] M. B. Srivastava and M. Potkonjak, “Optimum and Heuristic
Transformation Techniques for Simultaneous Optimization of
Latency and Throughput,” IEEE Trans. on VLSI Systems, 1995.

[21] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth Analysis
with Application to Silicon Compilation,” Proc. of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2000.

[22] M. Narasimhan, and J. Ramanujam, “On lower bounds for
scheduling problems in high-level synthesis,” Proc. of Design
Automation Conference, 2000

