
High-Level Synthesis with Timing-Sensitive
Information Flow Enforcement

Zhenghong Jiang, Steve Dai, G. Edward Suh, Zhiru Zhang
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{jz763,hd273,gs272,zhiruz}@cornell.edu

ABSTRACT
Specialized hardware accelerators are being increasingly integrated
into today’s computer systems to achieve improved performance
and energy efficiency. However, the resulting variety and com-
plexity make it challenging to ensure the security of these accel-
erators. To mitigate complexity while guaranteeing security, we
propose a high-level synthesis (HLS) infrastructure that incorpo-
rates static information flow analysis to enforce security policies
on HLS-generated hardware accelerators. Our security-constrained
HLS infrastructure is able to effectively identify both explicit and
implicit information leakage. By detecting the security vulnerabil-
ities at the behavioral level, our tool allows designers to address
these vulnerabilities at an early stage of the design flow. We further
propose a novel synthesis technique in HLS to eliminate timing
channels in the generated accelerator. Our approach is able to re-
move timing channels in a verifiable manner while incurring lower
performance overhead for high-security tasks on the accelerator.

1 INTRODUCTION
Hardware specialization promises increased performance and en-
ergy efficiency, but also comes with added hardware/software de-
sign complexity. Notably, the current practice of manually creating
hardware accelerators requires significant development effort with
the register-transfer-level (RTL) methodology. In order to meet the
stringent performance and power requirements, designers have
to wrestle with low-level HDL descriptions to apply a variety of
optimization techniques such as pipelining, resource sharing, and
clock/power gating, where functional, temporal, and spatial infor-
mation must be jointly considered.

In addition to meeting performance and power consumption
requirements, escalating design complexities also introduce new
security challenges which have not yet been thoroughly explored.
In particular, hardware accelerators are often shared among multi-
ple security levels or multiple programs and can be exploited as a
backdoor to break traditional software isolation boundaries. While
modern system-on-chip (SoC) adopts system-level access control
mechanisms to ensure that cores running non-secure applications
cannot affect resources used by secure applications, these mecha-
nisms cannot ensure secure operations of hardware accelerators
internally. Because accelerators are often shared among multiple
security levels, a malicious or buggy accelerator may either leak sen-
sitive information among security levels (break confidentiality) or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240813

allow low-security applications to affect high-security computation
(break integrity). Unfortunately, the increasing design complexity
makes it especially challenging to ensure that an accelerator pro-
vides proper isolation among different security levels or processes.

To handle challenges arising from increasing design complexity
and security threats, we develop ASSURE, a security-constrained
high-level synthesis (HLS) framework that automatically synthe-
sizes verifiably secure hardware accelerators from high-level behav-
ioral descriptions under user-defined security constraints. ASSURE
extends a state-of-the-art open-source HLS framework with infor-
mation flow control mechanisms to synthesize secure hardware
accelerators. The novelty of ASSURE stems from its ability to ac-
cept security policies and constraints from the designer as HLS
constraints to guide the end-to-end C-to-hardware compilation
process. Our specific contributions are as follows:
(1) To our best knowledge, this is the first HLS framework with

information flow enforcement for synthesizing verifiably se-
cure hardware accelerators. Our tool automatically detects and
reports information flow violation in accelerator designs.

(2) We develop a security label inference pass to automatically infer
security labels from inputs to outputs of a design, reducing
the need for manual security annotation typical in HDL-based
information flow enforcement.

(3) We propose a synthesis technique to decouple the internal and
external timing behaviors of the accelerator to eliminate timing
channels with lower performance overhead for high-security
operations.

(4) We are able to demonstrate the existence of a designer-
attributed vulnerability in a popular HLS-targeted crypto-
accelerator and detect violation of information flow caused by
common HLS optimization that lacks consideration for security.
The rest of the paper is structured as follows: Section 2 provides

background materials on information flow security and its relation-
ship to HLS. Section 3 describes our information flow constrained
HLS framework. Section 4 presents experimental evaluations of
our tool. Section 5 discusses related work in this area, followed by
conclusions in Section 6.

2 BACKGROUND
In information flow security, each piece of data or resource is asso-
ciated with a security level, and the security policy is expressed in
terms of allowed and disallowed information flows between secu-
rity levels. The information flow constraints are typically captured
by a security lattice, whose ordering relation ⊑ determines which
flows are allowed [9]. For example, if L ⊑ H , information is permit-
ted to flow from security level L to level H . The lattice can be more
general to have multiple security levels, as shown in the three ex-
amples of Figure 1. For integrity, in the policy shown in Figure 1(a),
data from the untrusted level (U) should not be able to affect the
state and execution in the trusted level (T). For confidentiality, in
the policy shown in Figure 1(b), sensitive information should not

https://doi.org/10.1145/3240765.3240813

Trusted (T)

Untrusted (U)

(a)

Public (P)

Confidential (C)

Secret (S)

(b)

PT

PU

CU

CT

(c)

Figure 1: Example security lattices — (a) Two-level lattice for
integrity; (b) Three-level lattice for confidentiality; (c) A diamond
lattice represents both confidentiality and integrity.

Processing
Core 1

ACC1

ACC2

Processing
Core 2

O
n-

C
hi

p
In

te
rc

on
ne

ct

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

Processing
Core 1

ACC1

ACC2

Processing
Core 2

On-
Chip

 Inte
rcon

nec
t

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

AES

Processing
Core 1

ACC1

ACC2

Processing
Core 2

On
-C

hip
 In

ter
co

nn
ec

t

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

L

Processing
Core 1

ACC1

ACC2

Processing
Core 2

O

n-
C

hi
p

In
te

rc
on

ne
ct

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

H
Processing

Core 1

ACC1

ACC2

Processing
Core 2

O
n-

C
hi

p
In

te
rc

on
ne

ct

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

H

Processing
Core 1

ACC1

ACC2

Processing
Core 2

O
n-

Ch
ip

 In
te

rc
on

ne
ct

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

H

Processing
Core 1

ACC1

ACC2

Processing
Core 2

O
n-

C
hi

p
In

te
rc

on
ne

ct

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

H

Processing
Core 1

ACC1

ACC2

Processing
Core 2

On

-Ch
ip I

nte
rco

nn
ect

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

L

Processing
Core 1

ACC1

ACC2

Processing
Core 2

On
-C

hip
 In

ter
co

nn
ec

t

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

L

Processing
Core 1

ACC1

ACC2

Processing
Core 2

On
-Ch

ip I
nte

rco
nn

ect

Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

L

Processing
Core 1

ACC1

ACC2

Processing
Core 2

On
-C

hip
 In

ter
co

nn
ec

t
Memory Controller I/O

L1 cache

L2 cache

L1 cache

DRAM

DMA

S NS

Vehicle

NS

S

S NS

S

NS

debug NS

L

Figure 2: A heterogeneous SoC with ARM TrustZone.

leak from the confidential level (C) to the public level (P). Noninter-
ference is a formal guarantee commonly imposed in information
flow security that enforces confidentiality and/or integrity policies,
which prevents any information flows from C to P (confidentiality)
and/or fromU to T (integrity) [12].

Figure 2 shows an example SoC with ARM TrustZone, which
represents the state-of-the-art hardware architecture for today’s
SoC security [14]. In TrustZone, a system is partitioned into two
security levels: secure (H) and non-secure (L). Based on this parti-
tion, software programs, memory space, accelerators, and hardware
components such as I/O devices can be labeled as either H or L, as
shown in the figure. TrustZone provides strong isolation between
these two security levels by enforcing that non-secure programs or
modules cannot access secure memory and devices.

However, even with TrustZone-like protection, system-level se-
curity can be compromised by malicious or buggy accelerators. Fig-
ure 3 illustrates two problematic designs of an AES crypto-engine
that leaks the encryption key from the secure world to the non-
secure world through the debug port. In the example, key is the
only secret asset to be protected that carries a label H , while others
are labeled as L. More concretely, the code in Figure 3(a) has an
explicit information flow, as the key directly leaks through a non-
secure debug port; Figure 3(b) shows another possible information
leak via implicit information flow, wherein the key is encoded into
the data sequence that leaks via the non-secure debug port. Un-
fortunately, conventional practice for hardware accelerator design
typically does not account for explicit or implicit information flows,
resulting in potential security vulnerabilities. For instance, recent
research has discovered vulnerabilities in GPUs that leak sensitive
information through the memory system [10, 22].

Accelerators may further leak information through timing in-
terference among security levels, a vulnerability known as timing-
based side channels (timing channels for short). Instead of directly
observing a data value, a timing channel attack deduces secure
information by measuring the timing of events at non-secure ports.
For example, an attacker can measure the execution time of the
accelerator by observing any changes of value at the non-secure
ports. Figure 4(a) shows the code snippet for an RSA decryption

AES(int128 {H} Key ,
int128 {L} *Plain ,
int128 {L} *Cipher ,
int128 {L} *Debug)

{
...
if (Mode == DEBUG)

*Debug++ = Key;
...

}

(a)

AES(int128 {H} Key ,
int128 {L} *Plain ,
int128 {L} *Cipher ,
int128 {L} *Debug)

{
...
if (Mode == DEBUG)

for (i=0; i<128; ++i)
if (Key[i])

*Debug++ = i;
...

}

(b)
Figure 3: Information leakage in an insecureAES accelerator
— (a) Explicit flow; (b) Implicit flow.

1 RSA(int1024 {H} Key ,
int1024 {L} *Cipher ,
int1024 {H} *Plain)

{
2 int1024 R0 = 1, R1 = *Cipher;
3 for (i = 0; i < 64; ++i) {
4 if (Key[i] == 1)
5 R0 = R0 * R1 % Base;
6 R1 = R1 * R1 % Base;
7 }
8 *Plain = R0; //R0: {H}
9 }

(a)

L3-4

L5

L6

L2
Idle <= 0

Idle <= 1
L8

Key[i] == 1
Key[i] == 0

(b)
Figure 4: Information leakage through a timing channel in
RSA — (a) Code snippet. (b) Control flow graph.

accelerator, whose execution time may vary significantly depend-
ing on the value of the secret key (i.e., Key). Figure 4(b) further
illustrates the control flow graph (CFG) of the RSA code, where
the line numbers indicate the corresponding statements/operations
in each basic block. Based on the CFG, the value of the secret key
determines whether the branch in Line 4 (L4) is taken and whether
the modular multiplication in Line 5 (L5) is executed. Besides, two
additional interface statements, Idle<=0 and Idle<=1, are automat-
ically generated in synthesis to indicate the accelerator’s execution
status, as shown in the figure. This Idle interface has a label of L.
Because the RSA accelerator takes longer to finish if L5 is executed,
the execution time is correlated to the number of 1s in the secret
key. Hence it is possible for an attacker to learn about the secret
key by measuring the time interval between the deassertion and as-
sertion of signal Idle. In this case, we declare that there is a timing
flow from Key (H) to Idle (L) in Figure 4(a), wherein H and L in
parenthesis represent signals’ security label. Such timing channel
attacks have been well documented in the literature [17, 36].

Addressing the aforementioned security challenges requires
countermeasures that guarantee the absence of timing-sensitive
information flows throughout the entire design flow. This involves
detecting information flow in the design source as well as precisely
controlling the timing of the design during synthesis. Security-
typed hardware description languages (HDLs) partially address the
problem by extending HDLs with security type annotation, which
treats timing interference as implicit information flows [11, 40].

3 HLS WITH INFORMATION FLOW
SECURITY

We argue that HLS, which automatically transforms an untimed
high-level program into a timed RTL implementation, consti-
tutes a more end-to-end approach to addressing the security chal-
lenges [5, 25]. In the front end, HLS can leverage compiler analysis

2

to efficiently track the flow of information and identify any explicit
and implicit information leakage, as the ones shown in Figure 3, at
the behavioral level. In the back end, HLS can leverage scheduling
and binding to impose precise control on the timing of the design to
remove potential timing channels. Consequently, the timing behav-
iors of the public ports, such as Idle in Figure 4, are independent of
secret values. Unlike RTL-based solutions which work with a timed
hardware model that encapsulates both functionality and timing,
HLS works with an untimed software model that describes only
the functionality of the design. This gives the tool the freedom to
independently consider functional flows (i.e., explicit and implicit
information flow) and timing flows (i.e., timing channels), effec-
tively reducing the complexity of synthesizing secure accelerators.

For simplicity, we will focus on a two-level confidentiality lattice
to drive the discussions in the rest of the paper. We use H and L to
indicate high confidentiality (secret) and low confidentiality (pub-
lic) respectively. Our proposed approach can also handle integrity
policies and more general multilevel lattice security models.

Figure 5 shows the overall design flow of our ASSURE frame-
work, which accepts as inputs a high-level program in C/C++ and
an information flow policy specified in Tcl. This Tcl file describes
a security lattice that defines the available security levels and the
permitted flows among different levels (as illustrated in Figure 1).
In addition, the designer specifies the security level of each input
and output of the program in the source code (as shown in Figure 3
and 4), based on the design specification. ASSURE performs func-
tional flow enforcement followed by timing flow enforcement to
ensure that security constraints are satisfied.

For functional flow enforcement, we perform automatic label in-
ference to propagate security labels from inputs to outputs by track-
ing explicit and implicit information flow through control/data flow
analysis (Section 3.1). ASSURE will examine both user-specified and
inferred labels to determine if there exists any illegal or disallowed
information flow (Section 3.2). In contrast to most existing RTL-
based static information flow control (IFC) approaches where both
external and internal variables must be manually annotated, AS-
SURE only requires users to specify security labels on the inputs and
outputs of the top-level function. Other internal/intermediate vari-
ables are automatically labeled via inference. Besides label inference
and checking at the behavioral level description, we propose a novel
timing channel removal technique in ASSURE, which proactively
eliminates timing flows to ensure timing-sensitive noninterference
in the synthesized accelerator (Section 3.3). As an output, ASSURE
generates secure hardware in either Verilog or SecVerilog [40]. In
particular, SecVerilog allows us to verify that the timing channel is
indeed removed in the automatically generated RTL design.

3.1 Security Label Inference
Figure 6 illustrates the label inference rules used in ASSURE, where
e is an expression, and τ denotes its security label. Γ represents the
environmental context of expression e , which is used to capture the
implicit flows. Consider a binary operation z = x ⊙b y, where x has
the label of τ1 and y has the label of τ2. With rule T-OP, variable z
gets an inferred label of τ1 ⊔ τ2, which is the lowest level higher
than or equal to both τ1 and τ2. Basically, τ1⊔τ2 allows information
flows from both x and y to z.

If we revisit the RSA example in Figure 4(a), the variable R1
declared in Line 2 will receive an inferred label of L since input
Cipher has a label of L. Consider the operations in Line 2 and

Parsing

Security
Policy

(TCL file)

Security Label
Inference (§3.1)

Security Label
Checking (§3.2)

Explicit/Implicit
flows?

Yes

No

Security
Violation
Report

LLVM IR

Labeled
C/C++

program

Verilog/
SecVerilog

Timing-sensitive
Security-constrained

Synthesis

No
Yes

Timing Channel
Removal (§3.3)

Remove Timing
Channel?Functional Flow

Enforcement Timing Flow
Enforcement

Figure 5: Overview of the ASSURE framework.

𝑛: 	⊥

𝑒&: 𝜏&				𝑒(: 𝜏(
𝑒& ⊙* 	𝑒(: 𝜏& ⊔ 𝜏(

(T-CONST)

(T-ASSIGN)

(T-OP)
𝑒: 𝜏

⊙, 	𝑒: 𝜏
𝑒: 𝜏
𝑒 : 𝜏
Γ: 	𝜏&				𝑒: 𝜏(

𝑥: = 𝑒 → 𝑥: 𝜏& ⊔ 𝜏(

(T-BLOCK)
𝑏: 𝜏

∀𝑖 ∈ [1, 𝑛], 	 Γ(𝑐;): 𝜏

(T-BRANCH)

(T-LOAD)

Γ:	𝜏&				𝑒: 𝜏(
𝑏𝑟	𝑒, 	𝑏& , 	𝑏(→ 𝑏&, 𝑏(: 𝜏& ⊔ 𝜏(

Γ: 𝜏&				𝑚𝑒𝑚:𝜏(
𝑥: = 𝑙𝑜𝑎𝑑	 𝑚𝑒𝑚 → 𝑥:𝜏& ⊔ 𝜏(

(T-STORE) Γ: 𝜏&				𝑥: 𝜏(
𝑠𝑡𝑜𝑟𝑒	𝑥, 𝑚𝑒𝑚 → 𝑚𝑒𝑚: 𝜏& ⊔ 𝜏(

Figure 6: Security label inference rules.

Line 5, we infer that variable R0 should carry a label of L ⊔ L ⇒
L, according to the binary operation inference rule in Figure 6.
However, assignment to variable R0 has a control dependency to the
secret key in Line 4. Hence we infer that variable R0must be labeled
as H to capture the implicit information flow (Rule T-BRANCH) from
variable Key (H).

Fine-grained resource sharing is an essential feature in hardware
design for the consideration of cost. To support this feature, SecVer-
ilog introduced dependent types in the type system, as shown in
Figure 7. With only static labels, the multiplier belongs to either
low-security user (L) or high-security user (H). Designers have to
duplicate the multiplier if both users are going to use it. Nonethe-
less, by having dependent types, the shared multiplier can switch
its security level depending on the value of ns signal that indicates
the user of the resource. Similar to SecVerilog, our type system also
supports dependent types to encourage fine-grained hardware shar-
ing. Algorithm 1 demonstrates how label inference is extended to
support dependent types in ASSURE. Here ℓ(x) and ℓ(y) represent
the security label of variable x and y using dependent types.

The inference procedure may create a new dependent type au-
tomatically to enable additional resource sharing. Imagine that in
the example in Figure 4, Key has a dependent type LH(ns1) and
Cipher has another dependent type LH(ns2). This means that the

3

A
{H}

B
{H}

C
{L}

D
{L}

P
{H}

Q
{L}

{H} {L}

(a)

ns
{L}

A
{H}

B
{H}

C
{L}

D
{L}

P
{H}

Q
{L}

{ℒℋ(𝑛𝑠)}

01 01

01

(b)
Figure 7: Fine-grained resource sharing with dependent
type, LH(0) = L,LH(1) = H — (a) Fixed label enforces every
security level to have its dedicated multiplier. (b) Dependent type
enables the sharing of multiplier across two levels.

Algorithm 1: Label inference for dependent labels
Input :Security lattice L, operation z = x ⊙b y
Output :Security Label of variable z

1 f (ns1) ← ℓ(x) ; // ℓ(x) is a dependent type on signal ns1
2 д(ns2) ← ℓ(y) ; // ℓ(y) is a dependent type on signal ns2
3 if ns1 and ns2 are the same variable then
4 h(ns1) ← ∅ ;
5 for each value i of ns1 do
6 h(i) = f (i) ⊔ д(i);
7 end
8 else
9 h({ns1, ns2 }) ← ∅ ; // ℓ(z) must be a label that depends

on both ns1 and ns2
10 for each value i of ns1 do
11 for each value j of ns2 do
12 k ← (i << w) + j ; // w is bitwidth of ns2
13 h(k) = f (i) ⊔ д(j);
14 end
15 end
16 compress h ; // A const function becomes a static label

17 ℓ(z) ← h
18 end

secret key and message may come from different users. Based on
the inference algorithm, we will derive a new dependent type for
R0 whose value is dp({ns1,ns2}) = {(00 → L), (01 → H), (10 →
H), (11→ H)}. dp({ns1,ns2}) is the newly inferred dependent type,
which indicates that R0 receives the L label only when both key
and message come from the public level (L).

3.2 Security Label Checking
Once the label inference step is complete, we first compare the
inferred label against the user-specified label at the outputs. If the
inferred label has a higher security level than the specified one,
an information flow violation is detected. For the AES example in
Figure 3(a), the Debug port has an inferred label of H as it receives
data from Key. However, since it is specified as a public port (L), a
security violation will be flagged. Similar checks are performed on
internal variables that have user-specified labels.

It is worth noting that noninterference may be too restrictive
in many real-life scenarios, as sensitive data can be released to the
public after protection, such as encryption. Hence many practi-
cal information flow control systems support downgrading which
relaxes the security policies, so does ASSURE. Downgrading on

confidential policies is called declassification, and downgrading on
integrity policies is called endorsement [39]. Considering the RSA
encryption example which has similar code structure to Figure 4,
but instead, receives a plaintext message Plain (H) and returns the
encrypted ciphertext Cipher (L). In the design, variable R0 carries
a label of H because it contains information from Plain (H). At the
end of the function, the assignment of R0 (H) to Cipher (L) would
cause an explicit information flow violation. However, in practice,
we know it is secure to release data in R0 to public receivers after
encryption, thus, such flow should be allowed. To address this is-
sue, we can add a declassification command in the security policy
specification to permit this specific information flow.

3.3 Timing Channel Removal
ASSURE aims to achieve timing-sensitive noninterference for the
synthesized design, a property which ensures that secret values
cannot be revealed by the timing of events observable at public ports.
Recall the RSA example in Figure 4, where a public user can infer
the value of the secret key by measuring the execution time of the
accelerator. Because the value of each key bit influences the control
flow and determines whether a (possibly) long-latency modular
multiplication is invoked, the execution time of the accelerator is
highly correlated with the value of the secret key. To eliminate
this timing channel, a common approach is to enforce a constant
(worst-case) completion time for the accelerator for all control paths
by imposing additional operations or latency on relevant control
branches. Such a constant-latency design can be implemented with
code transformations [1, 28] or path-balanced scheduling [30].

However, such conservative cookie-cutter approach results in
unnecessary performance degradation for high-security operations
when the accelerator is shared among multiple security levels. We
illustrate the problem with an RSA accelerator time-multiplexed
between a secret core and public core, as shown in Figure 8(a). The
data ports, including Key and the Plain, are labeled as dependent
types because they are only observable to the active accelerator user
and their security levels consequently depend on who is actively
using the accelerator. The automatically generated output Idle
indicates the accelerator’s occupation status and thus carries a label
of L as it is seen by all users regardless of their security levels. This
RSA design is vulnerable to timing attacks as the assertion time of
the Idle signal depends on the number of 1s in the secret key.

It is possible to balance the control paths as shown in Figure 8(c)
to enforce a constant assertion time for the Idle signal equal to the
worst-case time among all control paths so that the timing of the
signal provides no information about the secret key to the public
core. However, this approach unnecessarily delays the assignment
to the output data port indiscriminately by enforcing noninterfer-
ence for users of all security levels. As a result, the performance of
secret core tasks is affected along with public core tasks. While the
public core should not be able to observe any variation in the execu-
tion time of the accelerator and infer the secret key, the secret core
is allowed to access the secret key in the first place. As such, the
secret core should be able to obtain the RSA decryption result faster
because it does not require any enforcement of noninterference.

Because timing channels constitute a breach in security only if
they are observable at public ports, it is necessary to only enforce
constant timing behaviors at these public outputs, i.e. enforcing
timing constraints on public I/O access operations. Based on this
observation, we devise a new synthesis technique that decouples

4

1 RSA(bool {L} ns,
int1024 {LH(ns)} Key ,
int1024 {L} *Cipher ,
int1024 {LH(ns)} *Plain)

{
2 int1024 R0 = 1, R1 = *Cipher;
3 for (i = 0; i < 64; ++i) {
4 if (Key[i] == 1)
5 R0 = R0 * R1 % Base;
6 R1 = R1 * R1 % Base;
7 }
8 *Plain = R0; //R0: LH(ns)
9 }

(a)

L3-4

L5

L6

L2
Idle <= 0

Idle <= 1
L8

Key[i] == 1
Key[i] == 0

(b)

L3-4

L5

L6

L2
Idle <= 0

Idle <= 1
L8

Key[i] == 1Key[i] == 0

nops

(c)
Figure 8: Timing channel removal for RSA through path balancing — (a) C description of RSA with security labels, LH(0) =
L,LH(1) = H . (b) FSM with unbalanced paths. (c) FSM after path balancing.

L3-4

L5

L6

L2

L8

Key[i] == 1
Key[i] == 0

++i

nop

nop

nop

Idle <= 0

Idle <= 1
++i

Start

endMain FSM for
other operations

Enforcement FSM for
public I/O access operations

Figure 9: Timing channel removal by decoupling the execu-
tion of public I/O accesses from other operations.

the execution of public I/O accesses from other operations by using
two separate FSMs. Instead of enforcing a path-balanced design
with a single FSM (Figure 8(c)), our method creates another con-
troller, called enforcement FSM, to manage public I/O accesses
separately. This is shown in Figure 9, where the enforcement FSM
only performs updates to the Idle signal and the loop induction
variable i . ASSURE generates the enforcement FSM in a way that
all secret-conditioned branches are balanced by applying the SDC-
based scheduling [6, 7] with additional latency constraints. Other
operations that do not affect timing of the public outputs are con-
trolled by the main FSM.

Obviously, a naïve isolation approach would be insufficient when
there exist data dependencies between the main and enforcement
FSMs. Figure 10(a) shows an example where variable x is needed
by operation res[i]=f(x) (L4) managed by the main FSM and a
public write debug[i]=x (L7) controlled by the enforcement FSM.
One solution is to duplicate the related computation x=g(i) on
both sides (Figure 10(b)), although this approach is too expensive
in general in terms of both area and power.

ASSURE avoids resource duplication by forwarding the result
from the main datapath to the one controlled by the enforce-
ment FSM. This is illustrated in Figure 10(c). However, a simple-
minded data forwarding would not work unless the two concur-
rent FSMs are properly synchronized. Imagine the case where ∀i ,
secret[i]==0, operation res=f(x) at Line 6 takes two cycles and
all other operations have a one-cycle latency. At cycle T = 4, the
enforcement FSM is supposed to receive x=g(0) when it executes

debug[0]=x at L7. Unfortunately, the main FSMwould have already
advanced to the second iteration of the loop where x becomes g(1).

We resolve this issue by adding a hardware queue to buffer
the data produced by the main datapath before they are used by
the public I/O accesses (see Figure 10(c)). At runtime, when the
queue is full, it stalls the execution of the main FSM through back
pressure. Figure 11 shows the overall architectural scheme of our
proposed approach that enables dynamic and complexity-effective
timing channel removal. We note that the capacity of the hardware
queue may influence the actual performance of the high-security
operations. But regardless of the queue size, we always run the
enforcement FSM at a speed independent of the secret information.
Hence we are able to achieve timing noninterference from the
perspective of public (low-security) users of the accelerator.

4 EXPERIMENTAL RESULTS
We develop ASSURE on top of LegUp, a state-of-the-art open-source
HLS framework [4]. LegUp takes C/C++ description as input and
outputs RTL implementation in Verilog. We implement the label
inference pass and type system within the LLVM framework [20]
to enable functional flow enforcement at the behavioral level. We
further modify LegUp backend to enable timing flow enforcement
with a security-constrained scheduling and binding process.

In this section, we evaluate ASSURE on its two contributing
features: functional flow enforcement and timing flow enforcement.
In Section 4.1, we evaluate functional flow enforcement on the
popular HLS benchmark suite CHStone [13], where we are able to
identify two types of security vulnerabilities among the designs. In
Section 4.2, we perform experiments on timing flow enforcement
with a set of five shared accelerators and compare the resulting
area and performance of our timing channel removal technique
with those of path-balanced scheduling [30]. For our experiments,
we implement the generated RTL with Quartus 15.0 targeting an
Intel Cyclone V FPGA.

4.1 Evaluation of Functional Flow Enforcement
Before the evaluation, we first partition the whole benchmarks
into two categories: Cryptography and Arithmetic, based on the
benchmark characteristics. For cryptographic benchmarks, we label
the cryptographic key as H and other inputs as L, in order to verify
whether the key is leaked in the design. For other benchmarks,
all inputs are labeled with dependent types LH(ns), to model the
application scenario where the accelerator is shared between secret

5

1 ACCEL(
int {L} ns,
int {LH(ns)} secret[N],
int {LH(ns)} res[N],
int {L} debug[N])

{
2 int {L} x;
3 for (i=0; i<N; ++i) {
4 x = g(i);
5 if (secret[i])
6 res[i] = f(x);
7 debug[i] = x;
8 }
9 }

(a)

L4-5

L6

nop

nop

nop

secret[i] == 1
secret[i] == 0

++i

L4

nop

L7

Idle <= 0

Idle <= 1
++i

Start

endMain FSM for
other operations

Enforcement FSM for
public I/O access operations

(b)

L4-5

L6

nop

nop

nop

secret[i] == 0

++i

nop

nop

L7

Idle <= 0

Idle <= 1
++i

Start

endMain FSM for
other operations

Enforcement FSM for
public I/O access operations

Queue

(c)
Figure 10: Timing channel removal when dependencies exist between main and enforcement FSMs — (a) Variable x is needed on
both sides. (b) Duplicating x=g(i). (c) Forwarding the data from main to the datapath controlled by enforcement FSM.

Accelerator
Datapath

Queue

Enforcement
FSM

Public
Outputs

internal
events

delayed
eventsMain

FSM

Secret
Outputs

Figure 11: Overall architectural scheme for dynamic timing
channel removal.

and public worlds. Here, ns is the signal for user identity, and LH
is a dependent type that LH(0) = L and LH(1) = H .

The third column in Table 1 demonstrates the security violations
detected by ASSURE in the evaluation. The violations primarily
come from two different vulnerabilities found in the benchmarks.
The first vulnerability is discovered in the AES benchmark where
the security violation is caused by a flaw of the user design. In
the benchmark, the designer stores all plaintext, ciphertext and
intermediate encryption results in the same array. The design style
is helpful in improving the memory efficiency but introduces a
security bug. Assume that an adversary has access to the plaintex-
t/ciphertext, he/she can also access the intermediate encryption
results that lie in the same memory. Hence the confidential infor-
mation could be leaked. To address the issue, an AES design must
put the intermediate results into a protected memory storage, with
a label of H , where the attacker has no access. The same vulnera-
bility also exists in the AES design in MachSuite, which is another
commonly used HLS benchmark set [33].

The second vulnerability is caused by an HLS optimization in
LegUp and is found among all benchmarks in the “Arithmetic” cate-
gory. To achieve better resource efficiency, a synthesis optimization
implemented in LegUp attempts to group multiple small arrays
into a large physical memory block. Without taking security into
consideration, two arrays with different security levels may be
merged into the same physical memory. For such a case, it is diffi-
cult to protect the security without a complicated privilege access
controller.

The above vulnerabilities reflect the fact that a reasonable se-
curity consideration is missing in existing hardware accelerator
designs, which reinforces our motivation to enable a security-
constrained synthesis to guide system designers (who may lack
security expertise) in designing secure accelerators. In the above
benchmarks, only explicit flows are detected, mainly because the

Table 1: Detecting functional flows in CHStone benchmarks
— (1) “Y” indicates the corresponding information flow violation
is detected while “-” indicates no violation under the correspond-
ing category. (2) The unmodified version is the original CHStone
benchmark suite, and the modified version is the one with insecure
information flows manually introduced.

Benchmark Category Unmodified Version Modified Version
Explicit Implicit Explicit Implicit

AES
Crypto

Y - Y Y
BLOWFISH - - Y Y

SHA - - Y Y
DFADD

Arithmetic

Y - Y Y
DFMUL Y - Y Y
DFDIV Y - Y Y
DFSIN Y - Y Y
MIPS Y - Y Y

ADPCM Y - Y Y
JPEG Y - Y Y

MOTION Y - Y Y

CHStone benchmarks are arithmetic intensive. To test our frame-
work against other types of information flows, wemodify the bench-
marks to introduce insecure information flows, both explicit and
implicit, by intentionally mislabeling some internal variables, which
are supposed to contain sensitive information, as L. The last column
in Table 1 shows that ASSURE is able to detect all the introduced ex-
plicit and implicit flow violations. In addition, all designs generated
by ASSURE are able to pass SecVerilog security verification.

4.2 Evaluation of Timing Flow Enforcement
The following five benchmarks with timing channel vulnerabilities
are used to evaluate our timing flow enforcement.

String Comparison: String comparison is a typical operation
used to check the message authentication code (MAC) in a crypto
system/library. The conventional byte-by-byte implementation is
exploitable to timing attacks because the comparison time is related
to the number of matched bytes between the two strings, as the
timing channel vulnerability in the Google Keyczar library[21].

Discrete Gaussian Sampling: Lattice-based cryptography con-
tains a basic component, called discrete Gaussian sampling, whose
task is finding the matching entity in a two-dimension table for a
given input. Once the entity is found, the searching procedure re-
turns its row index. Hence, the execution time depends on the value
of the given input and the pre-computed Gaussian distribution ta-
ble. Implementation with Knuth-Yao algorithm is an alternative for
discrete Gaussian sampling on hardware platforms [34].

6

Table 2: Area and performance results with timing channel removal — ALMs: adaptive logic modules, FFs: flip-flops, BRAMs: block
RAMs, DSPs: digital signal processing blocks.

Benchmark ALMs FFs BRAMs DSPs Performance (Cycles)
Baseline ASSURE Baseline ASSURE Baseline ASSURE Baseline ASSURE Baseline ASSURE

32-Byte String Comparison 303 364 (+20.1%) 340 400 (+17.6%) 4 5 (+25.0%) 0 0 (+0.0%) 135 71 (-47.4%)
Discrete Gaussian Sampling (Knuth-Yao) 285 304 (+6.7%) 421 442 (+5.0%) 5 5 (0.0%) 0 0 (+0.0%) 16452 5402 (-67.1%)

1024-bit Double-and-Add 1317 1413 (+7.3%) 1887 2017 (+6.9%) 18 18 (+0.0%) 0 0 (+0.0%) 45066 43546 (-34.9%)
64-bit Modulo Multiplication 1854 1887 (+1.8%) 4766 4834 (+1.4%) 2 3 (+50.0%) 0 0 (+0.0%) 8587 6312 (-36.0%)

64-bit RSA 2700 2806 (+3.9%) 5484 5716 (+4.2%) 16 16 (+0.0%) 12 12 (+0.0%) 8963 6527 (-37.4%)

Double-and-Add: Double-and-Add is an algorithm for multipli-
cation of two large integer numbers, i.e. k · P , which is commonly
used in the Elliptic-curve cryptography. The conditionally executed
operations in the algorithm result in a timing channel vulnerability.

Modulo-Multiplication: Modulo-Multiplication is an well-
known operation in asymmetric cryptography domain, such as
Diffie-Hellman key exchange. Its binary ladder implementation pro-
vides benefits on performance but is vulnerable to timing-channel
attacks.

RSA Crypto: RSA is a public-key cryptographic protocol that is
widely used for secure data transmission and digital signature. An
implementation based on Square-and-Multiply algorithm makes it
vulnerable to timing-channel attacks, because its completion time
depends on the number of 1s in the secret key.

Table 2 presents the area and performance of accelerators gen-
erated with ASSURE’s timing channel removal synthesis in com-
parison to the quality of results achieved by the path-balanced
scheduling [30]. In each design, the total execution time depends
on the exact value of the key (or the input value). We evaluate the
performance of each benchmark with a set of randomly generated
keys (or input values). The last column of the table reports the
average performance achieved by secret users as well as the im-
provement in performance in comparison to that of path-balanced
scheduling. Based on the table, ASSURE is able to achieve over
30% reduction in cycle count while incurring small area overhead.
The area overhead is high at around 20% for the string comparison
benchmark. This occurs because string comparison is a control dom-
inated circuit whose datapath is only an equality check. Therefore,
the controller duplicated in our timing channel removal scheme
incurs relatively large overhead for this particular design.

5 RELATEDWORK
Language-based static information flow control (IFC) is initially
proposed to enforce security policies on software programs through
type systems [35]. More recently, researchers have proposed ex-
tensions to hardware description languages that aim to enforce
hardware-level information flow security [24, 40]. Cassion is among
the first to use language-based solution to enable secure hardware
design [24]. However, Caisson incurs significant area overhead be-
cause it does not permit fine-grained sharing of hardware resources
among security levels. All registers must be duplicated for different
security levels, and multiplexers are used to switch registers based
on the security context. SecVerilog then introduces dependent types
to address this limitation by allowing a signal to switch its security
level depending on the value of another signal [40]. Dependent
type enables fine-grained resource sharing and therefore allows
the realization of a more efficient hardware design. These previous
studies mainly focused on hardware designs at the register-transfer
level (RTL). As high-level design methodology becomes more pop-
ular, IFC at RTL will be insufficient for handling security violations
in the high-level design descriptions. By incorporating IFC into

HLS to detect potential vulnerabilities at an early stage, ASSURE
makes it possible to remove the vulnerabilities more easily and at
lower costs. More importantly, ASSURE can automatically eliminate
timing channels without any human intervention.

Sapper [23], GLIFT [38] and RTLIFT [2] are attempts to enforce
hardware security with dynamic, instead of static, information flow
control. Sapper uses static analysis at compile-time to automatically
insert dynamic checks in the resulting hardware to enforce given
information flow policies at runtime. GLIFT is initially proposed
to perform dynamic information flow tracking at the gate-level,
wherein all implicit flows manifest as explicit flows [38]. GLIFT
benefits from its fine-grained precise flow tracking but also incurs
significant area and timing overhead. Follow-up work demonstrates
that GLIFT can also be used to check information flows at design
time by running GLIFT logic through simulations or applying for-
mal verification tools on it [15]. GLIFT logic is then removed for
fabrication to prevent the additional area and performance over-
head. However, formal or simulation-based verification may not be
scale to large designs with complex GLIFT logic. Meanwhile, either
verified statically or dynamically, generating precise GLIFT logic is
NP-complete.1 RTLIFT is similar to GLIFT but tries to reduce the
complexity of the information tracking logic by raising the design
abstraction to RTL.

Besides enforcement in hardware, IFC on software programs is
a well-studied field. One possible alternative for generating secure
RTL is applying existing IFC methods on C to generate a secure C
and then feeding the secure C to HLS. However, contemporary HLS
tools are driven by performance and power, and are yet to offer any
security features [5, 25, 41]. While emerging HLS optimizations
continue to improve the performance of generated hardware [8,
16, 26, 27], these optimizations may break the protections enforced
at the software-level and result in security flaws in the generated
hardware, as demonstrated by the AES example in Section 4.1.

Tackling hardware security in HLS is an emerging research
field in recent years. For instance, HLS techniques are proposed
to counter hardware Trojans in third-party intellectual properties
during allocation, binding, and scheduling [31, 32]. Other recent
efforts [18, 19] attempt to improve the resistance to malicious Tro-
jan insertion or power-based side-channel attacks. To the best of
our knowledge, no prior HLS work provides the comprehensive
timing-sensitive information enforcement proposed in ASSURE.

In addition to application-specific protections, system-level ef-
forts exist to provide security to SoCs with third-party accelerators,
where the primary goal is to prevent host processors from being
contaminated by untrusted accelerators [29, 37]. These techniques
treat the accelerators as blackboxes and build protections on the
host/accelerator interface to prevent illegal data communications.
However, these efforts do not address security vulnerabilities within
accelerators.

1Compared to the version of this paper released by IEEE/ACM, we have updated the
discussion on GLIFT with a clarification on how it is applied in a static verification
scenario.

7

6 CONCLUSIONS AND FUTUREWORK
To meet the increasing security needs in specialized hardware accel-
erators, we propose ASSURE, a novel HLS framework with timing-
sensitive information flow enforcement. Using behavioral-level
analysis, ASSURE can capture both explicit and implicit information
flow violations that exist in the design and help designer discover
and address potential vulnerabilities at an early design stage. In
addition to functional flows, ASSURE can also eliminate informa-
tion leakage caused by timing channels. In contrast to conventional
timing channel removal approaches, ASSURE provides a novel
synthesis technique that removes timing channels while incurring
lower performance overhead for high-security operations executing
on a shared accelerator.

Currently ASSURE’s timing channel removal technique does
not support pipeline synthesis [3, 42], which limits its application
on security-critical applications with high-throughput demands.
Enabling effective timing channel removal for pipelined design is
a future extension of our research. While static information flow
analysis used in ASSURE has the advantage on soundness, it may
be too conservative for certain applications. It may be desirable to
support dynamic information flow control (e.g. GLIFT [38]) to im-
prove permissiveness and preciseness. Using a hybrid information
flow control mechanism in HLS to balance the tradeoff between
soundness and preciseness is an interesting future direction.

ACKNOWLEDGMENT
Wewould like to thank the anonymous reviewers for their insightful
comments. This research was supported in part by NSF award CNS-
1618275, Semiconductor Research Corporation under Task 2686.001,
and DARPA SSITH Award HR0011-18-C-0014.

REFERENCES
[1] Johan Agat. Transforming Out Timing Leaks. ACM SIGPLAN-SIGACT Symp. on

Principles of Programming Languages (POPL), 2000.
[2] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan Kastner. Register

Transfer Level Information Flow Tracking for Provably Secure Hardware Design.
Design, Automation, and Test in Europe (DATE), 2017.

[3] Andrew Canis, Stephen D. Brown, and Jason H. Anderson. Modulo SDC Sched-
uling with Recurrence Minimization in High-Level Synthesis. Int’l Conf. on Field
Programmable Logic and Applications (FPL), 2014.

[4] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp: High-
level Synthesis for FPGA-Based Processor/Accelerator Systems. Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), 2011.

[5] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. High-Level Synthesis for FPGAs: From Prototyping to Deployment.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2011.

[6] Jason Cong and Zhiru Zhang. An Efficient and Versatile Scheduling Algorithm
Based on SDC Formulation. Design Automation Conf. (DAC), 2006.

[7] Steve Dai, Gai Liu, and Zhiru Zhang. A Scalable Approach to Exact Resource-
Constrained Scheduling Based on a Joint SDC and SAT Formulation. Int’l Symp.
on Field-Programmable Gate Arrays (FPGA), 2018.

[8] Steve Dai, Ritchie Zhao, Gai Liu, Shreesha Srinath, Udit Gupta, Christopher
Batten, and Zhiru Zhang. Dynamic Hazard Resolution for Pipelining Irregular
Loops in High-Level Synthesis. Int’l Symp. on Field-Programmable Gate Arrays
(FPGA), 2017.

[9] Dorothy E. Denning. A Lattice Model of Secure Information Flow. Communica-
tions of the ACM, 1976.

[10] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. CUDA Leaks: Informa-
tion Leakage in GPU Architectures. arXiv preprint arXiv:1305.7383, 2013.

[11] Andrew Ferraiuolo, Weizhe Hua, Andrew C. Myers, and G. Edward Suh. Secure
Information FlowVerificationwithMutable Dependent Types. Design Automation
Conf. (DAC), 2017.

[12] Joseph A. Goguen and José Meseguer. Security Policies and Security Models.
IEEE Symp. on Security and Privacy (SP), 1982.

[13] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya
Ishii. CHStone: A Benchmark Program Suite for Practical C-Based High-Level
Synthesis. Int’l Symp. on Circuits and Systems (ISCAS), 2008.

[14] ARM Holdings. ARM Security Technology Building a Secure System using a
TrustZone Technology, 2009.

[15] Wei Hu, Dejun Mu, Jason Oberg, Baolei Mao, Mohit Tiwari, Timothy Sherwood,
and Ryan Kastner. Gate-level information flow tracking for security lattices.
ACM Trans. on Design Automation of Electronic Systems (TODAES), 2014.

[16] Lana Josipović, Radhika Ghosal, and Paolo Ienne. Dynamically Scheduled High-
level Synthesis. Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2018.

[17] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. Int’l Cryptology Conf. (CRYPTO), 1996.

[18] S.T. Choden Konigsmark, Deming Chen, and Martin D.F. Wong. Information
Dispersion for Trojan Defense Through High-Level Synthesis. Design Automation
Conf. (DAC), 2016.

[19] S.T. Choden Konigsmark, Deming Chen, and Martin D.F. Wong. High-Level
Synthesis for Side-Channel Defense. Int’l Conf. on Application-Specific Systems,
Architectures and Processors (ASAP), 2017.

[20] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. Proceedings of the Int’l Symp. on Code
generation and optimization: feedback-directed and runtime optimization, 2004.

[21] Nate Lawson. Timing Attack in Google Keyczar Library, 2009.
[22] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. Stealing Webpages

Rendered on Your Browser by Exploiting GPU Vulnerabilities. IEEE Symp. on
Security and Privacy (SP), 2014.

[23] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Rajarathi-
nam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T. Chong.
Sapper: A Language for Hardware-Level Security Policy Enforcement. Int’l
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2014.

[24] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong,
Timothy Sherwood, and Ben Hardekopf. Caisson: A Hardware Description
Language for Secure Information Flow. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2011.

[25] Yun Liang, Kyle Rupnow, Yinan Li, Dongbo Min, Minh N. Do, and Deming
Chen. High-Level Synthesis: Productivity, Performance, and Software Constraints.
Journal of Electrical and Computer Engineering, 2012.

[26] Gai Liu, Mingxing Tan, Steve Dai, Ritchie Zhao, and Zhiru Zhang. Architecture
and Synthesis for Area-Efficient Pipelining of Irregular Loop Nests. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2017.

[27] Junyi Liu, Samuel Bayliss, and George A. Constantinides. Offline Synthesis of
Online Dependence Testing: Parametric Loop Pipelining for HLS. IEEE Symp. on
Field Programmable Custom Computing Machines (FCCM), 2015.

[28] Heiko Mantel and Artem Starostin. Transforming Out Timing Leaks, More or
Less. European Symp. on Research in Computer Security (ESORICS), 2015.

[29] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood. Border Control:
Sandboxing Accelerators. Int’l Symp. on Microarchitecture (MICRO), 2015.

[30] Steffen Peter and Tony Givargis. Towards A Timing Attack Aware High-Level
Synthesis of Integrated Circuits. Int’l Conf. on Computer Design (ICCD), 2016.

[31] Jeyavijayan Rajendran, Huan Zhang, Ozgur Sinanoglu, and Ramesh Karri. High-
Level Synthesis for Security and Trust. Int’l On-Line Testing Symposium (IOLTS),
2013.

[32] Jeyavijayan JV. Rajendran, Ozgur Sinanoglu, and Ramesh Karri. Building Trust-
worthy Systems using Untrusted Components: A High-Level Synthesis Approach.
IEEE Trans. on Very Large-Scale Integration Systems (TVLSI), 2016.

[33] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. Machsuite: Benchmarks for Accelerator Design and Customized Archi-
tectures. Int’l Symp. on Workload Characterization (IISWC), 2014.

[34] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High Pre-
cision Discrete Gaussian Sampling on FPGAs. Int’l Conf. on Selected Areas in
Cryptography (SAC), 2013.

[35] Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-Flow
Security. IEEE Journal on Selected Areas in Communications (J-SAC), 2003.

[36] Werner Schindler. A Timing Attack Against RSA with the Chinese Remainder
Theorem. Int’l Workshop on Cryptographic Hardware and Embedded System
(CHES), 2000.

[37] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee,
Taesoo Kim, Wenke Lee, and Yunheung Paek. HDFI: Hardware-Assisted Data-
Flow Isolation. IEEE Symp. on Security and Privacy (SP), 2016.

[38] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.
Chong, and Timothy Sherwood. Complete Information Flow Tracking from the
Gates Up. Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2009.

[39] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.
Secure Program Partitioning. ACM Transactions on Computer Systems (TOCS),
2002.

[40] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A Hardware
Design Language for Timing-Sensitive Information-Flow Security. Int’l Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015.

[41] Zhiru Zhang, Deming Chen, Steve Dai, and Keith Campbell. High-Level Synthesis
for Low-Power Design. IPSJ Transactions on System LSI Design Methodology, 2015.

[42] Zhiru Zhang and Bin Liu. SDC-Based Modulo Scheduling for Pipeline Synthesis.
Int’l Conf. on Computer-Aided Design (ICCAD), 2013.

8

	Abstract
	1 Introduction
	2 Background
	3 HLS with Information Flow Security
	3.1 Security Label Inference
	3.2 Security Label Checking
	3.3 Timing Channel Removal

	4 Experimental Results
	4.1 Evaluation of Functional Flow Enforcement
	4.2 Evaluation of Timing Flow Enforcement

	5 Related Work
	6 Conclusions and Future Work
	References

